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Explicit CP Violation of the Higgs Sector in the
Next-to-Minimal Supersymmetric Standard Model

B HEEN AKER,  BARKEAY REEX

1. Introduction

The physics of CP violation has attracted much recent attention in the light that
the B-factory will go on line in the near future at KEK and SLAC. The central subject
of the B-factory is the test of the standard model(SM), in which the origin of C'P
violation is reduced to the phase in the Kobayashi-Maskawa matrix[1]. However, there
has been a general interest in considering other approaches to CP violation since many
alternate sources exist. The next-to-MSSM(NMSSM) was studied by many authors
especially in the interests of mass spectra of Higgs sectors[2,3]. The detailed analysis
of the mass spectra in this model was studied by Ellis et al.[3], in which C'P violation
in the Higgs sector was neglected. The additional singlet N could cause explicit CP
violation in the Higgs sector even at tree level. In this report, we study the explicit
C P violation of the Higgs sector in the NMSSM phenomenologically. ‘

2. CP violation in Higgs Potential

The model we discuss is the MSSM to which a gauge singlet Higgs scalar N has
been added with the requirement that the superpotential contains only cubic terms[2,3]
as follows: ‘ '

W = h,U'QUcHQ + hpQd°H,+ hgLe‘Hy + AH HaN — %st +ooy (1)

where Q, L, u¢, d® and e are usual notations of quarks and leptons, and the ellipsis
stands for possible nonrenormalizable terms. The effective scalar potential is given as

VHiggs = Vp+Vp+ Vsoft ) (2)
Ve = P HLP + BN + | HiHal?) + 6P|V
| O H HoN" 4+ He) — PHOHSHY H™ + Hee) (3)
2 n”
Vo = T(HoH:+ HioH) + (M ~ ), (4)
Viest: = mig, |Ha[* + mig, | Ha|* + my [N|* — (AALH Ho N + Hec))
—(%kAkN3 +He), (5)

where H, = (H), H™), H, = (H*, HY), HiH, = HHY — H-H* and ¢ = (0%, 02,0%).
The radiative effect of the top-quark and top-squark is significant for the mass spectra
of the Higgs bosons as pointed out by some authors in the MSSM[4]. This leading-log
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radiatively induced potential is given as follows:
(hi|Ho|? + M7) h| Hy|?
Q? Q> |’

where we have assumed degenerate squarks: M;, = M;, = M,; > m,. The potential
Viop should be added to Vg, in eq.(2).

In general, A\, k, A, and A; are complex, however, by redefining the global phase
of the fields H, and N, we can take

Ay >0, kA >0, | (7)

-3
1672

Viep = (REH:|* + M7;)* In = he|Hy|*In (6)

without loss of any generality. If we allow CP violation explicitly in the Higgs scalar
sector, Ak* is a complex.

Our discussion is concentrated on the neutral Higgs sector because there is no CP-
violation in the charged Higgs sector. Since the contribution of V;,, is not important
for qualitative studies of the explicit CP violation, we discuss the magnitude of C P
violation without V., in sections 2 and 3. However, V;,, contributes significantly to
the mass spectra of the Higgs bosons, so we include this effect in the numerical analyses
in section 4. Neglecting V;op for 51mp11c1ty, we can write

(Vieutral) = ‘A2(|x| |'01|2 + |x|21)2 + Ivl|2vz) + k2|z4| - vz()\k*le*z + )\*Icv;:zrz)

2 .y 12
g +g
+ (101l = w2)” + miy, [v1] + miy, v + miy|<’]
; * % qu 3 *3
—AApva(v1z + viz*) — T(m +z*), (8)
where VEV’s of the neutral Higgs scalar fields are defined as follows:
E(H?)’ U2E<H20): xE<N) (9)

We also introduce a phase for Ak* as follows:
AE* = Mke'® | (10)

where X and & in RHS are redefined as positive real number. The neutral Higgs scalar
masses are given by 5 x 5 mass marix.

