A proof of self-similarity of cut and project sets in 1-dimension

Eriko NODA* and Yukihiro HASHIMOTO

Department of Mathematics, Aichi University of Education, Kariya, 448-8542, Japan

1 . Introduction

The Fibonacci substitution $\sigma(0) = 01$ and $\sigma(1) = 0$ generates an infinite sequence

010010100100101001010...

which is a fixed point of σ , while this sequence is also obtained as a cut and project set along a line with the slope $\gamma = (\sqrt{5} - 1)/2$. In the paper [1] the coinsidence of these sequences stated above is proved. We give a generalization of such a result (Theorem 5.1) via proving that a part of the cut and project set has a *rigidity* property (Proposition 4.1).

2 . Cut and project sets in 1-dimension

Generally, a cut and project set in \mathbf{R}^n is given as follows. The integer lattice points in \mathbf{R}^n are given by $\mathbf{p} = \sum_{j=1}^n p_j \mathbf{e}_j \ (p_j \in \mathbf{Z})$ where $\left\{ \mathbf{e}_j = {}^t \left(0, \dots, \stackrel{j}{\mathbf{1}}, \dots, 0 \right) \right\}$ is a canonical orthonormal basis. For $T = (t_{jk}) \in O(n)$, we put $\mathbf{e}_j' = \sum_{k=1}^n t_{kj} \mathbf{e}_k$. For a natural number 0 < m < n, the *parallel space* \mathbf{E}^{\parallel} (resp. the *perp space* \mathbf{E}^{\perp}) is a linear span of $\{\mathbf{e}_1', \dots, \mathbf{e}_m'\}$ (resp. $\{\mathbf{e}_{m+1}', \dots, \mathbf{e}_n'\}$) π^{\parallel} (resp. π^{\perp}) denotes the orthogonal projection $\pi^{\parallel} : \mathbf{R}^n \to \mathbf{E}^{\parallel}$ (resp. $\pi^{\perp} : \mathbf{R}^n \to \mathbf{E}^{\perp}$). Then the \mathbf{E}^{\parallel} -component \mathbf{e}_j^{\perp} and \mathbf{E}^{\perp} -component \mathbf{e}_j^{\perp} of a canonical unit vector \mathbf{e}_j are given by

$$\mathbf{e}_j^\parallel = \pi^\parallel(\mathbf{e}_j) = \sum\limits_{k=1}^m t_{kj} \mathbf{e}_k', \qquad \mathbf{e}_j^\perp = \pi^\perp(\mathbf{e}_j) = \sum\limits_{k=m+1}^n t_{kj} \mathbf{e}_k',$$

and the \mathbf{E}^{\parallel} -component $\mathbf{e}_{i}^{\parallel}$ and \mathbf{E}^{\perp} -component \mathbf{e}_{i}^{\perp} of a lattice point \mathbf{p} are given by

$$\mathbf{p}^{\parallel} = \pi^{\parallel}(\mathbf{p}) = \sum_{j=1}^{n} p_{j} \mathbf{e}_{j}^{\parallel}, \qquad \mathbf{p}^{\perp} = \pi^{\perp}(\mathbf{p}) = \sum_{j=1}^{n} p_{j} \mathbf{e}_{j}^{\perp}$$

Take a unital hyper-cube Q in \mathbf{R}^n , $Q = \{(q_1, ..., q_n) | 0 \le q_i < 1\}$, and consider the orthogonal projection W of Q into \mathbf{E}^\perp , that is $W = \{\pi^\perp(\mathbf{q}) | \mathbf{q} \in Q\}$, called the *window*. Given a vector $\mathbf{t} \in \mathbf{E}^\perp$ called a *shift*, the *cut and project set* $CP_m^n(T, \mathbf{t})$ is defined by

$$CP_m^n(T,\mathbf{t}) = \{\pi^{\parallel}(\mathbf{p}) \mid \pi^{\perp}(\mathbf{p}) \in W + \mathbf{t}, \mathbf{p} \in \mathbf{Z}^n\} \subset \mathbf{E}^{\parallel}$$

