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1 Introduction

S. M. Ulam posed a problem: If a body of uniform density floats in water in equilibrium in every direction, must it be a

sphere? See［3］for detail. The problem is still open. However, in two dimensional case of the problem, Auerbach［1］
gives a counter-example.

Theorem1.（［1］）There is a non-circular figure D ⊂ 2of density ρ＝1／2which floats in equilibrium in every direction.

Before we state our result, we define some terminology of two-dimensional floating bodies. Consider a figure D ⊂ 2

whose perimeter ∂D is a simple closed curve, and take a number0＜ ρ＜1. For a given angle0≦ θ≦2π, there is a directed

line Lθ of slope angle θ which divides the area of D in the ratio ρ :1－ρ. In this paper, we assume the following three condi-

tions:

（C1） ∂D is of class C1.
（C2）Lθ meets ∂D at exactly two points, say, P and Q .

（C3）Neither the tangent at P nor at Q is not parallel to the line PQ .

We call ρ the density of D , and the segment PQ the water line of slope angle θ. We denote by Du and Da the divided figures

of area ratio ρ :1－ρ. We call Du and Da the underwater and abovewater parts of D , respectively. We denote by Gu and Ga
the centroids of Du and Da, respectively. We say that D floats in equilibrium in direction e2（θ）＝（－sinθ, cosθ）if the line

GuGa is parallel to e2（θ）.
If the figure D of density ρ floats in equilibrium in every direction, we call D ⊂ 2 an Auerbach figure of an Auerbach

density ρ. It is known that, if D ⊂ 2 is an Auerbach figure, then the water surface divides ∂D in constant ratio, say, σ :1－σ.
See（ii）of Corollary7. We call σ the perimetral density of the Auerbach figure D .

If D is an Auerbach figure of density ρ＝1／2, then the water lines Lθ and Lθ＋π are the same but opposite directed lines.

Thus it is of perimetral density σ＝1／2. In the proof of Theorem1, the condition ρ＝1／2is essential. It is dificult to make an

Auerbach figures of density ρ≠1／2. So a question arises: Is there a non-circular Auerbach figure of density ρ≠1／2?

Recently, Wegner［7］gave a positive answer to this question. Wegner’s examples exhibit more interesting fact. That is,

for given integer p≧3, one of his examples has（p－2）different Auerbach densities. So one Auerbach figure can have many

perimetral densities.

On the other hand, Bracho, Montejano and Oliberos［2］gave a following result.

Theorem2.（［2］）If there is an Auerbach figure D⊂ 2of perimetral density σ＝1／3or1／4, then it is a circle.

The purpose of this paper is to prove the following theorem.

Theorem3.（1）If an Auerbach figure D ⊂ 2has three perimetral densities σ1, σ2 and σ3, and if σ1＋σ2＋σ3＝1, then it is a

circle.（These σi’s are not necessarily different.）
（2）If an Auerbach figure D ⊂ 2 has four perimetral densities σ1, σ2, σ3 and σ4, and if σ1＋σ2＋σ3＋σ4＝1, then it is a

circle.（These σi’s are not necessarily different.）

The above theorem is a generalization of Theorem2. Certainly, putting σ1＝σ2＝σ3＝1／3gives the1／3case of Theorem

2, and putting σ1＝σ2＝σ3＝σ4＝1／4gives the1／4case of Theorem2.

2 Auerbach Figures

In this section, we give a short survey of Auerbach figures.
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Theorem4.（［1］,［7］）If a figure D ⊂ 2 is Auerbach, then the water line is of constant length.

Theorem5. If a figure D ⊂ 2 is Auerbach, and if PQ is the water line of slope angle θ, then there is a2π-periodic function

f of class C2 such that the position vectors of P and Q are given by

p（θ）＝f（θ）e2（θ）＋（f '（θ）－l）e1（θ）; q（θ）＝－f（θ）e2（θ）＋（f '（θ）＋l）e1（θ） （1）
where e1（θ）＝（cosθ, cosθ）, e2（θ）（－sinθ, cosθ）, and l is half the length of PQ .

Proof. Assume that D is an Auerbatch figure. Since｛e1（θ）, e2（θ）｝is a basis of 2, we can represent the position vectors of

the points P and Q as follows:

p（θ）＝－f（θ）e2（θ）＋g（θ）e1（θ）, q（θ）＝－f（θ）e2（θ）＋（g（θ）＋2l）e1（θ）. （2）

Suppose that the chord P ＊Q ＊ of C is the water line of slope angle θ＋h . Then the position vector of the intersection H of the

chords PQ and P ＊Q ＊ are given by

��
OH＝－f（θ）e2（θ）＋λe1（θ）＝－f（θ＋h）e2（θ＋h）＋μe1（θ＋h）. （3）

By taking the inner product of（3）and e2（θ＋h）, we have that f（θ＋h）＝λsinh＋f（θ）cosh . Thus we obtain that

