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1 Introduction

The physics of CP violation has attracted much attention in the light that
the B-factory will go on line in the near future at KEK and SLAC. The
central subject of the B-factory is the test of the standard model(SM), in
which the origin of CP violation is reduced to the phase in the Kobayashi-
Maskawa matrix[1]. However, there has been a general interest in consid-
ering other approaches to CP violation since many alternate sources exist.
The attractive extension of the standard Higgs sector is the two Higgs dou-
blet model(THDM)[2], yielding both charged and neutral Higgs bosons as
physical states. The THDM with the soft breaking term of the discrete sym-
metry demonstrates explicit or spontaneous CP violation [3][4][5]. On the
other hand, the recent measurements of gauge couplings at MZ scale suggest
the minimal supersymmetric extension of the standard model(MSSM) is a
good candidate beyond the standard model in the standpoint of the gauge
unification[6].

It is well known that CP symmetry could be violated explicitly or spon-
taneously in the THDM without supersymmetry[7]. Though the MSSM con-
tains two Higgs doublets HT

1 = (H0
1 , H

−

1 ) and HT
2 = (H+

2 , H0
2), which give

masses to down-quarks and up-quarks, respectively, there is no degree of free-
dom for CP violation at tree level Higgs potential. Spontaneous symmetry
breaking of SU(2)L by taking non-zero real vacuum expectation values(VEV)
gives rise to two CP -even neutral Higgs scalars, a CP -odd neutral pseudo-
scalar boson, and two charged Higgs bosons. One of two CP -even bosons
is the lightest of all Higgs bosons in the MSSM and its tree level mass is
less than that of Z0. However, large radiative corrections proportional to
(g2m4

t/M
2
W ) increase the lightest mass of the neutral Higgs bosons of the

MSSM than MZ [8]. Within a framework of the MSSM it is also possible
to violate CP symmetry spontaneously by radiative effects of heavy quarks
with relatively non-zero complex VEVs for H0

1 and H0
2 [9]. Phenomenologi-

cally this model requires the lightest mass of the neutral Higgs boson to be a
few GeV as a result of Geogi-Pais theorem[10]. So this interesting scenario to
violate CP symmetry spontaneously in the MSSM is unfortunately inconsis-
tent with the experiment which suggests that the lightest pseudoscalar Higgs
mass is larger than 22GeV[11]. To avoid this difficulty, the simple extension
of the MSSM has been considered to obtain explicit[12] or spontaneous[13]
CP violation in the Higgs sector. The extension is that a singlet superfield
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under Gst = SU(3)C ×SU(2)L×U(1)Y is added to the MSSM. This model is
usually called as next-to-minimal supersymmetric standard model(NMSSM)
[14][15].

The NMSSM is introduced to solve so called µ-problem. The superpo-
tential needs the term like µH1H2 to give the non-zero VEVs for both Higgs
doublets in the MSSM, where µ should be O(MW ). However, the MSSM
does not explain why µ should be so small. In the NMSSM we can introduce
λNH1H2-term in the superpotential, where N is a singlet superfield under
Gst and λ is Higgs coupling with O(λ) ≃ 1. If N develops a non-zero VEV
〈N〉 ≡ x, the µ-term is generated as µ = λx ≃ O(MW ). Such a singlet field
appears in grand unified supersymmetric models[16] and in massless sectors
of superstring models[17] as well as in superstring models based on E6[18] and
SU(5) × U(1) gauge groups[19]. The minimal extension of the MSSM with
an additional singlet superfield is an attractive alternative and these models
are analyzed by many authors with no spontaneous CP violation[20][21].

In the NMSSM, candidates to have non-zero VEVs are H0
1 , H

0
2 and N

and it is likely to develop relatively complex VEVs to violate CP symmetry
spontaneously. Furthermore, in order to obtain relatively large mass of neu-

tral Higgs, x should be rather large compared to v =
√

v2
1 + v2

2 = 174GeV,

where v1 and v2 are the VEVs of H0
1 and H0

2 , respectively.
Recently Babu and Barr have shown that there exists the solution to lift

the lightest mass of Higgs boson to the consistent region with the present ex-
perimental lower bound of its mass[13]. In this analysis they pointed out that
the spontaneous CP violation occurred by the radiative effect of stop and
top loop in the NMSSM for the parameter tan β = v2/v1 ≃ 1. However, they
used the simplified squark mass matrix as mt̃L = mt̃R and neglected the sbot-
tom and bottom contributions for one-loop correction. Furthermore there is
one problem that the charged Higgs mass would be around 100GeV, which
might be excluded in the minimal supergravity model[23] with the experi-
ment b → s + γ [22]. The charged Higgs mass should be larger than 160GeV
in this model for small tan β, while it’s limit is 250GeV in the THDM[24].