In the case of n = 2 and m = 1, we take

$$T = \frac{1}{\sqrt{\gamma^2 + 1}} \begin{pmatrix} 1 & -\gamma \\ \gamma & 1 \end{pmatrix}.$$

where $\gamma \geq 0$. The 1-dimensional subspaces \mathbf{E}^{\parallel} and \mathbf{E}^{\perp} are spaned by

(22)
$$\mathbf{e}_1' = \frac{1}{\sqrt{\gamma^2 + 1}} \begin{pmatrix} 1 \\ \gamma \end{pmatrix} \text{ and } \mathbf{e}_2' = \frac{1}{\sqrt{\gamma^2 + 1}} \begin{pmatrix} -\gamma \\ 1 \end{pmatrix}$$

respectively. The canonical unit vectors e_1 , e_2 are decomposed as

^{*}undergraduate student

$$\mathbf{e}_1 = \frac{1}{\sqrt{\gamma^2+1}}\mathbf{e}_1' - \frac{\gamma}{\sqrt{\gamma^2+1}}\mathbf{e}_2' = \mathbf{e}_1^{\parallel} + \mathbf{e}_1^{\perp}, \quad \mathbf{e}_2 = \frac{\gamma}{\sqrt{\gamma^2+1}}\mathbf{e}_1' + \frac{1}{\sqrt{\gamma^2+1}}\mathbf{e}_2' = \mathbf{e}_2^{\parallel} + \mathbf{e}_2^{\perp}$$

and then a lattice point **p** is decomposed as

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 = \left(p_1 \mathbf{e}_1^{\parallel} + p_2 \mathbf{e}_2^{\parallel}\right) + \left(p_1 \mathbf{e}_1^{\perp} + p_2 \mathbf{e}_2^{\perp}\right)$$

$$= \left(\frac{1}{\sqrt{\gamma^2 + 1}} p_1 + \frac{\gamma}{\sqrt{\gamma^2 + 1}} p_2\right) \mathbf{e}_1' + \left(-\frac{\gamma}{\sqrt{\gamma^2 + 1}} p_1 + \frac{1}{\sqrt{\gamma^2 + 1}} p_2\right) \mathbf{e}_2' = \mathbf{p}^{\parallel} + \mathbf{p}^{\perp},$$

while the window set is given by

$$W = \left\{ x_1 \mathbf{e}_1^{\perp} + x_2 \mathbf{e}_2^{\perp} + \mathbf{t} \mid 0 \le x_j < 1 \right\} = \left\{ \left(-\frac{\gamma x_1}{\sqrt{\gamma^2 + 1}} + \frac{x_2}{\sqrt{\gamma^2 + 1}} + t \right) \mathbf{e}_2' \middle| 0 \le x_j < 1 \right\}$$

$$= \left\{ s \mathbf{e}_2' \middle| -\frac{\gamma}{\sqrt{\gamma^2 + 1}} + t < s < \frac{1}{\sqrt{\gamma^2 + 1}} + t \right\},$$

where $\mathbf{t} = t \, \mathbf{e}'_2$ is a shift. In this situation, the cut and project set $CP_1^2(T, t)$ is defined by

(23)
$$\left\{ \left(\frac{p_1 + \gamma p_2}{\sqrt{\gamma^2 + 1}} \right) \mathbf{e}_1' \middle| (p_1, p_2) \in D(\gamma, t) \cap \mathbf{Z}^2 \right\},$$

where $D(\gamma, t) = \{(x, y) \in \mathbb{R}^2 | -\gamma + t\sqrt{\gamma^2 + 1} < -\gamma x + y < 1 + t\sqrt{\gamma^2 + 1} \}$. As $\gamma + 1 > 1$, there exists at least one $p_2 \in \mathbb{Z}$ such that $(n, p_2) \in CP_1^2(T, t)$ for any $n \in \mathbb{Z}$.

