
DPNU-93-16

AUE-03-93

July 1993

The String Unification of Gauge Couplings
and Gauge Kinetic Mixings

Chuichiro HATTORI

Department of Physics, Aichi Institute of Technology

Toyota, Aichi, JAPAN 470-03

Masahisa MATSUDA

Department of Physics and Astronomy

Aichi University of Education

Kariya, Aichi, JAPAN 448

Takeo MATSUOKA and Daizo MOCHINAGA

Department of Physics, Nagoya University

Nagoya, JAPAN 464-01

Abstract

In the superstring models we have not only the complete 27 multiplets
of E6 but also extra incomplete (27 + 27) chiral supermultiplets being alive
at low energies. Associated with these additional multiplets, when the gauge
symmetry contains more than one U(1) gauge group, there may exist gauge
kinetic mixings among these U(1) gauge groups. In such cases the effect of
gauge kinetic mixings should be incorporated into the study of unification of
gauge couplings. We study these interesting effects systematically in these
models. The string threshold effect is also taken into account. It is found
that in the four-generation models we do not have a advisable solution of
string unification of gauge couplings consistent with experimental values at the
electroweak scale. We also discuss the possible scenarios to solve this problem.



1 Introduction

Recent precise data at LEP have called back renewed attention to the unification

of gauge coupling constants. It was found that the unification of gauge couplings g3,

g2 and g1 of SU(3) × SU(2) × U(1) occurs at about 1016GeV in the minimal super-

symmetric standard model (MSSM) [1]. On the other hand, at present, the most

promising unified theory including gravity is the superstring theory. In superstring

derived models, however, the unification scheme of gauge couplings is apparantly dif-

ferent from MSSM. First, in superstring models gauge couplings are expected to be

unified at the string scale of about 1018GeV, rather than about 1016GeV. In addi-

tion, string threshold corrections play an important role to interpret the unification

at about 1018GeV. Second, in superstring models the gauge symmetry at the uni-

fication scale is rank-6 or rank-5 and is larger than the standard gauge symmetry

Gst = SU(3)C × SU(2)L × U(1)Y with rank-4. Consequently there may exist inter-

mediate energy scales of symmetry breaking between the unification scale and the

electroweak scale. Third, in the superstring models matter contents are not minimal.

Additional matter fields which do not exist in the minimal model like the MSSM are

involved in 27-representation of E6. Further, we have not only Nf (family number)

sets of complete 27 multiplet but also extra incomplete (27 + 27) multiplets as chi-

ral superfields available at low energies. When we investigate gauge unification in

superstring models, we have to take these non-standard features into account.

In Ref.[2] the string unification of non-abelian gauge couplings has been studied

for Calabi-Yau models with one Kähler class modulus. It was found that the threshold

effects lead to an important unification condition on gauge couplings. This condition

is that the energy scale at which gauge couplings have a common value should not be

smaller than ∼ 1018GeV. By analyzing the running of non-abelian gauge couplings in

four-generation superstring models, it was shown that there is a consistent model in

which non-abelian gauge couplings join at about 1019GeV. In this model the gauge

symmetry at the string scale is SU(4)C × SU(2)L × U(1) × U(1). In four-generation

models the intermediate scale MI of symmetry breaking is naturally bounded to be
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about 1016GeV [3]. At this scale MI the gauge symmetry is spontaneously broken

into SU(3)C ×SU(2)L×U(1)×U(1). As seen in this model, the superstring derived

models mostly contain more than one U(1) gauge group at various stages of symmetry

breaking. In such cases there may exist gauge kinetic mixing terms in the effective

Lagrangian [4]. In general, we have massless and/or massive modes which are charged

states in two or more U(1) gauge groups. If we have only complete 27 multiplets, the

gauge kinetic mixing term does not appear as a consequence of the summation over

the complete 27 fields. However, extra incomplete (27+27) multiplets possibly con-

tribute to the gauge kinetic mixing at one-loop level. In the presence of such mixing it

is necessary for us to diagonalize the gauge kinetic terms. In this paper we focus our

attention on the study of unification of gauge couplings with gauge kinetic mixings.

