Remark on classical logic and intuitionistic logic

HEIJI KODERA
(Department of Mathematics)
(Received August 30, 1979)

In a former paper [2], it was proved that if a formula A is provable in the classical predicate logic LK then $\neg\neg A^*$ (strong double negation of A) is provable in the intuitionistic predicate logic LJ where A^* is the formula obtained from A substituing $\forall x \neg\neg B$ and $\exists y \neg\neg B$ for $\forall x B$ and $\exists y B$ respectively in a formula A at all places where $\forall x$ or $\exists y$ appears.

In this paper, we shall prove precisely that for any formula A, A is provable in the classical logic if and only if A° is provable in the intuitionistic logic.

A° is the formula obtained from A replacing $\neg\neg B$, $7 (7B \land 7C)$ and $\forall x \neg\neg 7B$ for $\forall x B$, $B \lor C$ and $\exists y B$ respectively in a formula A. Thus A° does not contain logical symbol \lor or \exists.

As to most of the notions and notations we refer to [1] throughout this paper.

Definition For every formula (in LK) A, A° is defined recursively as follows:

1. If A is prime, then A° is $\neg\neg A$.
2. If A is of the forms $\neg B$, $B \land C$, $B \lor C$, or $B \supset C$, then A° is $\neg B^\circ$, $B^\circ \land C^\circ$, $\neg(7B^\circ \land 7C^\circ)$ or $B^\circ \supset C^\circ$ respectively.
3. If A is of the form $\forall x B(x)$ or $\exists y B(y)$, then A° is $\forall x B^\circ(x)$ or $\forall y B^\circ(y)$ respectively.

Lemma 1 For any formula A, the sequent $\neg\neg A^\circ \rightarrow A^\circ$ is provable in the intuitionistic logic LJ.

Proof. We prove this lemma by the induction on the number of logical symbols in A. As other cases are easy, we shall treat only the following cases (1) \sim (5).

1. A is prime: A° is $\neg\neg A$ and $\neg\neg\neg\neg A \rightarrow \neg\neg A$ is clearly provable in the intuitionistic logic.
2. A is $\neg B$: A° is $\neg B^\circ$ and $\neg\neg\neg\neg B^\circ \rightarrow \neg B^\circ$ is clearly provable in the intuitionistic logic.
3. A is $B \land C$: A° is $B^\circ \land C^\circ$. By the induction hypothesis, the following two sequents are provable in the intuitionistic logic:

\[
\begin{align*}
\neg\neg B^\circ & \rightarrow B^\circ \\
\neg\neg C^\circ & \rightarrow C^\circ
\end{align*}
\]
We can then prove the lemma as follows:

<table>
<thead>
<tr>
<th>P₁</th>
<th>P₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>77(B° ⊃ C°) → B° ⊃ C°</td>
<td></td>
</tr>
</tbody>
</table>

Here P₁ and P₂ are

\[
\begin{align*}
B° & \rightarrow B° \\
B° \land C° & \rightarrow B° \\
\text{some negations} & \quad \\
77(B° \land C°) & \rightarrow 77B° \\
77B° & \rightarrow B° \\
\end{align*}
\]

and

\[
\begin{align*}
C° & \rightarrow C° \\
B° \land C° & \rightarrow C° \\
\text{some negations} & \quad \\
77(B° \land C°) & \rightarrow 77C° \\
77C° & \rightarrow C° \\
\end{align*}
\]

respectively.

(4) \(A \) is \(B \supset C \):

By the induction hypothesis, \(77C° \rightarrow C° \) is provable in the intuitionistic logic. We can see the sequent

\[
77(B° \supset C°) \rightarrow B° \supset C°
\]

is provable in the intuitionistic logic as follows:

\[
\begin{align*}
C° & \rightarrow C° \\
\quad & \quad \\
B° & \rightarrow B° \\
\quad & \quad \\
B° \supset C°, 7C°, B° & \rightarrow \\
7C°, 7C°, B° & \rightarrow 7(B° \supset C°) \\
7C°, B°, 77(B° \supset C°) & \rightarrow \\
77(B° \supset C°) & \rightarrow 77C° \\
77C° & \rightarrow C° \\
\end{align*}
\]

(5) \(A \) is \(\forall x B(x) \):

By induction hypothesis, \(77B°(a) \rightarrow B°(a) \) is provable in the intuitionistic logic. We can see the sequent \(77\forall x B°(x) \rightarrow \forall x B°(x) \) is provable in the intuitionistic logic as follows:
Remark on classical logic and intuitionistic logic

\[
\begin{array}{c}
\frac{B^o(a) \rightarrow B^o(a)}{
\forall x B^o(x) \rightarrow B^o(a)}
\end{array}
\]

\[
\frac{\forall x B^o(x) \rightarrow B^o(a)}{\forall x B^o(x) \rightarrow B^o(a)}
\]

Lemma 2 If the sequent

\[A_1, A_2, ..., A_m \rightarrow B_1, B_2, ..., B_n\]

is provable in LK, then the sequent

\[A_1^o, A_2^o, ..., A_m^o, \neg B_1^o, \neg B_2^o, ..., \neg B_n^o \rightarrow\]

is provable in LJ.

