IMMERSION EXTENSION-LIFT OVER A MORSE FUNCTION

MINORU YAMAMOTO

Abstract. Let V be a compact connected oriented surface with boundary and $f : \partial V \times [0, 1) \to \mathbb{R}$ a non-singular function such that $f|\partial V \times \{0\}$ is a Morse function. Let $\iota : \partial V \times [0, 1) \to V$ be a collaring of ∂V and $\pi : \mathbb{R}^2 \to \mathbb{R}$ an orthogonal projection. In this paper, we study existence of an orientation preserving immersion $F : V \to \mathbb{R}^2$ such that $\pi \circ F \circ \iota = f$. We also study image homotopy classes of F when we fix f and study relation between two image homotopy classes when f is deformed under a Morse homotopy.

1. Introduction

Throughout the paper, all manifolds and maps are differentiable of class C^∞. Let V be a compact connected oriented surface with boundary. For a smooth function $\bar{f} : \partial V \to \mathbb{R}$, the set of singular points of \bar{f} is $S(\bar{f}) = \{ p \in \partial V | d\bar{f}|_p = 0 \}$. We call any point p of the set $S(\bar{f})$ a singularity and $\bar{f}(p)$ a singular value of \bar{f}, respectively. A function $\bar{f} : \partial V \to \mathbb{R}$ is called a Morse function if there exist local coordinates x and y around every $p \in S(\bar{f})$ and $\bar{f}(p) \in \mathbb{R}$ respectively, such that $y = \pm x^2$.

Let $\iota : \partial V \times [0, 1) \to V$ be a collaring of ∂V, $f : \partial V \times [0, 1) \to \mathbb{R}$ a non-singular function such that $f|\partial V \times \{0\}$ is a Morse function and $\pi : \mathbb{R}^2 \to \mathbb{R}$ an orthogonal projection such that $\pi(y_1, y_2) = y_1$. Note that the orientation of $\partial V \times [0, 1)$ is induced from that of V by ι. In the following, we abuse that $f : \partial V \times [0, 1) \to \mathbb{R}$ is a Morse function and that $S(f) = S(f|\partial V \times \{0\})$ for the simplicity. In this paper, we study existence of an orientation preserving immersion $F : V \to \mathbb{R}^2$ such that the diagram

$$
\begin{array}{ccc}
V & \xrightarrow{F} & \mathbb{R}^2 \\
\iota \downarrow & & \downarrow \pi \\
\partial V \times [0, 1) & \xrightarrow{f} & \mathbb{R}
\end{array}
$$

is commutative when f is a Morse function. We call F an immersion extension-lift over f. When we fix a Morse function $f : \partial V \times [0, 1) \to \mathbb{R}$, we denote by $\text{Imm}_f(V, \mathbb{R}^2)$ the set of immersion extension-lifts $F : V \to \mathbb{R}^2$ over f. We also study f-image homotopy classes of $\text{Imm}_f(V, \mathbb{R}^2)$. Here, $F, F' \in \text{Imm}_f(V, \mathbb{R}^2)$ are f-image homotopic means that there exist a family of immersion extension-lifts $F_t \in \text{Imm}_f(V, \mathbb{R}^2)$ ($t \in [0, 1]$) and an orientation preserving diffeomorphism $h : V \to V$ such that $h(\partial V \times [0, 1)) = \text{id}$, $F_0 = F$ and $F_1 = F' \circ h$.

Let $f_s : \partial V \times [0, 1) \to \mathbb{R}$ ($s \in [0, 1]$) be a family of non-singular functions such that $f_s|\partial V \times \{0\}$ is a Morse function for each s. We call f_s a Morse homotopy.
between \(f_0 \) and \(f_1 \). Let \(f_s : \partial V \times [0, 1) \to \mathbb{R} \) be a Morse homotopy between Morse functions \(f_0 \) and \(f_1 \) \((s \in [0, 1])\) and \(F \in \text{Imm}_{f_0}(V, \mathbb{R}^2) \), \(G \in \text{Imm}_{f_1}(V, \mathbb{R}^2) \) two immersion extension-lifts. If there exists a family of immersion extension-lifts \(\Phi_s \in \text{Imm}_{f_s}(V, \mathbb{R}^2) \) and an orientation preserving diffeomorphism \(k : V \to V \) such that \(k\partial V \times [0, 1) = \text{id} \), \(\Phi_0 = F \) and \(\Phi_1 = G \circ k \), then we call that \(F \) and \(G \) are image homotopic over the Morse homotopy \(f_s \). We can see that the definition of an image homotopy over a Morse homotopy is well-defined. That is, we can check that if \(F \) and \(G \) are \(f_0 \)-image homotopic, \(G \) and \(G' \) are \(f_1 \)-image homotopic and \(F \) and \(G \) are image homotopic over a Morse homotopy between \(f_0 \) and \(f_1 \), then \(F' \) and \(G' \) are image homotopic over the same Morse homotopy. In this paper, we study the conditions when \(F \) and \(G \) are image homotopic over a Morse homotopy.