In the study we also take the string threshold corrections into account. Concretely,

we take up the four-generation Calabi-Yau models and solve kinetic mixing problem

of abelian gauge couplings.

This paper is organized as follows. In section 2 we briefly discuss the string

threshold corrections and a unification condition for the Calabi-Yau models with

one Kähler class modulus. It is pointed out that in the evolution of abelian gauge

couplings we should pay attention to gauge kinetic mixing, which generally appears

in the effective theories with more than one U(1) gauge group. In section 2 we

also study the diagonalization of the coefficients of the β-function in the effective

theories with gauge kinetic mixings. To make the present study concrete, we take

up the four-generation models in section 3. In one of the four-generation models,

in which the unification condition is fulfilled for non-abelian gauge couplings, gauge

kinetic mixing takes place at the string scale by the effect of additional incomplete

(27 + 27) multiplets and also at the intermediate energy scale as the effects that

partial multiplets of complete 27 multiplet become massive at the intermediate scale

and that additional incomplete (27 + 27) multiplets are still massless. In section 4

we carry out the renormalization group analysis for the above four-generation model.

The emphasis is placed on solving the gauge kinetic mixing problem. We explore
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advisable solutions which are consistent with experimental values of gauge couplings

at the electroweak scale. Section 5 is devoted to summary and discussion.

2 Threshold Corrections and Kinetic Mixings

In the superstring theory we have the target space duality symmetry, which

interchanges Kaluza-Klein modes and winding modes of the compactified string. In

the case of only one modulus field T the duality symmetry requires the invariance

under the PSL(2,Z) transformation [5]

T −→ aT − ib

icT + d
a, b, c, d ∈ Z ad − bc = 1. (1)

In the Calabi-Yau models with one Kähler class modulus the duality symmetry gets

the string threshold correction into a simple form. As discussed in Ref.[2], non-abelian

gauge coupling is written down as

α−1
a (µ) = α−1

st +
ba
4π

{

ln

(

M2
C

µ2

)

− f(T, T )

}

. (2)

at one-loop level, where αst ≡ g2
st/(4π) is a universal constant independent of the

various gauge groups Ga. In this equation the string threshold correction is described

in terms of the Kähler class moduli-dependent function f(T, T ). T is related to

the size R of the compactified manifold as 〈Re T 〉 = 2R2 in unit of (α′)1/2, where

(2πα′)−1 means the string tension. In Eq.(2), ba stands for a coefficient of the one-

loop β-function given by

ba = −3C2(Ga) +
∑

f

T (Rf ). (3)

In the DR scheme the string scale MC is determined as

MC =

(

2 exp(1 − γE)

3
√

3πα′

)1/2

= 0.73 × gst × 1018GeV, (4)

where γE is the Euler constant. According to the duality symmetry f(T, T ) is of the

form [6]

f(T, T ) = ln
{

(T + T ) |η(iT )|4
}

. (5)
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Here η(iT ) is the Dedekind’s η-function given by

η(iT ) = exp
(−πT

12

) ∞
∏

n=1

(1 − exp(−2πnT )) . (6)

The moduli space of the T -field can be taken as the so-called fundamental domain

−1
2
≤ ImT < 1

2
, |T | ≥ 1. The term ln(T + T ) in f(T, T ) represents the contribution

only from one-loop with massless modes. While the term ln |η(iT )|4 comes from one-

loop effects with massive modes. Although each term has a duality anomaly, the

anomaly cancels out with each other. From properties of η-function we obtain

f(T, T ) ≈ −π

3
Re T + ln (2ReT ) − 4 exp(−2πRe T ) cos(2πIm T ) ≤ −0.34 (7)

in the fundamental domain of the moduli space.

Now we introduce the unphysical parameter MX as the energy scale at which

non-abelian gauge couplings have a common value. Following this definition, we have

ln

(

M2
C

M2
X

)

= f(T, T ) (8)

at one-loop level. The constraint (7) on f(T, T ) implies an inequality

MX = MC exp
(

−1

2
f(T, T )

)

> 0.87 × gst × 1018GeV. (9)

This is an important unification condition on Calabi-Yau models with the anti-

generation number h11 = 1.