Proposition 2. 1. For $(p_1, p_2) \in D(\gamma, t) \cap \mathbb{Z}^2$, when $-\gamma p_1 + p_2 \neq t \sqrt{\gamma^2 + 1}$, one of the followings holds:

i)
$$(p_1, p_2 + 1) \in D(\gamma, t)$$
 and $(p_1 + 1, p_2) \notin D(\gamma, t)$
ii) $(p_1 + 1, p_2) \in D(\gamma, t)$ and $(p_1, p_2 + 1) \notin D(\gamma, t)$

When $-\gamma p_1 + p_2 = t\sqrt{\gamma^2 + 1}$, it holds that

$$(p_1, p_2 + 1) \notin D(\gamma, t)$$
 and $(p_1 + 1, p_2) \notin D(\gamma, t)$

Proof. We see that (p_1, p_2) , $(p_1, p_2 + 1) \in D$ (γ, t) shows $-\gamma + t\sqrt{\gamma^2 + 1} < -\gamma p_1 + p_2 < t\sqrt{\gamma^2 + 1}$, and (p_1, p_2) , $(p_1 + 1, p_2) \in D$ (γ, t) shows $t\sqrt{\gamma^2 + 1} < -\gamma p_1 + p_2 < 1 + t\sqrt{\gamma^2 + 1}$, which are exclusive to each other if $-\gamma p_1 + p_2 \neq t\sqrt{\gamma^2 + 1}$, and neither of them hold if $-\gamma p_1 + p_2 = t\sqrt{\gamma^2 + 1}$.

A lattice point $(p_1, p_2) \in \mathbb{Z}^2$ is called *exceptional* if $-\gamma (p_1 - 1) + p_2 = t\sqrt{\gamma^2 + 1}$ holds.

Throughout this paper, we fix the shift

$$t = \frac{\gamma - 1}{\sqrt{\gamma^2 + 1}}.$$

Then the corresponding cut and project set $CP_{\gamma} = CP_1^2(\gamma, t)$ is given by

$$\{p_1+\gamma p_2|-1<-\gamma p_1+p_2<\gamma,\ (p_1,p_2)\in {\bf Z}^2\},$$

and the set of exceptional points CP_{γ}^{e} is given by

$$\{p_1 + \gamma p_2 | - \gamma p_1 + p_2 = -1, (p_1, p_2) \in \mathbb{Z}^2\},\$$

denoting $CP_{\gamma}^+ = CP_{\gamma} \cup CP_{\gamma}^e$. The strip $D = D(\gamma, t)$ is given by

$$\{(x, y) \in \mathbb{R}^2 | -1 < -\gamma x + y < \gamma\}$$

Note that there exists a unique exceptional point whenever γ is irrational: $CP_{\gamma}^{e} = \{(0, 1)\}$. The FIGURE 1 shows a cut and project set CP_{γ} for $\gamma = \frac{\sqrt{5}-1}{2}$ with a unique exceptional point (0, -1).

For $x \in \mathbb{R}$, [x] denotes the largest integer smaller than or equal to x, and we put $\{x\} = x - [x]$.

Proposition 2. 2. For an irrational positive number γ , CP_{γ}^+ is described by

$$CP_{\gamma}^+ = \{(n, [n\gamma]) | n \in \mathbf{Z}\} \cup \{([m/\gamma], m) | m \in \mathbf{Z}\}$$

Figure 1. The cut and project set with a shift $\frac{\gamma-1}{\sqrt{\gamma^2+1}}$

and $\{(n, [n\gamma]) | n \in \mathbb{Z}\} \cap \{([m/\gamma], m) | m \in \mathbb{Z}\} = \{(0, 0)\}.$

Proof. The inequality $n\gamma - 1 < [n\gamma] \le [(n+1)\gamma] < (n+1)\gamma$, shows that $(n, m) \in CP_{\gamma}^+$ if and only if $m = [n\gamma] \text{ or } [(n+1)\gamma]$. When $[(n+1)\gamma] = [n\gamma] + 1$ holds, the inequarity $n\gamma < [n\gamma] + 1 = [(n+1)\gamma] < (n+1)\gamma$ shows $n < m/\gamma < n+1$, where $m = [(n+1)\gamma]$, and then $[m/\gamma] = n$. Thus any element (n, m) of $\mathbb{C}P_{\gamma}^+$ is given by $(n, [n\gamma])$ or $([m/\gamma], m)$. As γ is irrational, $[n\gamma] = n\gamma$ holds only for n = 0, meaning the rest.