Remark 1.1. Blank and Laudenbach [1] studied a submersion extension \(F : V \to \mathbb{R} \) such that \(F \circ \iota = f \) and they gave a necessary and sufficient condition of existence of a submersion extension over \(f \).

This paper is organized as follows. In Section 2, we give a necessary and sufficient condition of existence of an immersion extension-lift \(F : V \to \mathbb{R}^2 \) over a Morse function \(f : \partial V \times [0, 1) \to \mathbb{R} \). In Section 3, we classify immersion extension-lifts up to \(f \)-image homotopy. In Section 4, we give invariants of image homotopy classes over a Morse homotopy.

The author would like to express his sincere gratitude to Prof. Masatomo Takahashi for giving an opportunity to talk in the Colloquium at Muroran Institute of Technology. He is also extremely thankful to the members of Department of Mathematical Science of Muroran Institute of Technology for their useful comments.

2. CONSTRUCTION OF AN IMMERSION EXTENSION-LIFT

In this section, we study an orientation preserving immersion extension-lift \(F : V \to \mathbb{R}^2 \) over a Morse function \(f : \partial V \times [0, 1) \to \mathbb{R} \).

Definition 2.1. Let \(f : \partial V \times [0, 1) \to \mathbb{R} \) be a Morse function and \(p \) a local maximum of the restriction \(f|\partial V \times \{0\} \). If \(p \) is also a local maximum for \(f \), then \(p \) is a true maximum, otherwise it is said to be a false maximum. We give similar definitions for true minimums and false minimums of \(f|\partial V \times \{0\} \). We denote by \(\mathcal{Z}^{\text{max}} \) the set of true maximums of \(f \), by \(\mathfrak{R}^{\text{max}} \) the set of false maximums of \(f \). Similarly, we denote by \(\mathcal{Z}^{\text{min}} \) the set of true minimums of \(f \) and by \(\mathfrak{R}^{\text{min}} \) the set of false minimums of \(f \). We put \(\mathcal{X} = \mathcal{Z}^{\text{max}} \cup \mathcal{Z}^{\text{min}} \) and \(\mathfrak{S} = \mathfrak{R}^{\text{max}} \cup \mathfrak{R}^{\text{min}} \).

It is easy to see that \(\#S(f) = \#\mathcal{X} + \#{\mathfrak{S}} \equiv 0 \pmod{2} \) and \(\#S(f)/2 = \#\mathcal{Z}^{\text{max}} + \#\mathfrak{R}^{\text{max}} = \#\mathcal{Z}^{\text{min}} + \#\mathfrak{R}^{\text{min}} \). Here, \(\#X \) is the number of points in \(X \). Let the orientation of \(\partial V \times \{0\} \) be induced by that of \(\partial V \times [0, 1) \). Then we denote by \(S^+ \) (resp. \(S^- \)) the closure of the set of regular points at which \(f|\partial V \times \{0\} \) preserves (resp. reverses) orientation.

Suppose that \(p_1, \ldots, p_l \in \mathfrak{S}^{\text{max}} \) and \(p_{l+1}, \ldots, p_{l+m} \in \mathfrak{S}^{\text{min}} \) satisfy \(f(p_1) = \cdots = f(p_l) = \cdots = f(p_{l+m}) \) and there is at least one connected component \(S_0^+ \) of \(S^+ \) such that \(\text{Int} S_0^+ \cap f^{-1}(f(p_1)) \neq \emptyset \). We denote by \(p_0 \) the regular point in \(\text{Int} S_0^+ \) which satisfies that \(f(p_1) = f(p_0) \). Let \(S_i^+ \) be a connected component of \(S^+ \) which contains \(p_i \) \((1 \leq i \leq l + m)\). Note that if \(p_i \neq p_j \), then \(S_i^+ \neq S_j^+ \). We define the following two operations.
Definition 2.2. Suppose that the line $\pi^{-1}(y_1) = \{y_1\} \times \mathbb{R}$ is canonically oriented for each y_1 and ϵ is a sufficiently small positive number.

