Some Properties of Irreducible Ideals

Mitsuo KANEMITSU and Ken-ichi YOSHIDA

(Department of Mathematics, Aichi University of Education, Igaya, Kariya 448, Japan)

(Department of Applied Mathematics, Okayama University of Science, 1-1 Ridai, Okayama 700, Japan).

(Received September 13, 1985)

Throughout this paper all rings will be commutative with identity.

It is well known that in a Noetherian ring every irreducible ideal is primary but a primary ideal need not be irreducible. For instance, in a polynomial ring \(Z[X] \) in one indeterminate over the ring of integers \(Z \), the ideal \(q = (4, 2X, X^2) \) is primary, but we have that \(q \) is the intersection of the two ideals \((4, X) \) and \((2, X^2) \).

In this paper we will investigate about the irreducible ideals.

Let \(R \) be a commutative ring with identity. Then we will denote the length of \(R \)-module \(M \) by \(\text{length}(M) \). When we say that "\((R, m)\) is a local ring", we mean that \(R \) is a Noetherian local ring, that \(m \) is the unique maximal ideal of \(R \).

First we give a characterization of irreducible ideals.

Proposition 1. Let \((R, m)\) be a local ring and \(q \) be an \(m \)-primary ideal. Then \(q \) is irreducible if and only if \(\text{length} ((q:m)/q) = 1 \) where \(q:m = \{ a \in R \mid am \subset q \} \).

Proof. Suppose that \(q \) is irreducible. Put \(b = q:m \). Suppose now that \(\text{length} (b/q) \geq 2 \). From \(mb \subset q \) we deduce that \(b/q \) is a vector space over \(R/m \). There exist two vector subspaces \(V_1 \neq (0) \) and \(V_2 \neq (0) \) of \(b/q \) such that \(V_1 \cap V_2 = (0) \). Let \(\psi : b \rightarrow b/q \) be a natural mapping. Put \(b_1 = \psi^{-1} (V_1) \) and \(b_2 = \psi^{-1} (V_2) \). Then we have \(q = b_1 \cap b_2 \), \(b_1 \not\supset q \) and \(b_2 \not\supset q \). This is contradict to the fact that \(q \) is irreducible. Hence \(\text{length} (b/q) \leq 1 \). Since \(\text{length} (b/q) = 0 \), we have \(\text{length} (b/q) = 1 \).

Conversely, suppose that \(\text{length} ((q:m)/q) = 1 \). We assume that \(q \) is reducible. Then there exist two ideals \(b_1 \) and \(b_2 \) of \(R \) such that \(q = b_1 \cap b_2 \), \(b_1 \not\supset q \) and \(b_2 \not\supset q \). We can
choose the ideals \(b_1 \) and \(b_2 \) such that \(b_1 = q + aR \) and \(b_2 = q + bR \) for some elements \(a \) and \(b \) of \(q: m \). We claim that \(\tilde{a}, \tilde{b} \) are linearly independent over \(R/m \), where \(\tilde{a}, \tilde{b} \) denote the homomorphic image in \((q: m)/q\) of \(a \) and \(b \), respectively. Suppose that \(\tilde{a}, \tilde{b} \) are linearly dependent over \(R/m \). Then there exists an element \(\lambda \neq 0 \) of \(R/m \) such that \(\tilde{a} = \lambda \tilde{b} \). From \(a_1/q \subset (q: m)/q \), it holds that \(a_1/q = \tilde{a} (R/m) \). Similarly \(a_2/q = \tilde{b} (R/m) \). And we can see that \(\tilde{a} (R/m) \cap \tilde{b} (R/m) = (0) \). This is a contradiction. Thus the proof is complete.

In connection with Proposition 1, we give the following.

Let \((R, m)\) be a local ring and \(q = a_1 \cap \ldots \cap a_t \) be a finite intersection of irreducible ideals, \(\psi: q: m \rightarrow (q: m)/q \) be the natural mapping and \(W_1, \ldots, W_n \) be the \(d-1 \) dimensional subspaces of \((q: m)/q\) where \(d = \text{length} ((q: m)/q) \). Put \(a_i = \psi^{-1}(W_i) \). Some \(a_i \) is not an irreducible ideal.

Corollary 2. Let \((R, m)\) be a local ring. If \(R \) is neither a field nor a one dimensional regular local ring, then \(m^n \) is reducible for some integer \(n \).

Proof. Suppose that \(m^n \) is irreducible for any non-negative integer \(n \). From the facts that \(m^n: m \supset m^{n-1} \) and \(\text{length} (m^{n-1}/m^n) \geq 1 \), we have that \(\text{length} (m^{n-1}/m^n) = 1 \) by Proposition 1. Therefore we see that \(m^{n-1} = aR + m^n \) for some \(a \in m^{n-1} \). Take \(n = 2 \). Then it holds that \(m = aR \), and so \(R \) is a one-dimensional regular local ring. This is a contradiction. Thus the proof is complete.

Next, we give a relation between the irreducible ideals and the generating elements of the maximal ideal.

Proposition 3. Let \((R, m)\) be a local ring and \(a \) be an \(m \)-primary ideal. If \(\{a_1, \ldots, a_d\} \) is the minimal generating system of \(m \) and \(a_1, \ldots, a_{d-1} \in a \), then \(a \) is irreducible.

Proof. Since \(a \) is \(m \)-primary, there exists some integer \(n \) satisfying \(m^n \subset a \). The subset \(\{a_d, a_d^2, \ldots, a_d^{n-1}\} \) of \(m \) is not contained in \(a \). Therefore we have \(a: m = a + a_d^{n-1}R \) and \(\text{length} ((a: m)/a) = 1 \). Hence \(a \) is irreducible by Proposition 1. Thus the assertion holds.