3 . A substitution associated with a slope γ

In this section, we consider conditions that a matrix $A \in M(2, \mathbb{Z})$ has eigenvectors \mathbf{e}'_1 and \mathbf{e}'_2 defined by (2.2). Denoting the eigenvalues, λ_1 and λ_2 corresponding to \mathbf{e}'_1 and \mathbf{e}'_2 respectively, A is described by

$$A = T \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}^t T,$$

where T is given by (2.1). As A is symmetric, we put

(3.1)
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a, b, \ c \in \mathbf{Z}, b \neq 0$$

It follows from the identity

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = {}^t TAT$$

that γ is the positive solution of the equation

$$\gamma^2 + \left(\frac{a-c}{b}\right)\gamma - 1 = 0,$$

while the eigenvalues, λ_1 and λ_2 of A satisfy the equation

$$(33) \qquad (\lambda - a)(\lambda - c) = b^2.$$

Moreover, the identity $A\left(\mathbf{e}_{1}^{\prime}\ \mathbf{e}_{2}^{\prime}\right) = \left(\lambda_{1}\mathbf{e}_{1}^{\prime}\ \lambda_{2}\mathbf{e}_{2}^{\prime}\right)$ shows

$$(3.4) a+b\gamma=\lambda_1, b+c\gamma=\lambda_1\gamma,$$

(3 A)
$$a + b\gamma = \lambda_1, \quad b + c\gamma = \lambda_1\gamma,$$
(3 5)
$$b - a\gamma = -\lambda_2\gamma, \quad c - b\gamma = \lambda_2.$$

Lemma 3. 1. For any positive integers a, b, c, we have

(3.6)
$$\lambda_1 > \max\{a, b, c\}, \quad and \; hence \quad |\lambda_2| < |\Delta| \cdot \min\left\{\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right\}.$$

If $\Delta = \det A > 0$,

(3.7)
$$\lambda_1 < a + c, \quad \lambda_2 > 0, \quad \frac{b}{a} < \gamma < \frac{c}{b},$$

and for the strip D defined by (25), we see

$$AD = \{(x, y) \in \mathbf{R}^2 | -\lambda_2 < -\gamma x + y < \gamma \lambda_2 \}.$$

If $\Delta < 0$,

(38)
$$\lambda_1 > a+c, \quad \lambda_2 < 0, \quad \frac{c}{b} < \gamma < \frac{b}{a}$$

and

$$AD = \{(x, y) \in \mathbf{R}_2 | \gamma \lambda_2 < -\gamma x + y < -\lambda_2 \}.$$

Proof. As a, b, c > 0, we see $\lambda_1 = a + b\gamma = c + b/\gamma$ by (3 A), showing $\lambda_1 > \max\{a, c, b\gamma, b/\gamma\}$. Since $\max\{\gamma, 1/\gamma\} > 1$, we have $\lambda_1 > b$. The equation (3 3) implies $\lambda_1 \lambda_2 = \Delta$, and hence (3 b). Put $f(x) = (x - a)(x - c) - b^2$, then we have f(a + c) > 0 if and only if $\Delta > 0$, meaning $\lambda_1 < a + c$. As $\lambda_1 + \lambda_2 = a + c$ by (3 3), we have $\lambda_2 > 0$. It follows from (3 5) that $c - b\gamma = a - b/\gamma = \lambda_2 > 0$, hence (3 7). Noticing that the boundaries of D are described by $-\mathbf{e}_1^\perp + \mathbf{R}\mathbf{e}_1'$ and $-\mathbf{e}_2^\perp + \mathbf{R}\mathbf{e}_1'$, the boundaries of AD are mapped to $-\lambda_2\mathbf{e}_1^\perp + \mathbf{R}\mathbf{e}_1'$ and $-\lambda_2\mathbf{e}_2^\perp + \mathbf{R}\mathbf{e}_1'$, hence the assertion. The proof for the case of $\Delta < 0$ is similar.