(1) Let σ and τ be elements of the permutation group of l-words and m-words respectively. We embed each S^+_i in \mathbb{R}^2 which satisfies that $\pi_i S^+_i = f_i S^+_i (0 \leq i \leq l + m)$, $S^+_0 < S^+_{\tau(1)} < \cdots < S^+_{\tau(l)}$ holds on the band $\pi^{-1}([f(p_0) - \epsilon, f(p_0)])$ and $S^+_0 < S^+_{\tau(1)+l} < \cdots < S^+_{\tau(m)+l}$ holds on the band $\pi^{-1}((f(p_0), f(p_0) + \epsilon])$. Then we attach S^+_1, \ldots, S^+_{l+m} to S^+_0 at p_0 keeping the above orders on the band $\pi^{-1}([f(p_0) - \epsilon, f(p_0) + \epsilon] \setminus \{f(p_0)\})$. We call this operation an attaching operation.

(2) Let W be the CW complex which is obtained by the above attaching operation. By removing p_0, W separates into $l + m + 2$ arcs and especially, S^+_0 falls apart into two arcs S^+_{0-} and S^+_{0+}, where $\pi(S^+_{0-}) < f(p_0)$ and $\pi(S^+_{0+}) > f(p_0)$ hold. We slide each arc along the vertical direction so that $S^+_{0-} < S^+_{\tau(1)} < \cdots < S^+_{\tau(l)}$ holds on $\pi^{-1}([f(p_0) - \epsilon, f(p_0)])$, $S^+_{0+} < S^+_{\tau(1)+l} < \cdots < S^+_{\tau(m)+l}$ holds on $\pi^{-1}((f(p_0), f(p_0) + \epsilon])$ and $S^+_{\tau(l)}$ and $S^+_{\tau(m)+l}$ are in the same horizontal level. By taking closures for each arcs, we have $l+m+1$ embedded arcs with boundaries. Especially, $S^+_{\tau(l)} \cup S^+_{\tau(m)+l}$ becomes a connected arc with two boundary points. We call this operation a switching operation.

Figure 1 shows a typical example for these two operations.

Then, we have the following theorem.
Theorem 2.3. Let $f : \partial V \times [0, 1) \to \mathbb{R}$ be a Morse function and V a compact connected oriented surface. Then there exists an immersion extension-lift $F : V \to \mathbb{R}^2$ over f if and only if the following conditions are satisfied:

1. $\chi(V) = (\# S^+ - \# S^-)/2$, where $\chi(V)$ is the Euler characteristic of V.
2. We have a CW complex W_{S^+} in \mathbb{R}^2 which is obtained by attaching operation on S^+ for each point in V.
3. The set of $\# S(f)/2$ arcs obtained by switching operation for each vertex of multi degree in W_{S^+} is the same as the set of orientation reversing arcs $S^-.$

Proof. Suppose that there exists an immersion extension-lift $F : V \to \mathbb{R}^2$ over f. Because F is an immersion, $\pi \circ F$ is a submersion. For any $y \in \mathbb{R}$, each fiber $(\pi \circ F)^{-1}(y)$ is either empty or diffeomorphic to a finite disjoint union of closed intervals and points. For $x_1, x_2 \in V$, we define $x_1 \sim x_2$ if $\pi \circ F(x_1) = \pi \circ F(x_2)$ and x_1, x_2 are in the same connected component of $(\pi \circ F)^{-1}(\pi \circ F(x_1))$. Denote by $W_F = V/\sim$ the quotient space of V for this equivalence relation and by $q_F : V \to W_F$ the quotient map. We call W_F the Reeb graph of $\pi \circ F$. In general, W_F is not a manifold, however, it is homeomorphic to a 1-dimensional finite CW complex. Figure 2 is examples of local correspondences between V and W_F. Note that for the type (a), r is not a vertex of W_F. On the other hand, for the types (b) and (c), r is a vertex of W_F. We do not have a degree 2 vertex in W_F.

Because $q_F^{-1}(r)$ is a closed interval or a point, W_F and V are homotopy equivalent. Thus, we have $\chi(V) = \chi(W_F)$. Suppose that each vertex R_1, \ldots, R_u corresponds to a degree one vertex in W_F and each vertex r_1, \ldots, r_v corresponds to a degree $\alpha_1, \ldots, \alpha_v$ vertex, respectively ($\alpha_i > 2$). Each fiber $q_F(R_i)$ contains exactly

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Examples of local correspondences between V and W_F.}
\end{figure}
one true singularity and each fiber \(q_F(r_i) \) contains \(\alpha_i - 2 \) false singularities (see Figure 2). That is, we have \(u = \#T \) and \(\alpha_1 + \cdots + \alpha_v = \#T. \) Therefore, we have the equation of (1).