In this paper we introduce the full radiative corrections from top, stop,
bottom and sbottom contribution in the NMSSM which derive the different
results from Ref.[13]. We also determine the available parameter regions in
the NMSSM with spontaneous CP -violation by imposing precise experimen-
tal constraints for the lower limit of neutral Higgs mass ¿from Z → h1 + h2
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and Z → h1+l+l− decay processes. In particular, it is found that the lightest
Higgs boson, whose main component is pseudoscalar, has a mass with about
36GeV maximally and the sum of the masses of two lightest Higgs particles
is around 93GeV. So these particles are expected to be observed at LEP2 in
the near future if the origin of the CP violation in the Higgs sector is reduced
to the NMSSM with nontrivial phases of VEVs of two Higgs scalars(H0

1 , H0
2 )

and a singlet scalar(N). The mass of charged Higgs is larger than 700GeV,
which is consistent with the present experimental lower limit for the charged
Higgs mass.

Section 2 is devoted to the formulation of the NMSSM. In section 3, we
discuss the framework of the experimental constraints and the spontaneous
CP -violation scenario in the NMSSM. Section 4 gives parameters of the
NMSSM and the masses of neutral and charged Higgs bosons by using the
experimental constraints obtained in section 3. In section 5 we gives summary
and discussions.

2 Higgs Potential in the NMSSM and Higgs

Masses

We study the spontaneous CP violation and the Higgs boson masses with
radiative corrections of top, stop, bottom and sbottom fields in the NMSSM.
Here the radiative effects of top superfield is essential and bottom superfield
are significant especially in the case of large tan β, so that the relevant terms
in the superpotential is

W = htQH2T
c + hbQH1B

c + λNH1H2 +
k

3
N3, (1)

where

H1 =

(

H0
1

H−

1

)

, H2 =

(

H+
2

H0
2

)

. (2)

with
H1H2 = H0

1H
0
2 − H−

1 H+
2 .

The cubic term in N is introduced to avoid a Peccei-Quinn symmetry which
would require the existence of a light pseudo-Goldstone boson when the
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symmetry is broken by non-zero VEVs of Higgs fields. The superpoten-
tial W is scale invariant and Z3 invariant which might interpret the weak
scale baryogenesis[25].

Let us start with discussing the scalar potential for the fields H1, H2 and
N , which is given by V = Vtree + V1−loop as

Vtree = VF + VD + Vsoft , (3)

where

VF = |λ|2[|H1H2|2 + |N |2(|H1|2 + |H2|2)] + |k|2|N |4 + (λk∗H1H2N
∗2 + h.c.),

VD =
g2
1 + g2

2

8
(|H1|2 − |H2|2)2 +

g2
2

2
(|H1|2|H2|2 − |H1H2|2) (4)

Vsoft = m2
H1
|H1|2 + m2

H2
|H2|2 + m2

N |N |2

+(λAλH1H2N + h.c.) + (
kAk

3
N3 + h.c.) .

Hereafter we discuss the possibility of spontaneous CP violation in the
Higgs sector, so that we take the parameters ht, hb, λ, k, Aλ, Ak to be all
real[26]. It is well known that the radiative corrections are important to
analyze Higgs spectra and also these corrections are essential to study spota-
neous CP violation in the MSSM[9] and the NMSSM[13]. So the radiative
corrections to the scalar potential at one-loop level are given by [27]

V1−loop =
1

64π2
Str M4(ln

M2

Q2
), (5)

where Str denotes the supertrace defined as

Str g(m2) = Σ(−1)2J (2J + 1)g(m2). (6)

Here m2 denotes the mass eigenvalues of a particle of spin J and in the case
of squarks M2 means 4 × 4 t̃L, t̃cR, b̃L, b̃c

