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O O Introduction

The Fibonacci substitution o (0) = 01 and ¢ (1) = 0 generates an infinite sequence

which is a fixed point of ¢, while this sequence is also obtained as a cut and project set along a line with the slope
y=5- 1) /2. Inthe papef]00] the coinsidence of these sequences stated above is proved. We give ageneralization of such a
result] TheoremO[M [ via proving that a part of the cut and project set has arigidity property] Propositiond I

0 O Cut and project setsind-dimension
Generaly, a cut and project set in R" is given as follows. The integer lattice points in R" are given by
p =2 .piei (pi €Z) where lej =t <0, ]1 0)] is a canonical orthonormal basis. For 7=(tx)€ O (n), we put
e/ =2}_,tyer. For anatural number 0 <m <n, the parallel space E'] resp. the perp space E*Ois a linear span of

le,...,en0resp. le),.,, ..., e, O 7fl resp. 7* Odenotes the orthogonal projection 7' : R” — Efi resp. 7 : R* — E*[1 Then
the E'-component e, and E*-component e/ of acanonical unit vector e; are given by

m n
el =rl(e))=2 tye;,, e =xn'(ej))= 2 tye],
k=1

k=m+1

and the E' -component e,‘-‘ and E* -component e; of alattice point p are given by
p' =7 (p)=_21pfe]”, p'=7'(p)=2pie
j= i=

Take aunital hyper-cube @ inR", @ ={(q1, ..., q:)| 0 < ¢; < 1}, and consider the orthogonal projection W of @ into E*, that
isW={r"(q)| q € Q}, caled thewindow. Given avector t € E* called a shift, the cut and project set CP;: (7' t) is defined

by
CPi (T, t)={z'(p)|x* (p)e W+t,pe Z'}CEl

Inthecaseof n =2 andm = 1, we take

1 (1 —7
oomao T= .
«/}'2-&-1(7 1 )

where7 = 0 . The-dimensional subspacesE' and E* are spaned by

,_ 1 (1 L1 <*7>
oomo elm<7) and e; =1\ 1

respectively. The canonical unit vectors €1, €2 are decomposed as
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e, =e,+e;

and then alattice point p is decomposed as

P = pie1+peez = (merzel)leef + poey)

(1 Y N7 1 N —olage
(m“mpz)el*( m‘”*m”)ez pp

while the window set is given by

0<x < 1]

1 X 2 4
W:{xlef+xze2+t0ng<1}=|</7%+ Yfirlﬂf)ez

= [seé

wheret = te; isashift. Inthissituation, the cut and project set CPZ (7, t) is defined by

T ipcs< L +t],

00O (p1,p2)€D (%t)ﬂZE],

<P1+7P2>e,
EESUA
where D (7,t):[(x,y)e R —y+t/7? +1<—yx+y< 1+t,/72+1}. Asy+1> 1, thereexists at least one p2 € Z such that

(n,p2)€ CPZ(T,t) forany n € Z.
Proposition 2. 1. For (p1, p2)€ D (7,t)NZ?, when —yp1 + p2 # t /> + 1, one of the followings holds:

i0@pLp2+1)eD (r,t) and (p1+1,p2)D (7,1)
ii0(p1+1,p2)€D (r,t) and (p1,p2+1)&ED (7, t)

When —7p1+p2 = t/y>+1, it holds that
(p1,p2+1)&ED (7,t) and (pr+1,p2)E D (7,1)

Proof. We see that (p1.p2), (pr.p2+1)€D (r,t) shows —7+t/7?+1<—ypi+p<t/7’+1, and (p1, p2),
(p1+1,p2)€D (7,t) showstyr?+1<—yp1+p2 < 1+t/7*+1, which are exclusive to each other if —7p1+p2 # t/7>+1,
and neither of them hold if —7p1 +p2 = t/7*+1.

A lattice point (p1, p2) € Z? is called exceptional if —7 (p1—1)+p2 = t/7°+1 holds.

Throughout this paper, we fix the shift
y—1
y2+1°

gomg t=

Then the corresponding cut and project set CPr = CP{ (7, t) isgiven by
{pr+rpel =1 < —ypr+p2 <y, (p1,p2) EZ},
and the set of exceptional pointsCP; is given by
{prtybel=vpr+p2=—1, (p1,p2) € 27},
denoting CP," = CP, UCPy . Thestrip D = D (7,t) isgiven by
00mo {,y)ER—1< —yx+y <y}

Note that there exists a unique exceptional point whenever 7 isirrational: CP¢ ={(0, 1)}. The FIGUREO shows acut and pro-

ject set CPy fory = @ with a unique exceptional point (0, —1).
For x € R[] xOdenotes the largest integer smaller than or equal to x, and we put {x} =x—[x].
Proposition 2. 2. For anirrational positive number 7, CP," is described by

CP ={(n, [myDIn € ZYu{(Im/y], m)\m € Z}
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Figure 1. The cut and project set with a shift NSt

and {(n, [ny]))|n € ZYn{([m/y], m)lm € Z}={(0,0)}.
Proof. The inequality 7y —1 <[ny]<[(n+1)y]<(n+1)y, shows that (n,m )< CP,* if and only if m =[ny]or[(n+1)7].
When [(z+1)7]=[nr]+1 holds, the inequarity 7y <[#y]+1=[(n+1)7]1<(n+1)y shows n <mlr <n-+1, where

m=[(n+1)7], and then [m/y]=n. Thusany dement (n,m) of CP," is given by (n, [nr]) or ([m/r],m).

tional, [#y 1= ny holds only for # = 0, meaning the rest.