For a vertex \(r \in W_F \) of the type Figure 2 (c), we define that \(q_F^{-1}(r) = [a, b] \) such that \(a \in S^+ \) and \(b \in S^- \). We suppose that \(p \in \partial S \) (resp. \(\partial S \)) is the nearest point to \(a \) (resp. \(b \)) among \([a, b] \cap \partial S \) and that the direction from \(a \) to \(b \) is the positive direction of \([a, b]\). By cutting branches of \(V \) along the interval \([p, b]\), we see that around \(r, W_F \) is obtained by attaching operations on \(S^+ \) for each point \([a, b] \cap \partial S \).

The order of arcs which are connected to \(r \) is determined by the orientation of \([a, b]\). By using this order of arcs around each multi-degree vertex, \(W_F \) can be realized in \(\mathbb{R}^2 \). This \(W_F \subset \mathbb{R}^2 \) satisfies the condition (2). Similarly, by cutting branches of \(V \) along the interval \([a, \partial S]\), we see that \(S^+ \) is obtained by switching operations on \(W_F \subset \mathbb{R}^2 \) for the points \([a, b] \cap \partial S \). This satisfies the condition (3).

Conversely, suppose that the conditions of Theorem 2.3 are satisfied. Let \(W_{S^+} \subset \mathbb{R}^2 \) be a CW complex which is obtained by attaching operations on \(S^+ \) for each point of \(\partial S \). By thickening \(W_{S^+} \) in \(\mathbb{R}^2 \), we have and oriented immersed surface with boundary. That is, we have an orientation preserving immersion \(F: V \rightarrow \mathbb{R}^2 \) such that \(\chi(V) = \sharp(S(f)/2 - \sharp(S) = \sharp(T - \sharp(S))/2 \) and \(\pi \circ F \circ i(S(p \circ F \circ i)) = f(S) \). Let \(T^+ \) (resp. \(T^- \)) be the closure of the set of regular points at which \(\pi \circ F \circ i \) coincides with the given function \(f \). Therefore, the orientation preserving immersion \(F: V \rightarrow \mathbb{R}^2 \) is the desired immersion extension-lift over \(f \).

This completes the proof. \(\square \)

If a CW complex \(W_{S^+} \) satisfies the conditions (1) and (2) of Theorem 2.3, we call it a virtual Reeb graph of \(f \). If \(W_{S^+} \) satisfies all the three conditions of Theorem 2.3, we call it a real Reeb graph of \(f \).

We give two examples to clarify Theorem 2.3.

Example 2.4. Let \(f : \partial D^2 \times [0, 1) \rightarrow \mathbb{R} \) be a Morse function such that \(\mathbb{T}_{\min} = \{P_1\}, \mathbb{T}_{\min} = \{q_1\} \) and \(\mathbb{T}_{\max} = \{q_2\} \) and \(\mathbb{T}_{\max} = \{P_2, P_3\} \) and \(\mathbb{T}_{\max} = \{q_2\} \) and \(\mathbb{T}_{\max} = \{P_2, P_3\}, \). Suppose that \(f(P_1) < f(q_1) < f(P_2) < f(P_3) \), then there exists an immersion extension-lift \(F_1 : D^2 \rightarrow \mathbb{R}^2 \) over \(f \). See Figure 3(a). On the other hand, If \(f \) satisfies that \(f(q_1) < f(P_1) < f(P_2) < f(P_3) \), we cannot make a virtual Reeb graph from the arcs \(S^+, S^- \). Therefore, there does not exist an immersion extension-lift over \(f \). See Figure 3(b).

Example 2.5. Let \(f : \partial D^2 \times [0, 1) \rightarrow \mathbb{R} \) be a Morse function such that \(\mathbb{T}_{\min} = \{P_1, P_2\}, \mathbb{T}_{\min} = \{q_1\} \) and \(\mathbb{T}_{\max} = \{P_2, P_3\} \) and \(\mathbb{T}_{\max} = \{q_2\} \) and \(\mathbb{T}_{\max} = \{P_2, P_3\} \). Suppose that \(f(P_1) < f(P_2) < f(q_1) < f(q_2) < f(P_2) < f(P_3) \). We can construct three virtual Reeb graphs \(W_{S^+} \), \(W_{S^+} \), and \(W_{S^+} \). Because two graphs \(W_{S^+} \) and \(W_{S^+} \) satisfy the condition (3) of Theorem 2.3, we have immersion extension-lifts \(F_1 : D^2 \rightarrow \mathbb{R}^2 \) and \(F_2 : D^2 \rightarrow \mathbb{R}^2 \) over \(f \) such that \(W_{F_1} = W_{S^+} \) and \(W_{F_2} = W_{S^+} \). See Figure 4 (a) and (b). On the other hand, since \(W_{S^+} \) does not satisfy the condition (3) of Theorem 2.3, there does not exit an immersion extension-lift \(F : D^2 \rightarrow \mathbb{R}^2 \) over \(f \) such that \(W_F = W_{S^+} \). See Figure 4 (c).
Figure 3. (a) satisfies the conditions of Theorem 2.3, but (b) does not satisfy the condition (2) of Theorem 2.3.