Lemma 3. 2. For positive integers a, b, c, consider $A \in GL(2, \mathbb{Z})$ defined by (3.1) of which eigenvectors are \mathbf{e}'_1 and \mathbf{e}'_2 . If $|\Delta| \leq \min\{a, b, c\}$, we have $AD \subset D$ and (a, b), $(b, c) \in D$.

Proof. We see that the condition $AD \subset D$ is eqivalent to $-1 < a\gamma - b < \gamma$ and $-1 < b\gamma - c < \gamma$, while the condition (a,b), $(b,c) \in D$ is $-1 < -a\gamma + b < \gamma$ and $-1 < -b\gamma + c < \gamma$. Combining these inequarities, we have $|b-a\gamma| < \min(1,\gamma)$ and $|c-b\gamma| < \min(1,\gamma)$. Since $|\Delta| \le \min\{a,b,c\}$, we have $|c-b\gamma| = |a-b/\gamma| = |\lambda_2| < 1$ by Lemma (3.1). Also we see $|b-a\gamma| = |\lambda_2\gamma| < |\Delta| \cdot \min\{1/a,1/b,1/c\} \cdot \max\{b/a,c/b\} < 1$ and $|b-c/\gamma| = |\lambda_2/\gamma| < |\Delta| \cdot \min\{1/a,1/b,1/c\} \cdot \max\{a/b,b/c\} < 1$.

Hence the assertion.

Note that $\Delta = 0$ implies $\gamma \in \mathbb{Q}$ since the determinant of (3 2) is $(a+c)^2 + 4\Delta$.

For the irrational γ , we define an infinite word $x_{\gamma} = x_0 x_1 \cdots$ of an alphabet $\{0, 1\}$ by

(39)
$$x_n = \begin{cases} 0, & \text{if } (n, p_2), & (n+1, p_2) \in CP_{\gamma}^+, \\ 1, & \text{if } (n, p_2), & (n, p_2+1) \in CP_{\gamma}^+, \end{cases} \text{ for } n \ge 0.$$

We see that x_r is well defined by Proposition 2.1 and the definition of CP_r^+ . For $\mathbf{v} = (v_1, v_2) \in \mathbf{R}^2$, $|\mathbf{v}|_1$ stands for $v_1 + v_2$. It follows from the definition of CP_r^+ that there exists a unique $\mathbf{p} \in CP_r^+$ with $|\mathbf{p}|_1 = n$ for any $n \in \mathbf{Z}$. For \mathbf{p} , $\mathbf{q} \in CP_r^+$ with $|\mathbf{p}|_1 < |\mathbf{q}|_1$, we define

$$C[\mathbf{p},\mathbf{q}] = \{\mathbf{n} \in CP_{\gamma}^{+} ||\mathbf{p}|_{1} \leq |\mathbf{n}|_{1} \leq |\mathbf{q}|_{1}\}.$$

Suppose that positive integers a, b, c defining the matrix $A \in GL(2, \mathbb{Z})$ by (3.1) satisfy $\Delta \leq \min\{a, b, c\}$. Then we call subsets $C_0 = C[\mathbf{0}, A \mathbf{e}_1]$ and $C_1 = C[\mathbf{0}, A \mathbf{e}_2]$ of CP_r^+ the basic sets. The basic words W_0 and W_1 are prefix factors of x_r , given by $W_i = x_0 \cdots x_k$ with $k = |A \mathbf{e}_{i+1}|_1$, i = 0, 1. The substitution σ_r associated with r is a word homomorphism defined by $\sigma_r(i) = W_i$ (i = 0, 1). Note that $C_i \subseteq C_j$ and thus W_i is a subword of W_j where i = 0, j = 1 if $|\mathbf{e}_1|_1 \leq |\mathbf{e}_2|_1$, and i = 1, j = 0 if $|\mathbf{e}_1|_1 \geq |\mathbf{e}_2|_1$.