R mass squared matrices, which can
be written as

M2

t̃,b̃
=













t̃L t̃cR b̃L b̃c
R

m2
11 m2

12 m2
13 m2

14

m∗2
12 m2

22 m2
23 m2

24

m∗2
13 m∗2

23 m2
33 m2

34

m∗2
14 m∗2

24 m∗2
34 m2

44













, (7)
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where

m2
11 = m2

Q + h2
t |H0

2 |2 + h2
b |H−

1 |2 −
g2
1

12
(|H0

1 |2 + |H−

1 |2 − |H0
2 |2 − |H+

2 |2)

+
g2
2

4
(|H0

1 |2 − |H−

1 |2 − |H0
2 |2 + |H+

2 |2),
m2

12 = ht(AtH
0∗
2 + λNH0

1 ),

m2
13 = −h2

t H
0∗
2 H+

2 − h2
bH

−∗

1 H0
1 +

g2
2

2
(H+

2 H0∗
2 + H−∗

1 H0
1 ),

m2
14 = −hb(λNH+

2 − AbH
−∗

1 ),

m2
22 = m2

T + h2
t (|H0

2 |2 + |H+
2 |2) +

g2
1

3
(|H0

1 |2 + |H−

1 |2 − |H0
2 |2 − |H+

2 |2),
m2

23 = ht(λN∗H−∗

1 − AtH
+
2 ),

m2
24 = hthb(H

0
2H

−∗

1 + H+
2 H0∗

1 ),

m2
33 = m2

Q + h2
b |H0

1 |2 + h2
t |H+

2 |2 −
g2
1

12
(|H0

1 |2 + |H−

1 |2 − |H0
2 |2 − |H+

2 |2),

+
g2
2

4

(

−|H0
1 |2 + |H−

1 |2 + |H0
2 |2 − |H+

2 |2
)

,

m2
34 = −hb(AbH

0∗
1 + λNH0

2 ),

m2
44 = m2

B + h2
b(|H0

1 |2 + |H−

1 |2) −
g2
1

6
(|H0

1 |2 + |H−

1 |2 − |H0
2 |2 − |H+

2 |2) .

The mass parameters mQ, mT , mB are the soft supersymmetry breaking squark
masses. Here the parameters At and Ab are the soft supersymmetry breaking
ones corresponding to the first two terms of the superpotential Eq.(1);

Vsoft = Atht(t̃Lt̃cRH0
2 − b̃Lt̃cRH+

2 ) + Abhb(t̃Lb̃c
RH−

1 − b̃Lb̃c
RH0

1 ) + h.c.. (8)

We also take At and Ab to be real in the present spontaneous CP violation
scenario.

In order to realize spontaneous CP violation in the Higgs sector, it is
necessary to have nonzero complex VEVs for H0

1 , H
0
2 and N . We define

VEVs of Higgs fields as

〈H0
1 〉 = v1e

iθ, 〈H0
2 〉 = v2, 〈N〉 = xeiξ/3,

〈H−

1 〉 = 0, 〈H+
2 〉 = 0, (9)

where v1, v2 and x are all real and positive parameters.
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In our scenario, Higgs sector can be parametrized in terms of 11 free
parameters: the soft Higgs masses mH1

, mH2
, mN , tanβ, x, phases of VEVs

θ, ξ, the trilinear couplings in the superpotential λ and k and the soft scalar
masses Aλ and Ak. The radiative corrections V1−loop due to top, stop, bot-
tom and sbottom loops contain the soft top mass At and the soft bottom
mass Ab and the squark mass parameters mQ, mB, and mT . Then we have
16 parameters in total. By minimizing the Higgs potential with respect to
the three VEVs and two phases, we can eliminate 5 parameters which are
mH1

, mH2
, mN , k and ξ by the equations

∂

∂vi
V = 0 (i = 1, 2),

∂

∂x
V = 0, (10)

and
∂

∂θ
V = 0,

∂

∂ξ
V = 0. (11)

Then there remains 11 parameters which determine the masses and couplings
of the five neutral and the charged Higgs bosons.

We can expand the neutral Higgs fields around their minimum points as

H0
1 = v1e

iθ +
1√
2
eiθ(S1 + i sin βA) ,

H0
2 = v2 +

1√
2
(S2 + i cos βA) , (12)

N = xeiξ/3 +
1√
2
eiξ/3(X + iY ) ,

where the five components are described as

S1 =
√

2(cos θReH0
1 − sin θImH0

1 ) ,

S2 =
√

2ReH2 ,

A =
√

2{− sin β(sin θReH0
1 + cos θImH0

1 ) + cos βImH2} , (13)

X =
√

2(cos(ξ/3)ReN + sin(ξ/3)ImN) ,

Y =
√

2(− sin(ξ/3)ReN + cos(ξ/3)ImN).