0O O A substitution associated with a slope 7

As7 isirra

In this section, we consider conditions that a matrix A € M (2, Z) has eigenvectors e; and e; defined byd0OIIC Denot-
ing the eigenvalues, A1 and A2 corresponding to e; and e, respectively, A is described by

a=7(" %),
0 A

where T  isgiven by JOIIO AsA issymmetric, we put

gomd

It follows from the identity

=2 a)

that 7 is the positive solution of the equation

oomo

a,b, ceZ,b#0

while the eigenvalues, 41 and A2 of A satisfy the equation

oomo

(A—a)(A—c)=0b2.

Moreover, the identity A (e{ e;):(/he{ Azeg) shows

gomd
gomd

a+by = A,
b—ay = -2,

b+cy = Ay,
c—by = As.
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Lemma 3. 1. For any positive integers a, b, ¢, we have

O0mo A1 >max{a, b, ¢}, andhence |/12|<|A|-min{al, bi’ cl}
If A =detA >0,
0omo h<a+te, >0, %<y<%,

and for the strip D defined by 10T we see
AD ={(x,y) € R}| =2 < —yx+y < 7o}
If A <O,

00mo h>a+e, <O %<7<%

and
AD :{(x,y)e R2|7’/12 <=ty < —Az}.

Proof. Asa,b,c>0, we see /i = a+by =c+0b/y bydOIIO showing A1 >max{a, c,by,b/r}. Since max{y, 1/7}> 1, we
have A1 >b. The equationd00MO implies 4142 = A, and hencedOMO Put f(x)=(x—a)(x—c)—b?, then we have
fla+c)>0if andonly if A >0, meaning A1 <a+c. AsAi+A: = a+c bydOMO we have A2 > 0. It follows fronJ MO
that c—by =a—b/y = 2:>0, hencBOMO Noticing that the boundaries of D are described by —e; +Re; and —e; + Re;,
the boundaries of AD are mapped to — A:e{ + Re| and — A:e5 + Re/, hence the assertion. The proof for the case of A <0 is
similar.
Lemma 3. 2. For positive integers a, b, ¢, consider A € GL (2, Z) defined byJOmMOof which eigenvectors are e; and e;. If
|A|<min{a, b, c},wehave AD € D and (a,b), (b,c)eD.
Proof. We see that the condition AD € D isegivaentto —1 <ar—b <y and —1 < by —c <7, while the condition (@, b ),
(b,c)eD is—1<—ar+b<y and —1< —by+c<y. Combining these inequarities, we have |b—ay|<min(1,7) and
le—by|<min(1l,7). Since |A|<min{a,b,c}, we have lc—by|=la—b/r|=1A:/<1 by LemmaOdOmMO Also we see
|b—ay|=|A2r|<|A|-min{1/a, 1/b, 1/c}- max{b/a, c/b}< 1and |b—c/y|=|A2/y|<|A|-min{l/a, 1/b, 1/c }- max{a/b, b/c} < 1.
Hence the assertion.
Notethat A = 0 impliesy € Q since the determinant o]0 Ois (@ +c¢)*+4A.
For the irrational 7, we define an infinite word %» = xox1--- of an alphabet {0, 1} by
omo i 0, ?f(n,pz), (n+1,p:) e CP7, forn > 0.
1, if(n,p2), (n,p2+1)e CPf,
We see that % is well defined by PropositionOd and the definition of CP,". For v =(v1, v2) € R?, V|, stands for v1+v2. It
follows from the definition of CP," that there exists a unique p € CP,* with |pl, = » for any n € Z. For p, q € CP," with
Ipl; <lal;, we define

C[p,q]l={n e CP/|lpl,<In|,<l|ql,}.

Suppose that positive integers a, b, ¢ defining the matrix A € GL (2, Z) byd DD Osatisfy A <min{a, b, ¢}. Then we call sub-
sats Co = C[0,Aei] and C1 = C[0,Ae:] of CP; thebasic sets. The basic words Wo and W1 are prefix factors of %7, given
by Wi =uxo-x with k =|Aei+1];, i=0,1. The substitution 0 associated with 7 is a word homomorphism defined by
or(1)=W;(i=0,1). Notethat Ci < C; and thus W; isasubword of W; wherei =0, =1 if lel[1<|e:/1,andi =1, 7= 0 if
lei]i =1exls.

