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Abstract

The effect of the ”chromo-electric” dipole moment on the electric dipole mo-
ment(EDM) of the neutron is studied in the two-Higgs-doublet model. The
Weinberg’s operator O3g = GGG̃ and the operator Oqg = qσG̃q are both inves-
tigated in the cases of tan β ≫ 1, tan β ≪ 1 and tan β ≃ 1. The neutron EDM
is considerably reduced due to the destructive contribution with two light Higgs
scalars exchanges.
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1 Introduction

The electric dipole moment(EDM) of the neutron is of central importance to probe a

new origin of CP violation, because it is very small in SM [1](dSM
n ≃ 10−30−10−31e·cm).

Begining with the papers of Weinberg [2], there has been considerably renewed interest

in the neutron EDM induced by CP violation of the neutral Higgs sector. Some studies

[3, 4, 5] revealed the importance of the ”chromo-electric” dipole moment, which arises

from the three-gluon operator GGG̃ found by Weinberg [2] and the light quark operator

qσG̃q introduced by Gunion and Wyler [3], in the neutral Higgs sector. Thus, it is

important to study the effect of these operators systematically in the model beyond

SM. We study the contribution of above two operators to the neutron EDM in the

two-Higgs-doublet model(THDM) [6]. The 3 × 3 mass matrix of the neutral Higgs

scalars is carefully investigated in the typical three cases of tanβ ≫ 1, tanβ ≃ 1 and

tanβ ≪ 1. In this model CP symmetry is violated through the mixing among CP = +

and CP = − Higgs scalar states.

In order to give reliable predictions [7], one needs the improvement on the accuracy

of the description of the strong-interaction hadronic effects. Chemtob [8] proposed a

systematic approach which gives the hadronic matrix elements of the higher-dimension

operators involving the gluon fields. We employ his model to estimate the hadronic

matrix elements of the operators.

2 CP violation parameter in THDM

The simplest extension of SM is the one with the two Higgs doublets [6]. This model

has the possibility of the soft CP violation in the neutral Higgs sector, which does not

contribute to the flavor changing neutral current in the B, D and K meson decays.

Weinberg [9] has given the unitarity bounds for the dimensionless parameters of the

CP nonconservation in THDM. However, the numerically estimated values of these



parameters are not always close to the Weinberg’s bounds [9]. Although it is difficult

to estimate the magnitudes of the CP violation parameters ImZi(i = 1, 2) generally,

we found that the neutral Higgs mass matrix is simplified in the extreme cases of

tanβ ≪ 1, tan β ≃ 1 and tanβ ≫ 1, in which the CP violation parameters are easily

calculated. The CP violation parameters ImZ
(n)
i are deduced to
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where u
(k)
i denotes the i−th component of the k−th eigenvector of the 3 × 3 Higgs

mass matrix and tanβ ≡ v2/v1(v1(2) is the vacuum expectation value of Φ0
1(2) giving

the masses of d(u)-quark sector).

In this model, Higgs potential is generally given as
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where the parameters satisfy the conditions [10]
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g2 ≥ 0,

g > −√
g1g2,
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g1g2,

ξ ≥ 0,
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It is noted that, in the case of MSSM, SUSY imposes the conditions on the parameters
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Here h=0 means that in MSSM CP violation is not caused throygh Higgs sector. The

simplest SUSY extention from MSSM that can have CP violation in the Higgs sector

is also discussed [11].

Let us estimate u
(k)
i by studying the Higgs mass matrix M2 whose components are
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As a phase convension, we take h to be real and

v∗2
1 v2

2 = |v1|2|v2|2 exp(2iφ) . (6)

At first, we consider the case of tan β ≫ 1 with retaining the order of cosβ and setting

cos2 β = 0 and sin β = 1. Then, the mass matrix becomes simple, so the eigenvectors



of M2 in Eq.(5) are easily obtained as follows:

u(1) = { cos β − ǫ sin β, − sin β, 0 }, (7)

u(2) = { sin βcφ, (cos β − ǫ sin β)cφ, −sφ },

u(3) = { sin βsφ, (cos β − ǫ sin β)sφ, cφ },

where c(s)φ ≡ cos(sin)φ and

ǫ ≃ 2(ξ − g − g2)

ξ + g′ − 2g2

cos β . (8)

The diagonal masses are given as

M2
1 = 2g2, M2

2 = g′ + ξ + h, M2
3 = g′ + ξ − h (9)

in the v2 ≡ v2
1 + v2

2 unit. The lightest Higgs scalar to yield CP violation is the second

Higgs scalar with the mass M2 since ξ is positive from Eq.(3) and we take h to be

negative as convention. The Higgs scalar with M1 does not contribute to CP violation

because of u
(1)
3 = 0. The absolute values of g′ is expected to be O(1), but h seems to

be small as estimated in some works [12, 13]. For example Froggatt et al. give the

numerical values for the parameters in the case of tan β ≫ 1 by using infrared fixed

point analysis through the renormalization group equations as

g1 ≃ 0.96, g2 ≃ 0.88, g ≃ 0.82

g′ ≃ −1.20, h ≃ −0.09. (10)

Therefore, the masses M2 and M3 may be almost degenerated. Then, CP violation

is reduced by the cancellation between the two different Higgs exchange contributions

ImZ
(2)
i and ImZ

(3)
i since u

(2)
i u

(2)
3 and u

(3)
i u

(3)
3 (i=1,2) have same magnitudes with op-

posite signs. Thus, it is noted that the lightest single Higgs exchange approximation

gives miss-leading of CP violation in the case of tanβ ≫ 1.