Next we proceed to discuss abelian gauge couplings. If we have only one U(1)

gauge group, the renormalization group analysis is completely parallel to those for

non-abelian gauge couplings. In the superstring derived models, however, the gauge

group at the string scale is rank-6 or rank-5 and mostly contains more than one U(1)

gauge group.

For illustration let us consider the case in which the gauge group at the string scale

MC contains two U(1) groups, i.e. U(1)A × U(1)B. At tree level gauge couplings gA

and gB take a universal value gst. Here we denote U(1)A,B-charges of massless fields

f as q
(A,B)
f , which are normalized as

∑

f∈27

(

q
(A)
f

)2
=
∑

f∈27

(

q
(B)
f

)2
= 3. (10)
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Under this normalization, tree-level abelian gauge couplings have also a common value

together with tree-level non-abelian gauge couplings. We introduce the notation

bij =
∑

f∈Ψ0

q
(i)
f q

(j)
f (i, j = A, B). (11)

The summation should be taken over all massless fields Ψ0. Generally, there exists

the gauge kinetic mixing term F (A)
µν F (B)µν at one-loop level as shown in Fig.1. The

magnitude of this mixing term is proportional to bAB. If we confine the summation

to one set of massless particles constructing complete 27 multiplet of E6, we have

bAB =
∑

f∈27

q
(A)
f q

(B)
f = 0. (12)

Fig.1

Then, when we have only complete 27 multiplets, the gauge kinetic mixing of two

abelian groups does not occur at one-loop level. However, in the superstring models

there appear not only Nf(family number) sets of complete 27 multiplet but also extra

incomplete (27 + 27) chiral supermultiplets. These additional (27 + 27) multiplets

possibly contain charged states both in U(1)A and U(1)B and generally bAB becomes

nonvanishing, i.e.

bAB =
∑

f∈Ψ0

q
(A)
f q

(B)
f 6= 0. (13)

In order to diagonalize bij , we carry out the orthogonal transformation U(1)A ×
U(1)B → U(1)D × U(1)E , i.e.

(

Dµ

Eµ

)

=

(

cos ω sin ω
− sin ω cos ω

)(

Aµ

Bµ

)

,

(

QD

QE

)

=

(

cos ω sin ω
− sin ω cos ω

)(

QA

QB

)

, (14)

where Aµ, Bµ, Dµ and Eµ represent gauge fields and Qi (i = A, B, D, E) are U(1)i

generators. When the rotation angle ω is taken as

tan 2ω =
2bAB

bAA − bBB
(15)
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and −π/4 ≤ ω ≤ π/4, bij is diagonalized as

bDE = 0,

bDD =
1

2
(bAA + bBB) +

bAA − bBB
2 cos 2ω

, (16)

bEE =
1

2
(bAA + bBB) − bAA − bBB

2 cos 2ω
.

In this basis we can easily solve the one-loop renormalization group equations. Com-

bining the string threshold corrections, we have

α−1
i (µ) = α−1

st +
bii
4π

ln

(

M2
X

µ2

)

(i = D, E) (17)

at one-loop level.

In many of the superstring derived models, there possibly exists an intermediate

scale of symmetry breaking between the unification scale MC and the electroweak

scale MZ . In the presence of the symmetry breaking we are potentially confronted

with the gauge kinetic mixing problem. Here let us consider the case in which the

symmetry breaking takes place at the scale MI and the gauge symmetry at energies

below MI contains two U(1) gauge groups U(1)G × U(1)H . Through the symmetry

breaking some fields gain masses of order MI and the others remain massless. These

massive fields decouple from the effective theory below MI . Therefore, there is a

possibility that below MI we obtain

b′GH =
∑

f∈Ψ′

0

q
(G)
f q

(H)
f 6= 0, (18)

where the summation is taken over all massless fields Ψ′
0 which are available below

the scale MI . Carrying out the orthogonal transformation for gauge fields again
(

Kµ

Lµ

)

=

(

cos φ sin φ
− sin φ cos φ

)(

Gµ

Hµ

)

,

(

gK(MI)QK

gL(MI)QL

)

=

(

cos φ sin φ
− sin φ cos φ

)(

gG(MI)QG

gH(MI)QH

)

(19)

with

tan 2φ =
2gG(MI) gH(MI) b′GH

g2
G(MI) b′GG − g2

H(MI) b′HH
, (20)
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we obtain

b′KL = 0,

g2
K(MI)b

′
KK =

1

2

{

g2
G(MI) b′GG + g2

H(MI) b′HH
}

+
g2
G(MI) b′GG − g2

H(MI) b′HH
2 cos 2φ

, (21)

g2
L(MI)b

′
LL =

1

2

{

g2
G(MI) b′GG + g2

H(MI) b′HH
}

− g2
G(MI) b′GG − g2

H(MI) b′HH
2 cos 2φ

.