If the CP symmetry is conserved in the Higgs potential of the NMSSM, θ and
ξ should set to be zero and the five neutral Higgs bosons are separated into
three scalar bosons and two pseudoscalar bosons. The neutral Higgs mass
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matrix in the spontaneous CP violation scenario induced by the one-loop
effects is given as

MH =





















1
2

∂2V
∂S2

1

∂2V
∂S1∂S2

∂2V
∂S1∂A

∂2V
∂S1∂X

∂2V
∂S1∂Y

∂2V
∂S1∂S2

1
2

∂2V
∂S2

2

∂2V
∂S2∂A

∂2V
∂S2∂X

∂2V
∂S2∂Y

∂2V
∂S1∂A

∂2V
∂S2∂A

1
2

∂2V
∂A2

∂2V
∂A∂X

∂2V
∂A∂Y

∂2V
∂S1∂X

∂2V
∂S2∂X

∂2V
∂A∂X

1
2

∂2V
∂X2

∂2V
∂X∂Y

∂2V
∂S1∂Y

∂2V
∂S2∂Y

∂2V
∂A∂Y

∂2V
∂X∂Y

1
2

∂2V
∂Y 2





















. (14)

This matrix is diagonalyzed numerically and we obtain the physical Higgs
fields hi (i = 1 ∼ 5). As for the mass of charged Higgs boson in the
NMSSM with spontaneous CP violation, Babu and Barr presented the sim-
ple formula[13]

m2
H± = M2

W + (3r − 1)λ2v2, (15)

where r ≡ Aλ/Ak. By using positivity condition of sub-determinants for
squared mass matrix of neutral Higgs bosons and the local minimum condi-
tion for spontaneous CP -violation, they obtained the constraint

0 ≤ (3r − 1)λ2 ≤ 1

2
λ1(

√
1 + ∆ − 1), (16)

where λ1 ≡ M2
Z/v2 and ∆ is a parameter given by the radiative effect at

the limit of m2
t̃L

= m2
t̃R

with neglecting the contribution from bottom and
sbottom loop. This constraint requires the upper limit of charged Higgs
boson mass should be less than 110GeV. However, from the structure of
squark mass matrix Eq.(7), off-diagonal elements, which do not exist in the
analysis by Babu and Barr[13], receive the contribution of x. The large x
raises the charged Higgs boson mass as shown in section 4 numerically.

3 Experimental constrains and the sponta-

neous CP -violation in the NMSSM

In the previous section we have obtained a 5× 5 squared Higgs mass matrix
MH in Eq.(14). By diagonalizing this matrix the five eigenstates of Higgs
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masses are derived and the five mass eigen states are defined as

















h1

h2

h3

h4

h5

















= O

















S1

S2

A
X
Y

















, (17)

where the line of l.h.s is the order of masses, i.e. mhi
is lighter than mhj

for
i < j. The orthogonal 5 × 5 matrix is defined as

(O)ij ≡ aij. (18)

The masses of these eigenstates should be positive. This condition means
that the vacuum does not break QED in the charged Higgs sector. The
components M13,23,15,25,45 of mass squared matrix MH are not zero when the
CP symmetry is violated spontaneouly. The magnitudes of these components
are proportional to sin η or sin ξ, where angle η is defined as

η ≡ arg(H1H2N) = θ +
ξ

3
. (19)

In Ref.[13], Babu and Barr gave the analyses of the spontaneous CP
violation in the NMSSM by using the following experimental constraints;

(i) the condition
mh1

+ mh2
> MZ (20)

by the fact that Higgs bosons h1 and h2 have not been observed in the
decay of Z[11] and

(ii) the lower mass limit is

mh1
> (60GeV)(α1 cos β + α2 sin β)2, (21)

where h1 ≃ α1S1 + α2S2 by the experiment that the lightest boson h1

has not been observed in the decay Z → h1 + Z∗ → h1 + l+l− [28].