Decomposing the neutral Higgs ﬁglds into their real imaginary components
Sl+z'P1’ Sg+?:P2, N X+z'Y, (1)
V2 V2 V2

shifting HY, HJ, N by their expectation values, and expanding the neutral Higgs scalar
part of Viiges, we get the mass matrix of the neutral Higgs scalars. After expressing

H) = H) =
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Py and P, in terms of the neutral Goldstone boson G® = cos P, — sin P, and ils
orthogonal state A = sin SP; + cos SP,, we get 5 x 5 mass matrix for the Higgs bosons
A, Y, S, S; and X as follows:
_ A4}g¥ Adéi%&X’
MI?Iiggs = ) (12)
(M&%x)" Mgk

where MY, M&Y, \ and M 5;5;}{ are 2 x 2, 2 x 3 and 3 x 3 submatrices, respectively.
The matrix M4Y is the one for the Higgs pseudoscalars A and Y as follows:

:\::: (Ax + kz cos p) Mv(Ay — 2kz cos )
Miy = (13)

M(Ay — 2kzcosp) 22 A, 4 3Aks + 4Xkvyvacos

The matrix M 5;5;}(‘ is the one for the Higgs scalars Sy, S; and X as follows:

gouf + 2z v102(2)2% — g?) 2X%uz |
+A—:f£(A,\ +kzcosp) —Az(Axr+kzcosp) —Aug(Ay + 2kzcosp)
MESX _ v102(2)% — 3?) 72v2 2) %,z
S —Az(Ax + kz cosp) +¢‘§;~£(A,\ + kzcosp) —Avi(Ax+2kzcosyp) |’
2220,z 2X%u,z M;—”A;
‘ \———/\vz(A;\ + 2kz cosp) —Avi(Ax+ 2kz cos ). —Aikz + 4k%z? )

| (14)
where 3° = (¢ + ¢)/2. The matrix M2 , is the mixing terms of the scalar and
pseudoscalar components as follows:

ﬁ‘;ﬂz-singo &';”—zsincp 2kAvz sin
—2kAvazsing  —2kdvizsing —2kAvivysing

This submatrix is zero if C P is conserved, that is to say, ¢ = 0.
3. Explicit CP Violation in Special Limiting Cases

In general, CP symmetry is violated due to the scalar and pseudoscalar mixing
of eq.(15). Its magnitude depends on the values of the Higgs potential parameters,
especially, z. Following analyses of the Higgs mass spectra by Ellis et al.[3], we study
the magnitude of CP violation in the special limiting cases: (A) z 3> v;, v, with A
and k fixed and (B) z > v;, v, with Az and kz. These limits are discussed in the
phenomenological standpoint.
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(A) Limits of z 3> v, v(), k fixed)

In this limit with Aj, Ay =~ O(z), the matrix Mg, in egs.(12)~(15) becomes very
simple. Remaining only the terms of order O(z?), the Higgs scalar X and the Higgs
pseudoscalar Y almost decouple from other Higgs bosons since these mixing terms are
at most order O(z). The masse squares of X and Y bosons are an order of O(2?) and
then, those mixing is negligible small. The effect of X and Y contributes to our result
in the order of v;/z and vy/z through the mixings. Therefore, it is enough for CP
violation to consider 3 x 3 submatrix as to A, S; and S;. Then, the mass matrix is
given in the A — S; — S, system as follows:

2)\z A,/ sin 2 Mkz? cos Bsin Akz?sin Bsin @
Mg, = | Mez? cos Bsing F2vicos? B+ AzA,tan B (A2 — §21)U2 sin2f — A\z A,

Mkz?sin Bsing (A2 — 9_:—')112 sin28 — AzA, g°v%sin® B+ Az A, cot ,3(16)
where A, = Ay + kz cos ¢ is defined conveniently and A, is taken to be of O(z). By
rotating this matrix using Uy with

10 o 7. |
Uy=|0 cosf —sinf| , (17)
0 sinf cosf

we get simple form of the matrix M, = Ug M#;,,,Uo in the new basis of A—S; -5,

as follows:
—-‘i?: gﬂ Mkz? sin 0
M}’figgs = | Mkz2sing  (g%cos?28+ A?sin®2B8)v? (X —F°)v?sin2fBcos 20
I 0 (A2 —F*)?sin2Bcos28  (g° — A%)o? sin? 26 + %:%4237' )

(18)
In this matrix, the (2-2), (2—32), (3-2) components are very small because these are order
of O(v?) but others are O(z*). Therefore, the submatrix of 5] — S’ system is almost
diagonal one. Since this matrix has a hierarchical structure, one should investigate
these mass eigenvalues carefully. In order to get the condition of positive eigenvalues,
we take the determinant of this matrix:

Det[Mifge,] 2 0, (19)
which gives a constraint Akz?sin < O{zv). Since A and k are constants, we get

singp < O(v/2) (20)
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which means the scalar-pseudoscalar mixing vanishes in the z — oo limit. Therefore,
it is concluded that C P violation is minor in this limit.