3. f-image homotopy classes of immersion extension-lifts

Let $\text{Imm}_f(V,\mathbb{R}^2)$ be the set of immersion extension-lifts $F : V \to \mathbb{R}^2$ over a Morse function $f : \partial V \times [0,1) \to \mathbb{R}$. In this section, we determine f-image homotopy classes of $\text{Imm}_f(V,\mathbb{R}^2)$.

Definition 3.1. Let $f : \partial V \times [0,1) \to \mathbb{R}$ be a Morse function, S^+ the closure of orientation preserving regular points of $f|\partial V \times \{0\}$ and \mathfrak{F} the set of false singularity of f. Let W_{S^+} and W_{S^+}' be virtual Reeb graphs of f. If both graphs are obtained by the same attaching operation on S^+ for each point in \mathfrak{F}, then we call these two virtual Reeb graphs are same.

Theorem 3.2. Let $f : \partial V \times [0,1) \to \mathbb{R}$ be a Morse function and F and $F' : V \to \mathbb{R}^2$ two immersion extension-lifts over f. Suppose that both Reeb graphs W_F and $W_{F'}$ are obtained by attaching operation on S^+ for each point in \mathfrak{F} as described in the proof of Theorem 2.3. Then F and F' are f-image homotopic if and only if W_F and $W_{F'}$ are same in the sense of Definition 3.1.
Proof. Suppose that F and $F' : V → \mathbb{R}^2$ are f-image homotopic, $F_t : V → \mathbb{R}^2$ family of immersion extension-lifts over f ($t ∈ [0, 1]$) and $h : V → V$ an orientation preserving diffeomorphism such that $h|\partial V × [0, 1] = id$, $F_0 = F$ and $F_1 = F' ∘ h$. For any $p ∈ \mathfrak{F}$, let $I_{p,t} ⊂ V$ be a connected component of $(π ∘ F_t)^{-1}(π ∘ F_t ∗ h(p))$ which contains p. Suppose that the degree of the vertex $q_F(p)$ of the Reeb graph W_{F_t} equals a. Since f is fixed, a is constant for each t. Then we put $S^+ ∩ I_{p,t} = \{p_0', p_1, p_2, \ldots, p_{α-2}\}$ where $p_1 = p$, p_0' is a regular point of f and $\{p_1, p_2, \ldots, p_{α-2}\} ⊂ \mathfrak{F}$. Because the restricted map $F_t|S^+ : S^+ → \mathbb{R}^2$ is a regular homotopy, p_0' belongs to the same connected component S^+_0 of S^+ during this homotopy. Note that if p_i is a boundary of S^+_i, the order of $S^+_0, S^+_1, \ldots, S^+_{α-2}$ around $q_F(p_i)$ of W_{F_t} corresponds to the order of singular points $p_1, \ldots, p_{α-2}$ on $∂V$. Therefore, $W_{F_0} = W_F$ and $W_{F_1} = W_{F' ∗ h}$ are obtained by the same attaching operation for each point in \mathfrak{F}. Because $h : V → V$ is a diffeomorphism such that $h|\partial V × [0, 1] = id$, we have that $W_{F'} = W_{F' ∗ h}$. Therefore, W_F and $W_{F'}$ are same.

Conversely, suppose that W_F and $W_{F'}$ are the same Reeb graphs. Because of the reconstruction of an immersion from the true Reeb graph, we have a family of diffeomorphisms $h_t : \mathbb{R}^2 → \mathbb{R}^2$ ($t ∈ [0, 1]$) such that $h_0 = id$, $h_1 (F(V)) = F'(V)$ and $π = π ∘ h_t$. Thus, there is an orientation preserving diffeomorphism $h : V → V$.
such that $\bar{h}_1 \circ F = F' \circ h$ and $h|\partial V \times [0, 1) = \text{id}$. If we put $F_t = \bar{h}_t \circ F$, then we have that F and F' are f-image homotopic. This completes the proof. ∎

By Theorem 3.2, two immersion extension-lifts F_1 and $F_2 : D^2 \to \mathbb{R}^2$ over f which are given in Example 2.5 are not f-image homotopic.