However, we should carefully analyze these conditions in the case of spon-
taneous CP -violation in the Higgs sector. First we estimate the coupling
gZh1h2

and discuss a possibility to be free from the experimental constraint
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(i) in case of small gZh1h2
coupling even if the sum of two lightest Higgs boson

masses is lighter than mZ . The effective Hamiltonian for Z → h1 + h2 is

HZh1h2
=

gZh1h2

2 cos θW
Zµ(P µ

h1
− P µ

h2
), (22)

and
gZh1h2

≡ g2(cos β(a12a23 − a22a13) − sin β(a11a23 − a21a13)). (23)

In the case of mh1
+mh2

< MZ , the decay Z → h1 +h2 is physically possible
and the decay rate is given as

Γ(Z → h1h2) =
MZ

16π
g2

Zh1h2
λ

3

2 (1, x1, x2), (24)

where the familiar function λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx and
xi ≡ m2

hi
/M2

Z . If B(Z → h1h2) < 10−7 the constraint (i) has no meanings,
since we take the experimental limit for rare decays of Z to be 10−7[11]. If
the case mh1

+ mh2
> MZ is realized, we should estimate the cross section

for the process e−e+ → ”Z” → h1h2. By using the coupling constant gZh1h2

and the Hamiltonian HZh1h2
we obtain

σ(e−e+ → h1h2) =
αg2

Zh1h2

24 sin2 θW cos2 θW

1

s
(|CL|2 + |CR|2)

λ
3

2 (1, y1, y2)

(1 − yZ)2 +
yZΓ2

Z

4s

,

(25)
where yi = m2

hi
/s and yZ = M2

Z/s.
As for the constraint (ii) we can give the similar argument to the case (i).

The coupling constant gZZh1
and gZZh2

are given as

gZZh1
≡ g2

2 cos θW

MZ cos β(a11 + a12 tan β) ,

gZZh2
≡ g2

2 cos θW

MZ cos β(a21 + a22 tan β) , (26)

respectively. Then if mh1
and/or mh2

are lighter than MZ , the decay rate is

Γ(Z → hil
+l−) =

1

96π3

g2
ZZhi

g2
Zl+l−

MZ
(|CL|2 + |CR|2)

∫
1+ρ2

2

ρ

1 + ρ2 − 2x

(ρ2 − 2x)2 + Γ2
Z/(4M2

Z)
(x2 − ρ2)1/2dx, (27)
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where ρ = mhi
/MZ , x = Ehi

/MZ , gZl+l− = 2e/ sin 2θW , CL = −1
2

+ sin2 θW

and CR = sin2 θW . This decay rate should be lower than the experimental
upper bound Γexp, which is equivalent to B(Z → hl+l−) < 1.3 × 10−7 at
mh = 60GeV in the SM[11]:

Γ(Z → hil
+l−) < Γexp. (28)

For h1 and h2, we use this constraint instead of Eq.(21) in our spontaneous
CP violation scenario. It is noted that the constraint of Eq.(21) is weaker
than ours because it does not take into account the phase space integral. It
is found that our constraint almost rules out solutions given by Babu and
Barr[13]. These constraints for the masses mhi

are discussed numerically in
the next section.

Summarizing the above arguments, we use the following experimental
constraints in the next section;

A if the sum of lightest Higgs bosons mh1
and mh2

is lighter than mZ , the
branching ratio B(Z → h1h2) should be less than 10−7 or the sum of
mh1

and mh2
should be larger than mZ and

B for h1 and h2, both of B(Z → h1l
+l−) and B(Z → h2l

+l−) should be
smaller than 1.3 × 10−7. Hereafter we call the former constraint as
constraint B1 and the latter as constraint B2.

4 Numerical results on the spontaneous CP

Violation

In this section we analyze about the parameters tanβ, λ, η, Aλ, At etc. in the
spontaneous CP -violation scenario numerically. Assuming the perturbation
remains valid up to the unification scale the couplings λ and k are restricted
by their fixed points as pointed out by Ellis et al. in Ref.[20] such as

|λ| ≤ 0.87, |k| ≤ 0.63. (29)

We use these theoretical constraints to restrict the parameters in the follow-
ings because the spontaneous CP violation gives no change for the renormal-
ization group equation of the real parameters λ and k[15].
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As mentioned in section 2, the minimization conditions Eqs.(10,11) of
Higgs potential determine the soft Higgs masses mH1

, mH2
, mN , the phase ξ

and N3 coupling constant k. The parameters ξ and k are given by

D sin η cos ξ − (D cos η + F ) sin ξ = 0 (30)

and

k =
1

λ sin(η − ξ)

(

1

2v1v2x2

∂V1−loop

∂η
− E sin η

)