Proof. We prove the lemma by the induction on the number of inference-figures to S, where S is \(A_1, ..., A_m \rightarrow B_1, ..., B_n\). As other cases are easy or similar, we shall treat only the following some cases:

1) S is an initial sequent:
 In this case, the lemma is trivial.

2) S is the lower sequent of an inference I:
 In this case, we can assume I is not 'cut' by Gentzen's Hauptsatz [1].

We shall use often the following notations: If \(\Gamma\) is the series of formulae \(C_1, C_2, ..., C_n\), then

\[\Gamma^o\] means \(C_1^o, C_2^o, ..., C_n^o\]

and

\[\neg \Gamma^o\] means \(\neg C_1^o, \neg C_2^o, ..., \neg C_n^o\).

(i) I is \(7\)-right:
 Let the last inference-figure to \(A_1, ..., A_m \rightarrow B_1, ..., B_n\) be of the form

\[
\begin{array}{c}
D, \Gamma \rightarrow \Delta
\end{array}
\]

\[
\frac{\Gamma \rightarrow \Delta, 7D}{\Gamma \rightarrow 7D}
\]

Here \(\Gamma\) is \(A_1, ..., A_m\) and \(7D, \Delta\) is \(B_1, ..., B_n\).

By the induction hypothesis,

\[D^o, \Gamma^o, 7\Delta^o \rightarrow\]

is provable in LJ. By the following proof-figure, we can see the sequent

\[A_1^o, ..., A_m^o, \neg B_1^o, ..., \neg B_n^o \rightarrow\]

is provable in LJ:
(ii) \(I \) is \(\land \)-right:
Let the last inference-figure be of the form

\[
\frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \land B}
\]

By the induction hypothesis, the following two sequents are provable in the minimal logic:

\[
\Gamma^\circ, 7\Delta^\circ, 7A^\circ \rightarrow \\
\Gamma^\circ, 7\Delta^\circ, 7B^\circ \rightarrow
\]

Moreover, by Lemma 1, the following two sequents are provable in LJ:

\[
77A^\circ \rightarrow A^\circ \\
77B^\circ \rightarrow B^\circ
\]

By the following proof-figure, we can see the sequent

\[
\Gamma^\circ, 7\Delta^\circ, 7(A^\circ \land B^\circ) \rightarrow
\]

is provable in LJ:

\[
\frac{P_1 \quad P_2}{\Gamma^\circ, 7\Delta^\circ \rightarrow A^\circ \land B^\circ} \\
\frac{7(A^\circ \land B^\circ), \Gamma^\circ, 7\Delta^\circ \rightarrow}{\Gamma^\circ, 7\Delta^\circ, 7(A^\circ \land B^\circ) \rightarrow}
\]

Here \(P_1 \) and \(P_2 \) are

\[
\frac{\Gamma^\circ, 7\Delta^\circ, 7A^\circ \rightarrow}{\Gamma^\circ, 7\Delta^\circ, 7A^\circ \rightarrow 77A^\circ} \\
\frac{77A^\circ \rightarrow A^\circ}{\Gamma^\circ, 7\Delta^\circ \rightarrow A^\circ}
\]

and
Remark on classical logic and intuitionistic logic

\[
\begin{array}{c}
\Gamma^\circ, 7\Delta^\circ, 7B^\circ \\
\text{some interchanges and negation}
\end{array}
\]

\[
\begin{array}{c}
\Gamma^\circ, 7\Delta^\circ \rightarrow 7\overline{7}B^\circ \\
\Gamma^\circ, 7\Delta^\circ \rightarrow B^\circ
\end{array}
\]

respectively.