O O Rigidity of basic words

Proposition 4. 1. Consider a matrix A € GL (2,Z) defined bydJOMOwith positiveintegersa, b, ¢. If [A|= 1, it holds for any
(x,y)€ AD that
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oomo Ci+(xy)cD, i=0,1

Proof. Note that |A|=1 implies (@,0)=(b,¢)=1 and |A|<min{a, b, c}. Since the boundaries of D are paralel to e;, by
trandating C: +(x,y) aong Re;, it is sufficient to provedOmMO for Ci +(0,6), where —42 <8 <Az ifA >0, and
Ay <8< —Aif A <O,

We showJOIN0in the case of A = 1. Owing to PropositionOM, the proof is devided into two cases: for (%, [#7]) with
—A2<8<0 and for ([m/y],m) with 0 <6< Axy. To show the former, it is sufficient to prove [#y]—A: = ny—1 for
0 <z <max{a, b} which is equivalent to show

oomd {ny}+22<1, 0<Vn<max{a,b}.

With the help of I0MOand] O] we have for 0 < 7 <max{a, b },

n%—nygmax{a,b}<%—7>:max{1, %}-/12 <max{1,%}-min{; f}ibi.
We see 1/b <{nc/b} < 1—1/b whenever nc/b &€ Z. Thus [nc/b 1< ne/b—1/b < ny and hence [nc/b 1<[ny]. ByOOMO we
see {ny)<{nc/b}. Then we have [ny]=[nc/b] for 0 <n <max{a,b}, nc/b & Z. By the definition {x}=[x]—x, we come
to {ny}+A: <{nc/b}+2:<1-1/b+1/b=1. For the case nc/b €Z, we put n =kb <max{a,b}. ByOOI[ we see
kA2 <max{a, b} -min{l/a, 1/b}< 1. UsingdOMO we have kc = kby +kAz, and then kc—1 < kby < kc, which implies
[kby]=kc—1. Hence {nr}+ A2 = kby — (ke — 1)+ A2 < ke — (ke — 1) = 1 and thu§£) OO

To show the latter, it is sufficient to show 2 + A2y < ([m/y ]+ 1)y for 0 < m <max{b, ¢}, which is equivalent to show

oomd {miy}+24: <1, 0<Vm<max{b,c}

UsindlOMIOMOandd0 0O asimilar argument shows10MH We have proved]OMMOin the caseof A = 1,
The proof for A =—1is obtained by showing {nr}—2Ax <1 for (n, [nr])€ CoUC, and {(m/ir}—Aly <1 for
([mly],m)e CoU Ci. A similar argument leads to the inequalities. Thus PropositionO( is proved.

0 O Sefsimilarity of xr and remarks

Theorem 5. 1. Let a, b, ¢ be positive integers with lac —b?|= 1. For a positive irrational number 7 given as a positive solu-
tion of the quadratic equatiorJ D] the infinite word x» defined by 0is a fixed point of the substitution o0».

Proof. For z € N, we take a unique lattice point p» € CP,* with |p»|, = 7. Then by definitiord O] we have p» +e1 € CP,*
whenever x» = 0 and p» +e: € CP,* whenever x» = 1. Supposethat x» = 0. AsAp» € AD , it follows from Propositiond
that Co+Ap» € D, while Co+Ap» € Z?, implying that Co+A p» < CP,". Owing to Propositiond (I, we see that Co+A px
coinsides with C [A pr, A (pn +e1)], which implies that Xap.|,** X aps 1, = Wo = 07 (0) =07 (xx). A similar argument in the
case of x» =1 brings Ci+Aps = C[Aps, A (pr+e2)] and Xup.l, X4 g e, = Wi = 07 (1) =0 (x2).  Summing up, for
any n €N there exists unique succesive points Pr, p.+1 € CP’, e, Ip:l;=n and [p»-1l;=n+1, such tha
Flapsly " Xap,.o, = 07 (¥x). We have shown

Oy (X7): Oy (X(l)dr (XI)Gr (xz)
= X|Apoly XlApily XA ply XA psly T

= XoX1X2" = Xy,

that is, x» isafixed point of or.

Remark On one hand, since we take the projection 7* being orthogonal to E', we have to restrict ourselves to take a symmet-
ric matrixJOM00 which will be an inessentia restriction. Our argument should work for nonsymmetric ones. On the other
hand, the condition |A|= 1 is essential to our discussion. In this case, we areto treat a positive irrational solution of a quadratic

equation
y? +%7— 1=0

where the integers p and ¢ are prime to each other. The continued fractional expansion of 7 gives succesive good approximat-
ing fractions b/a and d/c, satisfying lad —bc|= 1(a, b, ¢, d € N). Then the matrix
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