4 . Rigidity of basic words

Proposition 4.1. Consider a matrix $A \in GL(2, \mathbb{Z})$ defined by (3.1) with positive integers a, b, c. If $|\Delta| = 1$, it holds for any $(x, y) \in AD$ that

(4.1)
$$C_i + (x, y) \subset D, \quad i = 0, 1$$

Proof. Note that $|\Delta| = 1$ implies (a, b) = (b, c) = 1 and $|\Delta| \le \min\{a, b, c\}$. Since the boundaries of D are parallel to \mathbf{e}'_1 , by translating $C_i + (x, y)$ along \mathbf{Re}'_1 , it is sufficient to prove (4.1) for $C_i + (0, \delta)$, where $-\lambda_2 < \delta < \lambda_2 \gamma$ if $\Delta > 0$, and $\lambda_2 \gamma < \delta < -\lambda_2$ if $\Delta < 0$.

We show (4.1) in the case of $\Delta = 1$. Owing to Proposition 2.2, the proof is devided into two cases: for $(n, \lceil n\gamma \rceil)$ with $-\lambda_2 < \delta \le 0$ and for $(\lceil m/\gamma \rceil, m)$ with $0 \le \delta < \lambda_2 \gamma$. To show the former, it is sufficient to prove $\lceil n\gamma \rceil - \lambda_2 \ge n\gamma - 1$ for $0 \le n \le \max\{a, b\}$ which is equivalent to show

(42)
$$\{n\gamma\} + \lambda_2 \le 1, \quad 0 \le \forall n \le \max\{a, b\}.$$

With the help of (3 5) and (3 6), we have for $0 \le n \le \max\{a, b\}$,

$$n\frac{c}{b} - n\gamma \le \max\{a, b\} \left(\frac{c}{b} - \gamma\right) = \max\left\{1, \frac{a}{b}\right\} \cdot \lambda_2 < \max\left\{1, \frac{a}{b}\right\} \cdot \min\left\{\frac{1}{a}, \frac{1}{b}\right\} \le \frac{1}{b}.$$

We see $1/b \le \{nc/b\} \le 1 - 1/b$ whenever $nc/b \notin \mathbb{Z}$. Thus $[nc/b] \le nc/b - 1/b < n\gamma$ and hence $[nc/b] \le [n\gamma]$. By (3.7), we see $\{n\gamma\} \le \{nc/b\}$. Then we have $[n\gamma] = [nc/b]$ for $0 \le n \le \max\{a, b\}$, $nc/b \notin \mathbb{Z}$. By the definition $\{x\} = [x] - x$, we come to $\{n\gamma\} + \lambda_2 < \{nc/b\} + \lambda_2 < 1 - 1/b + 1/b = 1$. For the case $nc/b \in \mathbb{Z}$, we put $n = kb \le \max\{a, b\}$. By (3.6), we see $k\lambda_2 < \max\{a, b\} \cdot \min\{1/a, 1/b\} < 1$. Using (3.5), we have $kc = kb\gamma + k\lambda_2$, and then $kc - 1 < kb\gamma < kc$, which implies $[kb\gamma] = kc - 1$. Hence $\{n\gamma\} + \lambda_2 = kb\gamma - (kc - 1) + \lambda_2 \le kc - (kc - 1) = 1$ and thus (4.2)

To show the latter, it is sufficient to show $m + \lambda_2 \gamma \le (\lfloor m/\gamma \rfloor + 1) \gamma$ for $0 \le m \le \max\{b, c\}$, which is equivalent to show

$$\{m/\gamma\} + \lambda_2 \le 1, \quad 0 \le \forall m \le \max\{b, c\}$$

Using (3 5), (3 6) and (3 7), a similar argument shows (4 3). We have proved (4.1) in the case of $\Delta = 1$.

The proof for $\Delta = -1$ is obtained by showing $\{n\gamma\} - \lambda_2 \gamma \le 1$ for $(n, [n\gamma]) \in C_0 \cup C_1$, and $\{m/\gamma\} - \lambda_2/\gamma \le 1$ for $([m/\gamma], m) \in C_0 \cup C_1$. A similar argument leads to the inequalities. Thus Proposition 4.1 is proved.

5 . Selfsimilarity of x_r and remarks

Theorem 5. 1. Let a, b, c be positive integers with $|ac-b|^2 = 1$. For a positive irrational number γ given as a positive solution of the quadratic equation (3 2) the infinite word x_{γ} defined by (3 9) is a fixed point of the substitution σ_{γ} .