Remark 3.3. Consider an immersion extension-lift of an oriented surface V into \mathbb{R}^3 over a Morse function $f : \partial V \times [0, 1) \to \mathbb{R}$. If F_1 and $F_2 : V \to \mathbb{R}^3$ are f-image homotopic immersion extension-lifts over f, then the Reeb graphs W_{F_1} and W_{F_2} are same. On the other hand, there exist immersion extension-lifts F_1 and F_2 over f such that their Reeb graphs W_{F_1} and W_{F_2} are same but they are not f-image homotopic. Figure 5 is one of such examples. In this example, there is an edge e in the Reeb graph W_{F_1} such that for a point $r \in e$, $q_{F_1}^{-1}(r) = q_{F_2}^{-1}(r) = S^1$ and $F_1|q_{F_1}^{-1}(r) : S^1 \to \mathbb{R}^2$ and $F_2|q_{F_2}^{-1}(r) : S^1 \to \mathbb{R}^2$ have different winding numbers.

As a corollary of Theorem 3.2, we have an upper bound of the number of f-image homotopy classes of $\text{Imm}_f(V, \mathbb{R}^2)$ for a stable Morse function f. Here, a stable Morse function means that every singular value of a Morse function is disjoint.

Corollary 3.4. Let $\{p_1, \ldots, p_{n_f}\}$ be the set of false singularity points of a stable Morse function $f : \partial V \times [0, 1) \to \mathbb{R}$. Let $E_f^{\text{min}} = \#\left(\mathbb{Z}_{\text{min}} \cup \mathbb{R}^{\text{min}}\right) \cap f^{-1}((-\infty, f(p_i)))$
and \(E_{i}^\text{max} = \#((\mathcal{Z}_{i}^\text{max} \cup \mathcal{Z}_{i}^\text{min}) \cap f^{-1}((-\infty, f(p_i)))) \). If we define

\[
E_i = \begin{cases}
2(E_{i}^\text{min} - E_{i}^\text{max}) & \text{if } p_i \in \mathcal{Z}_{i}^\text{min}, \\
2(E_{i}^\text{min} - E_{i}^\text{max} - 1) & \text{if } p_i \in \mathcal{Z}_{i}^\text{max}.
\end{cases}
\]

Then the number of \(f \)-image homotopy classes of \(\text{Imm}_f(V, \mathbb{R}^2) \) is less than or equals to \(\prod \# F_i = 1 E_i \).

Proof. Because \(f \) is a stable Morse function, the degree of a vertex of a virtual Reeb graph is one or three. Thus, it is easy to see that \(\#(S^+ \cap f^{-1}(f(p_i))) = E_{i}^\text{min} - E_{i}^\text{max} \) holds for \(p_i \in \mathcal{Z} \). Since \(f \) is a stable Morse function, the degree of a virtual Reeb graph at a vertex of \(\mathcal{Z} \) must be three. This means that for each \(p_i \), there are \(E_i \) possibilities for attaching operation on \(S^+ \). Therefore, there are \(\prod \# F_i = 1 E_i \) virtual Reeb graphs which are not same in the sense of Definition 3.1. Then we have the desired inequality. \(\square \)

4. IMAGE HOMOTOPY OVER A MORSE HOMOTOPY

Let \(f_s : \partial V \to \mathbb{R} \ (s \in [0, 1]) \) be a Morse homotopy and \(F, G : V \to \mathbb{R}^2 \) immersion extension-lifts over \(f_0 \) and \(f_1 \), respectively. In this section, we classify immersion extension-lifts up to image homotopy over the Morse homotopy \(f_s \).

Let the genus of \(V \) be \(g \) and \(c_0, \ldots, c_n \) the connected components of \(\partial V \) \((n \geq 0)\). Let \(a_1, b_1, \ldots, a_g, b_g \) and \(d_1, \ldots, d_{g-1} \) be oriented simple closed curves as depicted in Figure 6. We take the orientations of \(a_i, b_i \) and \(d_i \) so that each intersection number \(b_i \cdot a_i \) and \(d_i \cdot b_i \) in \(V \) equals one, respectively.

![Figure 6. Simple closed curves on V.](image)

Let \(F : V \to \mathbb{R}^2 \) be an orientation preserving immersion, \(\alpha : S^1 \to V \) an oriented simple closed curve in \(V \). We denote by \(D_F(\alpha) \in \mathbb{Z} \) the rotation number of \(F \circ \alpha \).

Then we have the following theorem.

Theorem 4.1. Let \(f_s : \partial V \to \mathbb{R} \ (s \in [0, 1]) \) be a Morse homotopy such that the number of connected components of \(\partial V \) is \(n + 1 \) \((n \geq 0)\). Let \(F \) and \(G : V \to \mathbb{R}^2 \) be immersion extension-lifts over \(f_0 \) and \(f_1 \), respectively. then we have the following.