, (31)

respectively, where the definition of D, E and F are followed by Ref.[13] as

D = λk, E =
λAλ

x
, F =

kAkx

3v1v2

. (32)

We use quark masses and the coupling constants as

mt = 174GeV, mb = 4.2GeV, g1 = 0.357,

g2 = 0.625, ht = 174.0/v2, hb = 4.2/v1. (33)

The parameters At and mQ are given in order to satisfy the necessary condi-
tion not to break color symmetry in the squark sector[15][20]. The remaining
parameters Ab, mT , mB are fixed by the arguments of fixed point analyses
with the assumption of GUT scale universality[15] as

Ab = 1.1At, mT = 0.95mQ, mB = 0.98mQ, (34)

where the renormalization point is taken as Q = 3.0TeV. Under the above
mentioned experimental constraints A and B we search the relevant param-
eter region. The allowed parameter ranges are rather narrow. In order to
compare our result with the one given by Babu-Barr [13], we show the fol-
lowing typical set of parameters, which satisfy constraints A and B, are

η = 1.275, tan β = 1.0, λ = 0.16, Ak = 2.9v, Aλ/Ak = 0.8

x = 3.8v, AT = 1TeV, mQ = 3TeV , (35)

where the parameter k takes the value −0.612. In this case the Higgs masses
are obtained as

mh1
= 35.8GeV, mh2

= 57.0GeV, mh3
= 177GeV, (36)

mh4
= 671GeV, mh5

= 785GeV.
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The constraint B is much severer than the constraint (ii) which Babu-Barr
used [13]. The allowed regions obtained by Babu-Barr are almost excluded
if we use constraint B. For example, if η is shifted with only ±0.01, the
solution does not satisfy the constraint B. Then, one should shift λ with
±0.05 in order to get allowed solution. Thus, the allowed parameter set is
very restrictive in contrast with the result given by Babu-Barr[13]. We will
show the results of other parameter dependence later.

For the case of parameters in Eq.(35), the components of each Higgs
boson are given as

















h1

h2

h3

h4

h5

















=

















0.255 0.058 0.965 0.012 0.028
0.950 0.167 −0.262 0.002 0.037
−0.177 0.984 −0.013 −0.003 0.031
0.005 0.005 0.025 0.999 −0.031
−0.037 −0.038 −0.016 0.032 0.998

































S1

S2

A
X
Y

















, (37)

where (1,1), (1,2), (2,1) and (2,2) components are same signs. Since the two
terms in the r.h.s. of Eq.(26) are additive, the coupling constants gZZh1

and
gZZh2

are not remarkably reduced. This situation is different from that in the
MSSM, where couplings are somewhat reduced. Thus, the constraint B for
the NMSSM is severer than the one for the MSSM. It is remarked that the
lightest Higgs state mainly consists of pseudoscalar component A as shown
in Eq.(37).

In figure 1 we give the cross section for e−e+ → h1h2 from the threshold
to

√
s/2=200GeV and at the energy of LEP1.5 the production cross section

is about 0.8pb in the case of Eq.(37).

Fig.1

For the charged Higgs boson, its squared mass is given by taking the
coefficient of the twice derivative of V = VF +VD +Vsoft +V1−loop by H− and
H+ using Eqs.(3,6,7), where the physical charged Higgs is defined as

h+ ≡ cos βH+
2 − sin βH−

1 . (38)
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The numerical results for the parameters in Eq.(35) are

mh± = 721GeV, (39)

which depends crucially on the squark mass mQ. We show the mQ depen-
dence of the charged Higgs mass in figure 2, in which other parameters are
fixed as in Eq.(35). The upper bound of mQ is given by |k| < 0.63 in Eq.(29)
and lower bound by constraint B. Thus, mQ should be larger than 3TeV.
The predicted charged Higgs mass is too large to detect this boson at LEP2
and this mass becomes free from the constraints of b → sγ experiment[22].

Fig.2

It is noticed that the sum of two masses is almost constant around 93GeV
even if the other parameter set which fulfills the constraints A and B is taken.
Therefore, these two Higgs bosons will be observed at LEP2 experiment in the
near future. In the present study we obtain rather lighter Higgs masses com-
pared to the case without spontaneous CP violation in the NMSSM[20][21].
This circumstances are understood by the Georgi-Pais theorem for the ra-
diative symmetry breaking phenomena[10]. It is also noted that the two
lower Higgs masses are almost independent of the parameter x, where other
parameters are fixed as in Eq.(35).