f '（θ）＝f（θ＋h）－f（θ）h ＋o（1）＝λ sinh
h －f（θ）1－cosh

h ＋o（1）＝λ＋o（1）. （4）

We can evaluate the areas of the sectors HPP ＊ and HQQ ＊ by

1
2 HP2h＋o（h）＝12 | g（θ）－f '（θ）|2h＋o（h）, 1

2 HQ2h＋o（h）＝12 | g（θ）－f '（θ）＋2l |2h＋o（h）, （5）

respectively. Since these two areas are equal, we obtain that g（θ）＝f '（θ）－l . Hence we have proved（1）. By taking the in-

ner product of（1）and e1（θ）, we have that f '（θ）＝p（θ）・e1（θ）＋l . Thus the function f（θ）is of class C2. □

The following result is a “proof” of Theorem1.

Corollary6. If a function f satisfies f（θ＋π）＝－f（θ）for every θ, and if the closed curve given by p（θ）of Equation（1）is

simple, then it surrounds an Auerbach figure of density P＝1／2.

Proof. Since p（θ＋π）＝q（θ）, two position vectors p（θ）and q（θ）draw a same closed curve. Thus it surrounds an Auerbach

figure. Moreover, if the water line rotates by π, the underwater and abovewater parts change these roles. Thus these areas are

equal. Hence we obtain that ρ＝1／2. □

Example. Put f（θ）＝－k cos3θ in Equation（1）. Then, by Corollary6, the curve surrounds an Auerbach figures of density

1／2. The figures of k／l＝0．03and k／l＝0．1are drawn as follows:

The following result gives geometric properties of Auerbach figures.

Corollary7. If a figure D ⊂ 2 is Auerbach, and if PQ is the water line of slope angle θ, then:



On Ulam’s Floating Body Problem of Two Dimension

3― ―

（i）The vectors p'（θ）and q'（θ）are symmetric with respect to the line PQ .
（ii）The arc PQ of ∂D is of constant length.

Proof. By differentiating（1）, we have that

p'（θ）＝s（θ）e1（θ）－l e2（θ）, q'（θ）＝s（θ）e1（θ）＋l e2（θ）, （6）

where s（θ）＝f（θ）＋f ''（θ）. Since the line PQ is parallel to the vector e1（θ）, we have proved（i）.
（ii）By（6）, we have that |p'（θ）|＝|q'（θ）|＝�s（θ）2＋l2. This implies that the points P and Q move at the same speed

along ∂D . Thus we have proved（ii）. □

Remark. By integrating（6）, we have that

p（θ）＝c＋∫ θ0 s（φ）e1（φ）dφ－l e1（θ）, q（θ）＝c＋∫ θ0 s（φ）e1（φ）dφ +l e1（θ） （7）
where c is a constant vector. These formulas are same as those given in Section2of［7］.

3 Proof of Theorem3

Proof of Theorem3.（i）Let P1, P2and P3be three points of ∂D such that for each i＝1,2,3, the line PiPi＋1can be a water sur-

face of perimetral density σi.（The indices are taken cyclic in modulo3.） For each i＝1,2,3, we denote by pi（θ）the position

vector of Pi, by xi the angle∠Pi－1Pi Pi＋1 and by αi the angle between p'i（θ）and PiPi＋1. By（i）of Corollary7, the angle be-

tween Pi－1Pi and p'i（θ）is equal to αi. So we obtain that x1＋α3＋α1＝π, x2＋α1＋α2＝π and x3＋α2＋α3＝π. Since x1＋x2＋x3

＝π, we have that α1＋α2＋α3＝π. See Figure2. So we obtain that α1＝x3. By the converse of Alternate Segment Theorem, p'1

（θ）tangents to the circumcircle of the triangle P1P2P3. Thus P1varies on the circumcircle. Hence D is a circle.

（ii）Let P1, P2, P3 and P4be four points of ∂D such that for each i＝1,2,3,4, the line PiPi＋1 can be a water surface of pe-

rimetral density σi.（The indices are taken cyclic in modulo4.）By the same notation and argument used in（i）of this theorem,

we otain that x1＋α4＋α1＝π, x2＋α1＋α2＝π, x3＋α2＋α3＝π and x4＋α3＋α4＝π. See Figure2. Since x1＋x2＋x3＋x4＝2π, we

have that α1＋α2＋α3＋α4＝π. So we obtain that x1＋x3＝π. By the converse of Inscribed Quadrangle Theorem, the quadran-

gle P1P2P3P4 inscribes to a circle. Thus P3P1 is of constant length, and therefore, it can be a water line of perimetral density σ3＋
σ4. Hence, by（i）of this theorem, D is a circle. □
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