1. Suppose that the genus of \(V \) equals to zero. If \(F \) and \(G \) are image homotopic over the Morse homotopy \(f_s \), then

\[
(D_F(c_0), \ldots, D_F(c_n)) = (D_G(c_0), \ldots, D_G(c_n))
\]

holds.
(2) Suppose that the genus of V equals to one. If F and G are image homotopic over the Morse homotopy f_s, then

\[
\gcd (D_F(a_1), D_F(b_1)) = \gcd (D_G(a_1), D_G(b_1)),
\]
and

\[
(D_F(c_0), \ldots, D_F(c_n)) = (D_G(c_0), \ldots, D_G(c_n))
\]
hold.

(3) Suppose that the genus of V is greater than one. If F and G are image homotopic over the Morse homotopy f_s, then

\[
\sum_{i=1}^{g} (D_F(a_i) + 1)(D_F(b_i) + 1) \equiv \sum_{i=1}^{g} (D_G(a_i) + 1)(D_G(b_i) + 1) \pmod{2},
\]
and

\[
(D_F(c_0), \ldots, D_F(c_n)) = (D_G(c_0), \ldots, D_G(c_n))
\]
hold.

Proof. Let F and $G : V^2 \to \mathbb{R}^2$ be orientation preserving immersions. It is known that F and G are regularly homotopic if and only if

\[
(D_F(a_1), D_F(b_1), \ldots, D_F(a_g), D_F(b_g)) = (D_G(a_1), D_G(b_1), \ldots, D_G(a_g), D_G(b_g))
\]
and

\[
(D_F(c_0), \ldots, D_F(c_n)) = (D_G(c_0), \ldots, D_G(c_n))
\]
are satisfied.

Let $\text{Diff}^+_\partial(V)$ be the space of orientation preserving diffeomorphisms $h : V \to V$ such that $h \partial V \times [0,1] = \text{id}$. It is known that the mapping class group of $\text{Diff}^+_\partial(V)$ is generated by the isotopy classes of Dehn twists \tilde{a}_i, \tilde{b}_i and \tilde{d}_j along a_i, b_i and d_j (1 \leq i \leq g, 1 \leq j \leq g - 1), respectively. By [2, 3], we have the following relations:

\[
\left(\sum_{i=1}^{g} D_F(a_i), \ldots, D_F(b_i)\right) = \left(\sum_{i=1}^{g} D_G(a_i), \ldots, D_G(b_i)\right),
\]
and

\[
\left(\sum_{i=1}^{g} D_F(a_i), \ldots, D_F(b_i)\right) = \left(\sum_{i=1}^{g} D_G(a_i), \ldots, D_G(b_i)\right),
\]

\[
\left(D_F(a_1), \ldots, D_F(a_i), D_F(b_1), \ldots, D_F(b_j)\right) = \left(D_G(a_1), \ldots, D_G(a_i), D_G(b_1), \ldots, D_G(b_j)\right),
\]

(4.10) \[(D_{Fak}^{-1}(a_1), \ldots, D_{Fak}^{-1}(a_i), D_{Fak}^{-1}(b_1), \ldots, D_{Fak}^{-1}(b_j)) = (D_F(a_1), \ldots, D_F(a_i), D_F(b_1), \ldots, D_F(b_j))\]

and

\[
(D_{Fak}(c_0), \ldots, D_{Fak}(c_n)) = (D_F(c_0), \ldots, D_F(c_n)).
\]