For ImZ1, our result reaches the Weinberg bound, but for ImZ2 the our calculated

value is suppressed compared with the Weinberg bound in the order of 1/ tanβ.



CP violation in the case of tanβ ≪ 1 is similar to the one of tan β ≫ 1. For

ImZ2, our numerical result reaches the Weinberg bound, while for ImZ1 the calculated

value is suppressed from the Weinberg bound in the order of tan β. The relative sign

between ImZ1 and ImZ2 is just the same as in the case of tan β ≫ 1.

The last case to be considered is of tan β ≃ 1. In this mass matrix, the off diagonal

components are very small compared to the diagonal ones because g1 ≃ g2 is suggested

by some analyses [12, 13] and h is also small as in the case of tan β ≫ 1. We can

calculate ImZi by fixing both values of h and M2/M3. For both ImZ2 and ImZ1, the

calculating values are roughly 1/3 of the Weinberg bounds. The relative sign between

ImZ1 and ImZ2 is opposite.

3 Formulation of the neutron EDM

The low energy CP -violating interaction is described by an effective Lagrangian,

LCP =
∑

i

Ci(M, µ)Oi(µ) , (11)

where Oi are the three gluon operator with the dimension six and the quark-gluon

operator with the dimension five as follows:
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where q denotes u, d or s quark. The QCD corrected coefficients Ci are given by the

two-loop calculations in Refs. [2, 3]. The coefficients Ci are given as
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where the functions f(x), g(x), h(x) are deduced from loop integral as given in Refs.

[2, 3].

For the strong interaction hadronic effect, the systematic technique has been de-

veloped by Chemtob [8] in the operator with the higher-dimension involving the gluon

fields. The hadronic matrix elements of the two operators are approximated by the

intermediate states with the single nucleon pole and the nucleon plus one pion. Then,

the nucleon matrix elements are defined as

〈N(P )|Oi(0)|N(P )〉 = AiU(P )iγ5U(P ),

〈N(P ′)|Oi|N(P )π(k)〉 = BiU(P ′)τaU(P ) , (14)

where U(P ) is the normalized nucleon Dirac spinors with the four momuntum P . Using

Ai and Bi(i = ug, dg, sg, 3g), the neutron EDM, dγ
n, are written as

dγ
n =

eµn

2m2
n

∑
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∑

i
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where µn is the neutron anomalous magnetic moment. The F (gπNN) was given by

calculating the pion and nucleon loop corrections using the chiral Lagrangian for Nπγ

[8]. The coefficients Ai and Bi were given by the large Nc current algebra and the η0

meson dominance [8].

4 Numerical results of the neutron EDM

Let us begin with discussing the numerical results in the case of tanβ ≫ 1. The con-

tributions of Oug and O3g are are negligibly small because the CP violation parameters

are roughly estimated as
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The main contribution follows from the one of Odg + Osg, in which the operator Osg is

dominant due to the s-quark mass. The coefficient Csg is

Csg = (const.) × ms{f(
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As the mass difference of these two Higgs scalar masses becomes smaller, the neutron

EDM is considerably reduced since the second Higgs scalar exchange contributes in the

opposite sign to the lightest Higgs scalar one as shown in the above equation. Thus,

it is found that the second lightest Higgs scalar also significantly contributes to CP

violation.

In the case of tan β ≪ 1, the contributions of Oug and O3g become very large due

to the large ImZ2. However, these contribute to the neutron EDM in opposite signs,

so they almost cancel each other. The remaining contribution is the one of Odg + Osg.

In the case of tanβ ≃ 1, the dominant contribution is the one of Odg +Osg. In both

regions of the large and small mH2/mH3, the predicted neutron EDM is reduced. At

mH2/mH3 ≃ 1, the cancellation mechanism by the second lightest Higgs scalar operates

well, while around mH2/mH3 ≃ 0, the large mass difference of the two Higgs scalars

leads to the small mixing between the scalar and pseudscalar Higgs bosons.

5 Summary

We have studied the effects of the four operators Oug, Odg +Osg and O3g on the neutron

EDM. The contribution of Osg dominates over that of other operators. Moreover, the

contributions of Oug and O3g cancel out each other due to their opposite signs. This

qualitative situation does not depend on the detail of the strong interaction hadronic

model. Thus, the Weinberg’s three gluon operator is not a main source of the neutron

EDM in THDM. The CP violation mainly follows from the two light neutral Higgs

scalar exchanges. Since these two exchange contributions are of opposite signs, the



CP violation is considerably reduced if the mass difference of the two Higgs scalars is

small. Since our predicted neutron EDM lies around the present experimental bound,

its experimental improvement reveal the new physics beyond SM. The present upper

limit for dγ
n is 8×10−26e ·cm which was given at the 26th ICHEP. Historically to reduce

one order of magnitude for upper limit experimentally, it has taken almost 10 years.

We hope that the rapid experimental reduction of upper limit will be performed and

that the finite value will be reported at the close ICHEP.
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