(B) Limits of z > v}, v;()z, kz fixed)

This limit leads the NMSSM to the MSSM without the Higgs singlet field as dis-
cussed Ellis et al.[3]. In this limit with A,, Ay ~ O(v), the X and Y boson decouple
from other bosons, and then the matrix Mf; ., in egs.(12)~(15) reduces to the same
3 x 3 matrix in eq.(16). However, masses of X and Y are same order of other Higgs
bosons in contrast with the case (A). Using the same orthogonal matrix in eq.(17), we
get also the similar matrix as the one in eq.(18) for the A — S] — S} system as follows:
[ 224e X ksin @ 0

Mo = | N Esing (g2 cos?2B + A?sin® 28)v? (A2 — g?)v?sin2fcos 28 | , (21)

0 (X% —g*)v?sin2Bcos 28 (3% — A?)v?sin® 28 + 24 |
where the definitions X\ = Az and k = kz are fixed to be constants, while X and k
are order of O(1/z) . In contrast with the matrix of eq.(16), this matrix has not
a hierarchical structure in the considering limit since A and k are finite numbers.
Therefore, the submatrix of S| — S} in eq.(21) are far from the diagonal matrix in
-general. Now, let us discuss the magnitude of C'P violation for the special case of
tan G. '

The first case is the one with tan 8 = 0 and co. Since sin28 = 0, the submatrix
of the S} — S} system is exactly diagonal. The scalar-pseodoscalar mixing is occured
only in the A — S| submatrix. The mixing angle is given as follows:

2X ki k
tan 20,5 = st — ~ ——sin psin2f . (22)
(92 cos? 26 + A?sin® 28)v? — 222e As

Thus, the scalar-pseudoscalar mixing vanishes in tanf = 0 or oo limit since it is
proportional to sin28 even if sinp ~ 1. Then, the CP violation effect is expected
generally to vanish. However, we should pay attention to an exceptional case that the
C P, violating effect depends on tan g significantly. We will discuss this case in analyses
of the electric dipole moments of the section 4.

The second case is the one of tan 8 = 1, which gives cos2f = 0. In this case, the
scalar-pseodoscalar mixing is also occured only in the A—S] submatrix since the S’ -5,
submatrix is exactly diagonal. Then, the S] — 5] component is A2v? which is order of
0(2}4 /z?). This hierarchical skruacture of the mass matsix gives strong constraint for the
mixing angle as discussed in the limitting case (A). Applying the positivity condition
of the Higgs scalar mass in eq.(21) leads

singp < 0(2) . (23)
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Thus, CP violation also vanishes in the case of tan g = 1.

In order to get the finite CP violation, we should choose the region of tan  # 0,
1 and oo. If we could adjust the parameter such as

2AA, ~ §2v% cos® 2Bsin 26 , - (24)

by choosing the suitable tan 8, the large scalar-pseudoscalar mixing is expected. How-
ever, since the radiative correction V., becomes mgmﬁcant in this situation, we shall
give 'the numerical analyses in section 4.

4. Numerical Discussion of Explicit CP violation

In our interest, we present numerical study of the similar case to the MSSM spec-
troscopy, but the case with C' P violation. This is just the limit in case (B).

In the previous section, we have neglected the radiatively induced potential Vi,
for simplicity because the qualitative result is not changed even if we include it. Now,
we should include the V;,, term in our numerical analyses. In the leading-log approxi-

mation, this potential contributes only to the mass matrix element M 55; in eq.(14) .as

follows: 3
M3 = (3 + A)o} + (4 + ko cos ) (25)
2
where ) M2
A= [m( ) + p] , (26)
4 m?2

where p denotes non-logarithmic terms. In the following calculations, we fix A = 0.5,
which corresponds to M,, = 3TeV and m; = 175GeV with p = 1.