Here, $k_i = \tilde{d}_i \circ \tilde{a}_{i+1} \circ \tilde{a}_i^{-1}$ (1 \leq i \leq g - 1) and h is any orientation preserving diffeomorphism in $\text{Diff}^+_\partial(V)$. Because of (4.8), (4.9) and (4.11), Theorem 4.1 (1) and (2) are obvious.
Suppose that \(g > 1 \). By (4.8) and (4.9), we have that
\[
\sum_{j=1}^{g} \left(D_{F \circ a_{j}}(a_{j}) + 1 \right) \left(D_{F \circ a_{j}}(b_{j}) + 1 \right) - \sum_{j=1}^{g} \left(D_{F}(a_{j}) + 1 \right) \left(D_{F}(b_{j}) + 1 \right)
= (D_{F}(a_{j}) + 1) (D_{F}(b_{j}) + 1) - (D_{F}(a_{j}) + 1) (D_{F}(b_{j}) + 1)
= \pm D_{F}(a_{j}) (D_{F}(a_{j}) + 1) \equiv 0 \pmod{2}
\]
and
\[
\sum_{j=1}^{g} \left(D_{F \circ a_{j}}(a_{j}) + 1 \right) \left(D_{F \circ a_{j}}(b_{j}) + 1 \right) - \sum_{j=1}^{g} \left(D_{F}(a_{j}) + 1 \right) \left(D_{F}(b_{j}) + 1 \right)
= (D_{F}(a_{j}) \pm D_{F}(b_{j}) + 1) (D_{F}(b_{j}) + 1) - (D_{F}(a_{j}) + 1) (D_{F}(b_{j}) + 1)
= \pm D_{F}(b_{j}) (D_{F}(b_{j}) + 1) \equiv 0 \pmod{2}.
\]
By (4.10), we have that
\[
\sum_{j=1}^{g} \left(D_{F \circ a_{j}}(a_{j}) + 1 \right) \left(D_{F \circ a_{j}}(b_{j}) + 1 \right) - \sum_{j=1}^{g} \left(D_{F}(a_{j}) + 1 \right) \left(D_{F}(b_{j}) + 1 \right)
= (D_{F}(a_{j}) + 1) (D_{F}(b_{j}) + 1) + (D_{F}(a_{j}+1) + 1) (D_{F}(b_{j}+1) - D_{F}(a_{j}))
- (D_{F}(a_{j}) + 1) (D_{F}(b_{j}) + 1) - (D_{F}(a_{j}+1) + 1) (D_{F}(b_{j}+1) + 1)
= (D_{F}(a_{j}) + 1) (D_{F}(a_{j}+1) - 1) - (D_{F}(a_{j}+1) + 1) (D_{F}(a_{j}) + 1) \equiv 0 \pmod{2}
\]
and
\[
\sum_{j=1}^{g} \left(D_{F \circ a_{j}}^{-1}(a_{j}) + 1 \right) \left(D_{F \circ a_{j}}^{-1}(b_{j}) + 1 \right) - \sum_{j=1}^{g} \left(D_{F}(a_{j}) + 1 \right) \left(D_{F}(b_{j}) + 1 \right)
= (D_{F}(a_{j}) + 1) (D_{F}(b_{j}) + 1) - (D_{F}(a_{j}) + 1) + (D_{F}(a_{j}+1) + 1) (D_{F}(a_{j}) + 1) + 2
- (D_{F}(a_{j}) + 1) (D_{F}(b_{j}+1) + 1) - (D_{F}(a_{j}+1) + 1) (D_{F}(b_{j}+1) + 1)
= (D_{F}(a_{j}) + 1) (-D_{F}(a_{j}+1) + 1) + (D_{F}(a_{j}+1) + 1) (D_{F}(a_{j}) + 1) \equiv 0 \pmod{2}.
\]
These four relations and (4.11) lead Theorem 4.1 (3). This completes the proof. \(\square\)

From Theorem 4.1, we have two examples.

Example 4.2. Let \(f : \partial D^{2} \times [0, 1] \to \mathbb{R} \) be a Morse function and \(F_{1}, F_{2} : D^{2} \to \mathbb{R}^{2} \) immersion extension-lifts over \(f \) which are defined in Example 2.5. It is easy to see that there exists a Morse homotopy \(f_{s} (s \in [0, 1]) \) such that \(f_{0} = f_{1} = f \) and \(F_{1} \) and \(F_{2} \) are image homotopic over this Morse homotopy \(f_{s} \). See Figure 7.

Example 4.3. Let \(f : \partial V \times [0, 1] \to \mathbb{R} \) be a Morse function such that the genus of \(V \) is one and the number of connected components of \(\partial V \) is two. Let \(F \) and \(G : V \to \mathbb{R}^{2} \) be immersion extension-lifts over \(f \) which are depicted in Figure 8. From Figure 8, we can take oriented simple closed curves \(a_{1} \) and \(b_{1} \) such that \((D_{F}(a_{1}), D_{F}(b_{1})) = (0, 1)\) and \((D_{G}(a_{1}), D_{G}(b_{1})) = (0, 0)\). Since
\[
\gcd(D_{F}(a_{1}), D_{F}(b_{1})) = 1 \neq 0 = \gcd(D_{G}(a_{1}), D_{G}(b_{1})),
\]
\(F \) and \(G \) are not image homotopic over any Morse homotopy \(f_{s} (s \in [0, 1]) \) such that \(f_{0} = f_{1} = f \).
Figure 7. Image homotopy between F_1 and F_2 over a Morse homotopy.

Figure 8. Two immersion extension-lifts F and $G : V \to \mathbb{R}^2$ over the same Morse function which are not image homotopic over any Morse homotopy.

References

Department of Mathematics, Aichi University of Education, 1 Hirosawa, Iigaia-cho, Kariya, Aichi, 448-8542, Japan
E-mail address: minomoto@auecc.aichi-edu.ac.jp