Proof. For $n \in \mathbb{N}$, we take a unique lattice point $\mathbf{p}_n \in CP_{\gamma}^+$ with $|\mathbf{p}_n|_1 = n$. Then by definition (3 9), we have $\mathbf{p}_n + \mathbf{e}_1 \in CP_{\gamma}^+$ whenever $x_n = 0$ and $\mathbf{p}_n + \mathbf{e}_2 \in CP_{\gamma}^+$ whenever $x_n = 1$. Suppose that $x_n = 0$. As $A \mathbf{p}_n \in AD$, it follows from Proposition 4.1 that $C_0 + A \mathbf{p}_n \subset D$, while $C_0 + A \mathbf{p}_n \subset \mathbf{Z}^2$, implying that $C_0 + A \mathbf{p}_n \subset CP_{\gamma}^+$. Owing to Proposition 2.1, we see that $C_0 + A \mathbf{p}_n$ coinsides with $C \left[A \mathbf{p}_n, A (\mathbf{p}_n + \mathbf{e}_1) \right]$, which implies that $x_{|A\mathbf{p}_n|_1} \cdots x_{|A\mathbf{p}_n + \mathbf{e}_1|_1} = W_0 = \sigma_{\gamma}(0) = \sigma_{\gamma}(x_n)$. A similar argument in the case of $x_n = 1$ brings $C_1 + A \mathbf{p}_n = C \left[A \mathbf{p}_n, A (\mathbf{p}_n + \mathbf{e}_2) \right]$ and $x_{|A\mathbf{p}_n|_1} \cdots x_{|A(\mathbf{p}_n + \mathbf{e}_2)|_1} = W_1 = \sigma_{\gamma}(1) = \sigma_{\gamma}(x_n)$. Summing up, for any $n \in \mathbb{N}$ there exists unique succesive points \mathbf{p}_n , $\mathbf{p}_{n+1} \in CP_{\gamma}^+$, i.e., $|\mathbf{p}_n|_1 = n$ and $|\mathbf{p}_{n+1}|_1 = n+1$, such that $x_{|A\mathbf{p}_n|_1} \cdots x_{|A\mathbf{p}_{n+1}|_1} = \sigma_{\gamma}(x_n)$. We have shown

$$\sigma_{\gamma}(x_{\gamma}) = \sigma_{\gamma}(x_{0}) \sigma_{\gamma}(x_{1}) \sigma_{\gamma}(x_{2}) \cdots$$

$$= x_{|A \mathbf{p}_{0}|_{1}} \cdots x_{|A \mathbf{p}_{1}|_{1}} \cdots x_{|A \mathbf{p}_{2}|_{1}} \cdots x_{|A \mathbf{p}_{3}|_{1}} \cdots$$

$$= x_{0}x_{1}x_{2} \cdots = x_{\gamma}.$$

that is, x_{γ} is a fixed point of σ_{γ} .

Remark On one hand, since we take the projection π^{\perp} being orthogonal to \mathbf{E}^{\parallel} , we have to restrict ourselves to take a symmetric matrix (3.1), which will be an inessential restriction. Our argument should work for nonsymmetric ones. On the other hand, the condition $|\Delta|=1$ is essential to our discussion. In this case, we are to treat a positive irrational solution of a quadratic equation

$$\gamma^2 + \frac{q}{p}\gamma - 1 = 0$$

where the integers p and q are prime to each other. The continued fractional expansion of γ gives succesive good approximating fractions b/a and d/c, satisfying |ad-bc|=1 $(a,b,c,d\in \mathbb{N})$. Then the matrix

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

plays a role in our discussion instead of (3.1).

References

- [1] E. Noda, Fibonacci numbers and quasi-lattice points, Bachelor thesis, 2007.
- [2] K. Hiraga, The wonderful structures of quasi-crystals, Agne Technology center, 2003 (Japanese).
- [3] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of mathematics and its applications 90, Cambridge University Press, 2002.

(平成19年9月18日受理)