(iii) \(\vdash \)-right:

Let the last inference-figure be of the form

\[
\frac{A, \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \supset B}
\]

By induction hypothesis, the sequent

\[
A^\circ, \Gamma^\circ, 7\Delta^\circ, 7B^\circ \rightarrow
\]

is provable in LJ. Moreover, by Lemma 1, so is the sequent \(77A^\circ \rightarrow A^\circ \). Hence we can see the sequent

\[
\Gamma^\circ, 7\Delta^\circ, 7(A^\circ \supset B^\circ) \rightarrow
\]

is provable in LJ as follows:

\[
\begin{array}{c}
B^\circ \rightarrow B^\circ \\
A^\circ, B^\circ \rightarrow B^\circ \\
B^\circ \rightarrow A^\circ \supset B^\circ \\
7(A^\circ \supset B^\circ), B^\circ \rightarrow \\
B^\circ, 7(A^\circ \supset B^\circ) \rightarrow \\
7(A^\circ \supset B^\circ), 7B^\circ \rightarrow
\end{array}
\]

\[
\begin{array}{c}
\text{P} \\
A^\circ, \Gamma^\circ, 7\Delta^\circ, 7B^\circ \rightarrow \\
7(A^\circ \supset B^\circ), \Gamma^\circ, 7\Delta^\circ \rightarrow \\
7(A^\circ \supset B^\circ), 7(A^\circ \supset B^\circ), \Gamma^\circ, \Delta^\circ \rightarrow \\
\Gamma^\circ, 7\Delta^\circ, 7(A^\circ \supset B^\circ) \rightarrow
\end{array}
\]

Here \(\text{P} \) is the following subproof:

\[
\begin{array}{c}
A^\circ \rightarrow A^\circ \\
7A^\circ, A^\circ \rightarrow (\text{weakening-right}) \\
A^\circ, 7A^\circ \rightarrow B^\circ \\
7A^\circ \rightarrow A^\circ \supset B^\circ \\
7(A^\circ \supset B^\circ), 7A^\circ \rightarrow \\
7A^\circ, 7(A^\circ \supset B^\circ) \rightarrow \\
7(A^\circ \supset B^\circ) \rightarrow 77A^\circ \\
77A^\circ \rightarrow A^\circ
\end{array}
\]

(iv) \(\top \)-right:

Let the last inference be of the form

\[
\frac{\Gamma \rightarrow \Delta, F(a)}{\Gamma \rightarrow \Delta, \forall x F(x)}
\]
By the induction hypothesis, the sequent

$$\Gamma^\circ, 7\Delta^\circ, 7F^\circ(a) \rightarrow$$

is provable in LJ. Then we can see the sequent

$$\Gamma^\circ, 7\Delta^\circ, 7\forall xF^\circ(x) \rightarrow$$
is provable in LJ as follows:

$$\frac{\Gamma^\circ, 7\Delta^\circ, 7F^\circ(a)}{7F^\circ(a), \Gamma^\circ, 7\Delta^\circ \rightarrow 7\forall xF^\circ(x)}$$

$$\frac{\Gamma^\circ, 7\Delta^\circ \rightarrow F^\circ(a)}{\forall xF^\circ(x), \Gamma^\circ, 7\Delta^\circ \rightarrow}$$

(v) \(I \) is \(\exists \)-right:
Let the last inference-figure be of the form

$$\frac{\Gamma \rightarrow \Delta, F(t)}{\Gamma \rightarrow \Delta, \exists xF(x)}$$

By the induction hypothesis, the sequent

$$\Gamma^\circ, 7\Delta^\circ, 7F^\circ(t) \rightarrow$$
is provable in LJ. Then we can construct a proof as follows:

$$\frac{F^\circ(t) \rightarrow F^\circ(t)}{7F^\circ(t), F^\circ(t) \rightarrow}$$

$$\frac{\forall x7F^\circ(x), F^\circ(t) \rightarrow}{F^\circ(t) \rightarrow 7\forall x7F^\circ(x)}$$

$$\frac{7\forall x7F^\circ(x), F^\circ(t) \rightarrow}{7\forall x7F^\circ(x) \rightarrow 7F^\circ(t)}$$

$$\frac{7\forall x7F^\circ(x) \rightarrow 7F^\circ(t)}{\Gamma^\circ, 7\Delta^\circ, 7F^\circ(t) \rightarrow}$$

\textbf{Theorem} If a formula \(A \) is provable in LK, then \(A^\circ \) is provable in LJ.

\textbf{Proof:} By the assumption of the Theorem and Lemma 2, the sequent

$$7A^\circ \rightarrow$$
is provable in LJ. Moreover the sequent \(77A^\circ \rightarrow A^\circ \) is provable in LJ. Then we can see \(A^\circ \) is provable in LJ as follows:
Remark on classical logic and intuitionistic logic

\[
\begin{align*}
7A^\circ & \rightarrow \\
77A^\circ & \rightarrow A^\circ \\
777A^\circ & \rightarrow A^\circ
\end{align*}
\]

References

(2) H. Kodera: On Glivenko's Theorem in the first order predicate calculus of Gentzen style, Bulletin
of Aichi University of Education Vol 27. 43 ~ 47, 1978.