In Fig.1, we display a plot of the expenmentally allowed region in the cosp — A
plane for ﬁxed values of the other parameters, which are

z=10v, k=01, Ay=v, Ag=v, tanf=10. (27)

One experimental constraint is that the two Higgs bosons have not been produced in the
decay of a real Z° The lower boundary(small A) in Fig.1 corresponds to my, + mp, =
mzo, where my, and my, are two lightest Higgs boson masses. The other constraint
is that a light Higgs boson has not been produced in the Z° — Z%h process, where
h is a physical Higgs boson. If h = ¥°_; o;®;, where o; and ®; denote mixing factors
and neutral Higgs boson fields S;,5;, 4, XY, respectlvely, the cross section for this
process is appromma.tely proportional to |a1 cos B+ sin B)?m; ", The non-observation
of this process gives the upper boundary(large A) in Fig.1 by m,, > (60GeV)|c; cos B+
aysin B2, In addition, the pseudoscalar and scalar bosons should be heavier than
24GeV and 44GeV, respectively. This constraints are satisfied in the allowed region of
Fig.1.

In Fig.2, the allowed region of A is shown in the case of tanf = 1 ~ 100 at
cos = 0. Other parameters are fixed as given in eq.(27). It is remarked that the
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allowed region vanishes below tan 8 ~ 1.5. This result is consistent with the qualitaive
discussion of (B) in section 3, in which ¢ is constrained to be very small at tan 8 ~ 1,
but ¢ ~ 7/2 is allowed at tan 8 = co. In both results of Figs. 1 and 2, we fix £ = 0.1,
which gives the most wide allowed area of \. As far as we take £ = 0.03 ~ 0.2, the
allowed region is obtained.

The electric dipole moment(EDM) of electron or neutron is very important quan-
tities to constrain the phase ¢. In our scheme, the EDM of electron is calculated in
the two-loop level as shown by Barr and Zee[5]. The neutron EDM is also predicted in
two-loop level. Both three gluon operator proposed by Weinberg[6] and quark-gluon
operator by Gunion and Wyler[7] are taken into account in our calculation. Since
the estimation of the hadronic matrix elements is model-dependent, the ambiguity
with a few factors should be taken into consideration in the prediction of the neutron
EDM. Here, we use the model proposed by Chemtob[8,9]. The recent experimental
-upper limit of the electron EDM is 4 x 107?"e - cm[10] and that of the neutron EDM
is 11 x 107%%e - cm. It should be remarked that the Barr-Zee operator and the quark-
gluon operator are exceptional C P violating operators as discuussed in (B) of section
3. Since these operators have a term which is proportional to tan? 8, this term con-
tributes to the EDM significantly at tan 8 >> 1 even if the scalar-pseusoscalar mixing
is very small. In fact, we find the large predicted EDM at tan 8 = 10 in Figs. 3 and
4. In these figures, we give the numerical predictions of the electron EDM and the
neutron EDM in the allowed region of A in Fig.1. The upper(lower) boundary of the
predictions corresponds to the upper(lower) one of X in Fig.1. Those predictions lie
around experimental upper limits except for the region of cos ¢ ~ 1. If the small },
0(0.01), is taken, our predictions are below the experimental limits even if the phase
¢ is a maximal one 7/2. We expect both electron EDM and neutron EDM will be
observed around 1072" ~ 10™%¢ . ¢m in the near future.

5. Summary

We have studied the explicit C P violation of the Higgs sector in the MSSM with a
gauge singlet Higgs field. The magnitude of C'P violation is discussed in the limiting
cases of z > v, v; and z < vy, v;. We have shown that the large CP violation
1s realized in the region of tan 8 > 1.5 for the case of 2 > wv;, v, with the fixed
values of Az and kz. In other cases, the explicit CP violation is minor for the Higgs
sector. Since C'P violation in the Higgs sector does not ocuur in the MSSM without
a gauge singlet Higgs field, C' P violation is an important signal of the existence of the
gauge singlet Higgs field. In the present case of the Higgs sector, the predictions of the
electron EDM and the neutron EDM lie around the experimental upper limits. Our
results suggest that these EDM’s will be observed in the near future if CP is explicitly
violated through the Higgs sector in the NMSSM. Furthermore, we have found that
the large C'P violation effect reduces the magnitude of the lightest Higgs boson mass
in the order of a few ten GeV. Thus, the explicit C P violation due to the gauge singlet
Higgs boson will give us interesting phenomena in the forthcoming experiments.
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