The gauge couplings gG(MI) and gH(MI) at the scale MI do not necessarily take the

same values. The new gauge couplings gK(MI) and gL(MI) are given as

g2
K(MI) = g2

G(MI) cos2 φ + g2
H(MI) sin2 φ,

g2
L(MI) = g2

G(MI) sin2 φ + g2
H(MI) cos2 φ, (22)

respectively. The one-loop renormalization group equations read

d gi
d ln µ

=
b′ii
4π

g3
i (i = K, L) (23)

in the region below MI .

3 Four-Generation Models

Let us consider four-generation superstring models which are obtained through

the Calabi-Yau compactification with h11 = 1 and h21 = 5 [3]. The manifold K

considered here is non-simply connected and constructed by moding K0 by a discrete

symmetry group Gd of K0 as K = K0/Gd. K0 is a simply connected Calabi-Yau

manifold defined as a hypersurface in CP 4 with the specific defining polynomial
∑

i z
5
i = 0, where zi(i = 1 ∼ 5) are homogeneous coordinates in CP 4. This manifold

K0 has the high discrete symmetry S5 × Z5
5/Z5. The discrete group Gd is taken as

Z5 × Z5 which is a subgroup of the high discrete symmetry.

As a consequence of the high discrete symmetry of K0 we are led to introduce a

large intermediate energy scale MI , which is defined by VEVs of SU(3)c×SU(2)L×
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U(1)Y -neutral fields S and S belonging to 27 and 27 in E6, respectively. More

explicitly, the large intermediate scale MI is given by [3]

MI = 〈S〉 = 〈S〉 ∼ MNR

(

MS

MNR

)1/6

. (24)

Here MS stands for the soft supersymmetry breaking scale and is taken as MS ∼
103GeV. Since the D-flatness is guaranteed by the equality 〈S〉 = 〈S〉, the super-

symmetry is unbroken at the intermediate scale MI . The mass scale MNR, which

appears as its inverse power in the non-renormalizable terms of the superpotential,

becomes [7]

MNR ∼ MC |η(iT )|−2 > MC . (25)

Thus we get the large intermediate scale MI ∼ 1016GeV. Since leptoquark particles

can gain masses of order of MI , this large value of MI is consistent with the proton

stability. The four-generation superstring models are candidates of viable models

which reproduce the standard model at low energies.

Due to the flux breaking mechanism the discrete group Gd is embedded into E6

and the gauge group G at the string scale prevailingly becomes smaller than E6. We

denote the embedding of Gd into E6 as Gd. If and only if Gd is taken as Z5, we obtain

the following two types of realistic gauge hierarchies [8]

(i) G = SU(3)C × SU(2)L × SU(2)R × U(1) × U(1),

(ii) G = SU(4)C × SU(2)L × U(1) × U(1).

Matter contents in the models are different from one to another. This difference is

of critical importance in the evolution of gauge coupling constants. In Table 1 are

shown chiral superfields, their representations in G and their multiplicities. As seen in

Table 1, it is noted that SU(4)C in the model (ii) is in contrast to that in Pati-Salam

model.

Table 1
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At the intermediate scale MI the gauge symmetry G is spontaneously broken into

the smaller gauge group G′ via the non-vanishing VEVs of S and S. In each model

the remaining gauge group G′ becomes

(i) G′ = SU(3)C × SU(2)L × SU(2)R × U(1)B−L,

(ii) G′ = SU(3)C × SU(2)L × U(1)Y × U(1)χ,

where U(1)χ stands for SO(10)/SU(5). When the fields S and S develop non-zero

VEVs, the leptoquark fields g, gc and Higgs fields Hu, Hd(Hu, Hd) can get masses of

order MI through the Yukawa interactions ggcS and HuHdS. In the present analysis

it is assumed that all of g, gc, Hu and Hd but only one family of Hu and Hd gain

masses of O(MI). On the other hand, all of the matter fields which can not couple

with S through the Yukawa interactions remain massless at the scale MI .

