Remarks on some homological results of certain rings

MITSUO KANEMITSU

(Department of Mathematics)

(Received August 30, 1979)

All rings are commutative with identity and all modules are unitary. Let R be a ring and $R[X]$ be the polynomial ring. If M is a R-module then we let $hd_R(M)$ denote the homological dimension of M.

The purpose of this note is to answer the following question: Which rings R have the property that $R[X]/P$ is R-projective (R-flat or $hd(R[X]/P) \leq 1$) for each prime (or maximal) ideal of R?

We start with the following results.

Theorem 1. Let R be a commutative ring. Then the following statements are equivalent.

1. $R[X]/P$ is a projective R-module for each prime ideal P of $R[X]$.
2. $R[[X]]/P$ is a projective R-module for each prime ideal P of $R[[X]]$.
3. $R[X]/M$ is a projective R-module for each maximal ideal M of $R[X]$.
4. $R[[X]]/M$ is a projective R-module for each maximal ideal M of $R[[X]]$.
5. R/P is a projective R-module for each prime ideal P of R.
6. R/M is a projective R-module for each maximal ideal M of R.
7. R is a direct sum of a finite number of fields, that is, $gl. \dim(R) = 0$.
8. R is an Artinian reduced ring.
9. R is a von Neumann regular ring with Noetherian spectrum.

[Proof].

$(1) \rightarrow (5)$.

Let P be any prime ideal of R and set $P* = P + XR[X]$. Then $R[X]/P* \cong R/P$ which is an integral domain. So $P*$ is a prime ideal of $R[X]$. Therefore, by the assumption, R/P is R-projective.

$(2) \rightarrow (5)$. The same proof as proof that (1) implies (5).

$(7) \rightarrow (1), (2)$, $(2) \rightarrow (4) \rightarrow (6)$, $(1) \rightarrow (3)$, $(5) \rightarrow (6)$, $(7) \rightarrow (8) \rightarrow (9)$ and $(3) \rightarrow (6)$. Trivial.

$(6) \rightarrow (7)$.

Let M be any maximal ideal of R and set $A = R_M$, $N = MR_M$. Then $A/N \cong R/M$ which is R-projective. Therefore
is a split exact sequence of R-modules. Since A is a connected ring, A is a field. Consequently $\dim R = 0$.

Since R/M is finitely generated R-projective and finitely presented, M is a finitely generated ideal. As $\dim R = 0$, R is Noetherian by Cohen's theorem. Since $R_M/\mathfrak{M}_M \cong R/\mathfrak{M}$ is R_M-projective, R_M is a zero-dimensional regular local ring, that is, a field. Consequently, R is a von Neumann (Noetherian) regular ring. Hence R is a semi-simple ring.

(9) \rightarrow (8).

Since $\text{Spec}(R)$ is a Noetherian T_1-space, it is a finite set. Let $\text{Spec}(R) = \{M_1, M_2, \ldots, M_n\}.$

Thus

$$0 = \text{rad}(R) = M_1 \cap M_2 \cap \cdots \cap M_n = M_1M_2 \cdots M_n.$$

By structure theorem for Artinian rings, R is a direct sum of a finite number of Artinian local rings. Since R is reduced, R is a direct sum of a finite number of fields.

We now give a characterization of von Neumann regular rings.

Theorem 2. Let R be a commutative ring. Then the following statements are equivalent.

(1). $R[X]/P$ is a flat R-module for each prime ideal P of $R[X].$

(2). $R[[X]]/P$ is a flat R-module for each prime ideal P of $R[[X]].$

(3). $R[X]/M$ is a flat R-module for each maximal ideal M of $R[X].$

(4). $R[[X]]/M$ is a flat R-module for each maximal ideal M of $R[[X]].$

(5). R/P is a flat R-module for each prime ideal P of $R.$

(6). R/M is a flat R-module for each maximal ideal M of $R.$

(7). R is a von Neumann regular ring.

(8). $R[X]$ is a semi-hereditary ring.

(9). R is a reduced ring and $\text{Spec}(R)$ is a T_1-space.

[Proof]. (7) \rightarrow (1), (2), (1) \rightarrow (3) \rightarrow (6), (2) \rightarrow (4) \rightarrow (6), (1) \rightarrow (5) \rightarrow (6). Trivial.

(6) \rightarrow (7).

Let M be any maximal ideal of $R.$ Then $R/M \cong R_M/\mathfrak{M}_M$ is R_M-flat. So R/M is R_M-free. And so R_M is a field. Thus R is a von Neumann regular ring.

(7) \leftrightarrow (8) follows from Theorem of [1].

That (7) is equivalent to (9) is due to Kaplansky.

Next we consider locally regular rings.

We need the following remark and definition.
Remarks on some homological results of certain rings

Remark. If $\text{hd}_R(R[X]/P^*) \leq 1$ for each prime ideal P^* of $R[X]$, then $\text{hd}_R(R/P) \leq 1$ for each prime ideal P of R.

Definition. A locally regular ring is a (not necessarily Noetherian) ring R, having the property that R_P is a regular local ring for each prime ideal P of R.

Theorem 3. If $\text{hd}_R(R/P) \leq 1$ for each prime ideal P of R, then R is a locally regular ring of Krull dimension ≤ 1.

[Proof]. Let M be a maximal ideal of R. Then we have an exact sequence

$$0 \rightarrow PR_M \rightarrow R_M \rightarrow R_M/PR_M \rightarrow 0$$

for each prime ideal P contained in M.

By the assumption, PR_M is R_M-free and so $PR_M = 0$ or R_M. Since PR_M is a finitely generated ideal, R_M is a Noetherian ring by Cohen's theorem. Since $\text{hd}_R(R_M/(MR_M)) \leq 1$, R_M is a regular local ring of Krull dimension ≤ 1.

Corollary. For any Noetherian ring R, the following statements are equivalent.

1. $\text{hd}_R(R[X]/P^*) \leq 1$ for each prime ideal P of $R[X]$.
2. $\text{hd}_R(R[[X]]/P^*) \leq 1$ for each prime ideal P of $R[[X]]$.
3. $\text{hd}_R(R/P) \leq 1$ for each prime ideal P of R.
4. R is a regular ring of Krull dimension ≤ 1, that is, R is a direct sum of a finite number of fields and Dedekind domains.

If we replace "fields" by "special primary rings" in this result, it is not true in general.

By Theorem 2.3 of [3] and Theorem 9.10 of [2], we have the following results.

For any ring R, the following statements are equivalent.

(a). R is a direct sum of a finite number of Dedekind domains and special primary rings.

(b). Each ideal of R can be represented as a finite product of prime ideals.

(c). Each finitely generated ideal of R can be represented as a finite product of prime ideals.

Now, let R be a special primary ring with the unique maximal ideal M. Then $\text{gl.dim } R = 0$ or ∞. Since $\text{gl.dim } R = \text{hd}_R(R/M)$, $\text{hd}_R(R/M) = 0$ or ∞.

Finally, we give the following.

Remark. Is the converse of Theorem 3 true? If R has the property "M_P is R_P-projective for each prime ideal P of R implies M is R-projective", then the converse of Theorem 3 is true. In particular, if R is a Noetherian or local ring, then it is true.

The author would like to thank A. Oishi for his valuable suggestions.

References.