Concerning the converse of Proposition 3, we give the following Remark.

Remark. In general, the converse of Proposition 3 is not true. Let \(k \) be a field, \(k[[X, Y]] \) be the ring of formal power series in two indeterminates \(X \) and \(Y \) over \(k \) and \(R \) be the residue class ring \(k[[X, Y]]/(X^2 - Y^2) = k[[x, y]] \) (where \(x \) and \(y \) are the residue of \(X \) and \(Y \)). Put \(m = (x, y) \) and \(I = (\lambda x + \mu y)R \) for suitable elements \(\lambda, \mu \in k \). We want to prove \(I \supset m^2 \). Since \((\lambda x + \mu y)(\lambda x - \mu y) \in I \), it follows that \(x^2 \in I \) for \(\lambda \neq \pm \mu \neq 0 \). Thus
y^2 \in I. Since (\lambda x + \mu y)x \in I, we see xy \in I. It then follows that

\[(fx + gy)(px + qy) = fpx^2 + (fq + gp)xy + gqy^2 \in I\]

for any f, g, p and q \in R. Hence we have I \supseteq m^2. By this result, it follows that an irreducible ideal \(a \) such that \(a \supseteq m^2 \) does not contain one element of minimal generating elements of \(m \). Now, the type of ideals in \(R \) are following:

1) \(a = m^n \) for some integer \(n \).

2) \(a = m^n + (\lambda x^d + \mu x^{d-1}y)R \) for some non-zero elements \(\lambda \) and \(\mu \) of \(k \). The ideal of type 2) is irreducible. Since \(a:m = m^{n-1} \) by the following Proposition 4, we can see that \(a \) is irreducible but in general \(a:m = m^{n-1} \) is reducible by Corollary 2.

Conjecture. If \((R, m)\) is a regular local ring and \(a \) is an \(m \)-primary and irreducible ideal, then there exist minimal generating elements \((a_1, \ldots, a_d)\) of \(a \) such that \(a_1, \ldots, a_{d-1} \in a \) where \(d = \text{length} ((a:m)/a) \).

Proposition 4. Let \((R, m)\) be a local ring and \(a \) be an ideal of \(R \) such that \(m^{n-1} \nsubseteq a \supseteq m^n \) for some positive integer \(n \). If \(a \) is irreducible, then \(a:m = m^{n-1} \).

Proof. Since \(a:m \supseteq m^{n-1} \nsubseteq a \) and length \(((a:m)/a)\) = 1 by Proposition 1, we have \(a:m = m^{n-1} \).

We now investigate the irreducibility of quotient ideals.

Remark. Let \((R, m)\) be a local ring and \(a \) be an ideal of \(R \). Even if \(a:m \) is irreducible, \(a \) is not necessarily irreducible.

Example (Zariski-Samuel). Let \(k \) be a field. Let \(R = k[X, Y] \) be a polynomial ring in two indeterminates \(X, Y \). Let \(a = (X^2, XY, Y^2) \) and \(m = (X, Y) \). From \(a = (X, XY, Y^2) \cap (X^2, XY, Y^2) \), we see that \(a \) is reducible but \(a:m = (X, Y^2) \) is irreducible.

We will give the following main result.

Theorem 5. Let \((R, m)\) be a local ring and \(a \) be an \(m \)-primary ideal. If \(a \) is an irredundant representation as finite intersection of irreducible ideals, say, \(a = b_1 \cap \ldots \cap b_t \), then we have length \(((a:m)/a)\) = 1.

Proof. Let \(b_1 \supseteq a:m \). We show that length \(((a:m)/(a:m) \cap b_1)\) = 1. We can find two elements \(x \) and \(y \) of \(a:m \) not contained in \(b_1 \). Then we have \(x, y \in b_1:m \). Since length \(((b_1:m)/b_1)\) = 1 by Proposition 1, there exists some element \(\lambda \in R - m \) such that \(x-\lambda y \in b_1 \cap (a:m) \). Therefore length \(((a:m)/(a:m) \cap b_1)\) = 1. Since \(a \subseteq (a:m) \cap b_1 \subseteq a:m \), we
Mitsuo KANEMITSU and Ken-ichi YOSHIDA

have length \(((a:m) \cap b_1)/a) = n-1\), where \(n = \text{length } ((a:m)/a)\). Since \(\bigcap_{i=1}^t ((a:m) \cap b_i)/a) = (0)\), we have that \(n \leq t\). We can assume that \(\bigcap_{i=1}^p ((a:m) \cap b_i)/a) = (0)\). Now, putting \(b = b_1 \cap ... \cap b_n\), we will prove that \(b = a\). In fact, suppose that \(b \not\subseteq a\). Then we can take an element \(x \in b\) such that \(x \in a:m\) and \(x \notin a\). On the other hand, \(b \cap (a:m) = \cap ((a:m) \cap b_i) = a\). This is a contradiction. Thus our theorem is completely proved.

For a local ring \((R, m)\) and an ideal \(a\) of \(R\), if the following conditions hold:

(1) \(a \supset m^n\) (2) \(a \supset m^{n-1}\) for some integer \(n\), then \(n\) is called the index of \(a\). \(a\) is called strongly irreducible if \(a:m^i\) is irreducible for any non-negative integer \(i\).

Finally, in connection with strongly irreducible ideals, we obtain the following. The proof is omitted.

Proposition 6. Let \((R, m)\) be a local ring, \(a\) be an \(m\)-primary ideal and \(n\) be the index of \(a\). Then the following assertions are equivalent.

(1) \(a\) is strongly irreducible.
(2) \(\text{length } (m/a) = n\).
(3) \(a \not\subset a:m \subset ... \subset a:m^{n-1} = m\) is the composition series of \(a\).