It may be useful to comment on the value of tan β. There is no solution
for the spontaneous CP violation in the range of tan β > 1 through the
numerical analyses. In case of the MSSM, the arguments on electroweak
symmetry breaking and the top Yukawa coupling lead to the allowed ranges
for tan β as 1.0 ≤ tanβ ≤ 1.4[29] although the large top quark mass does not
prefer tanβ ≃ 1 in the RGE analyses of the Yukawa couplings. If tan β = 1
is completely ruled out in SUSY, our scenario could not be realized for the
CP violation. Thus, the value of tanβ is the critical quantity for our scheme.

So we investigate the available x region being consistent with the current
experimental constraints A and B, where the parameter Aλ and At are freely
adjusted with the fixed value of tanβ = 1. It is found that the solutions
exist for x ≥ 2v and we show the typical solution for x = 20v as an example
of large x case for the comparison of the relatively small x case Eq.(35).

13



η = 1.3, tan β = 1.0, λ = 0.16, Ak = 16v, Aλ = 12.5v

x = 20v, AT = 1TeV, mQ = 3TeV . (40)

In this case the Higgs masses are obtained as

mh1
= 35.9GeV, mh2

= 57.2GeV, mh3
= 177GeV, (41)

mh4
= 3584GeV, mh5

= 4261GeV.

The charged Higgs masses is 721GeV, which is not changed as far as mQ =
3TeV is fixed.

The allowed region of At−x plane is shown in figure 4, in which the inside
region of the triangle is allowed. It is emphasized that At = 0 is not allowed.
In other words, the full radiative correction at one loop level, which Babu-
Barr did not take into consideration, is significant to study spontaneous CP
violation in the NMSSM.

Fig.3

In Ref.[13], they analyzed the spontaneous CP violation and obtained
the region of λ versus cos η. The available region of λ and cos η is not so
similar to our results as mentioned above. This shows that the constraint B
is also important as well as the full radiative correction at one loop level.

Without spontaneous CP violation the Higgs masses and other param-
eters in the NMSSM are widely analyzed by many authors[21]. It is well
known that the NMSSM with radiative correction yields the heavier mass
for the lightest CP even scalar to be around 130GeV independently on the
top quark mass as shown by Elliot et al. in Ref.[21].

5 Summary and Discussion

We have studied the spontaneous CP violation in the NMSSM by including
the full one-loop radiative effects into the Higgs potential. The parameter
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region being compatible with the current lower bounds for Higgs masses has
been¸analyzed.

The experimental upper bound B(Z → hl+l−) gives the very severe con-
straints on the solution of spontaneous CP violation. The available region
of parameters are very narrow. We have obtained the large spontaneous CP
violation as η ≃ 1.3. The solution only exists around tan β ≃ 1.0 and in the
vicinity of 0.16 for the coupling λ.

The upper limit of the lightest neutral Higgs h1 is 36GeV for all available
parameter regions. Also the total mass of the lightest h1 and the second
lightest Higgs boson h2 is almost constant and around 93GeV. The charged
Higgs mass is around 700GeV, which depends on mQ. The predicted charged
Higgs mass is too large to detect this boson at LEP2 and this mass is free
from the constraints of b → sγ experiment.

However, if the experimental upper bound B(Z → hl+l−) will be im-
proved in factor 1.5, one has no more solution of spontaneous CP violation
in the NMSSM.

Since CP violation in the Higgs sector does not occur in the MSSM
without a gauge singlet Higgs field N , CP violation is an important signal
of the existence of the gauge singlet Higgs field. The lightest Higgs mass in
the NMSSM without spontaneous CP violation could be larger than 130GeV
and it is expected that the LEP2 experiment will give the solution on the
possibility of spontaneous CP violation in the Higgs sector. In the present
case of the Higgs sector, the analyses of the electron and the neutron EDM
and the production and the decay of Higgs state mixed with scalar and
pseudoscalar components will be given in the forthcoming paper.
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Figure Captions

Fig.1 The cross section of e−e+ → h1 + h2 versus
√

s/2 in the case of
the solution given in Eq.(35).
Fig.2 The mQ dependence of the charged Higgs mass.
Fig.3 The allowed region on At − x plane constrained by a constraint
B1 (dashed line), a constraint B2(dotted line), a constraint A (dash-dotted
line) and a constraint |k| < 0.63(solid line), where constraits are explained
in section 3 of the text.
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