Here the gauge symmetry G′ is assumed to be spontaneously broken to the stan-

dard gauge group via a non-zero VEV of sneutrino at the energy scale MR. Since the

magnitude of VEVs of F -terms and D-terms are limited by the soft susy breaking

scale M2
S, MR should be the same order with MS. Thus hereafter we take MR = MS.

Through analysis of non-abelian gauge couplings in Ref. [2], it was found that the

model (i) is unfavorable for the string unification, while the model (ii) is consistent

with the unification condition (9). Main difference between two models comes from

extra dc and dc contribution in the region ranging from MI to MS. Therefore, in

the next section we focus our attention to the string unification in the model (ii).

The running of gauge couplings including abelian gauge couplings is systematically

studied. In Table 2 we tabulate multiplicities of matter fields in the respective energy

ranges derived from the above scenarios.

Table 2
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4 Renormalization Group Analysis

Now we investigate the evolution of gauge couplings in the model (ii) and whether

the gauge unification occurs or not. The gauge group G at the scale MC is

G = SU(4)C × SU(2)L × U(1)γ × U(1)δ. (26)

U(1)γ-charge is given by a linear combination of U(1)Y - and U(1)η-charges as

Qγ =
3√
10

QY +
1√
10

Qη, (27)

Qη =

√

5

8
Qψ −

√

3

8
Qχ, (28)

where U(1)ψ stands for E6/SO(10). U(1)δ-axis coincides with one of the root vector

of E6 and is expressed as

Qδ = −
√

3

8
Qψ −

√

5

8
Qχ. (29)

U(1)δ-axis is perpendicular to U(1)Y - and U(1)η-axes. The charges for matter fields

are shown in Table 3. From this Table we find

bγγ = 3Nf +
1

3
=

37

3
,

bδδ = 3Nf + 2 = 14, (30)

bγδ = − 2√
6
.

Table 3

Since bγδ 6= 0, we consider the transformation of the U(1)-basis in such a way that

off-diagonal elements of bij become vanishing. From Eq.(15) the rotation angle ω is

determined by

tan 2ω =
2
√

6

5
. (31)
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Thus we fix the transformation from U(1)γ × U(1)δ to U(1)θ × U(1)ξ

Qθ =

√

6

7
Qγ +

√

1

7
Qδ,

Qξ = −
√

1

7
Qγ +

√

6

7
Qδ. (32)

New U(1)-charges are also tabulated in Table 3.

In the energy range MC ≥ µ ≥ MI , the one-loop evolution of gauge couplings is

expressed as

α−1
i (µ) = α−1

st +
b
[1]
ii

2π
ln

(

MX
2

µ2

)

, (33)

where i = 4, 2, θ, ξ stand for SU(4)C , SU(2)L, U(1)θ and U(1)ξ components, respec-

tively. The one-loop coefficients of β-function in this region become

b
[1]
ij = diag ( 1 6 12 43/3 ) (i, j = 4, 2, θ, ξ). (34)

Up to two-loop level the renormalization group equations for gauge couplings has the

form [9]

dgi
d ln µ

=
∑

j







b
[1]
ij

4π
g2
j gi +

b
[2]
ij

(4π)2
g2
j g3

i







+
∑

j,k 6=i

b
[2]
ijk

2(4π)2
g2
k g2

j gi. (35)

In order to distinguish between the one-loop contribution and the two-loop one, here

we attach superscript [1] and [2] to b’s. The two-loop coefficients of β-function are

given by

b
[2]
ij =











231/2 12 4 31/6
60 60 4 4
60 12 12 4

155/2 12 4 265/18











(i, j = 4, 2, θ, ξ). (36)

In the following analysis the last term in Eq.(35) can be neglected numerically because

of its smallness.

In the present model the symmetry breaking occurs at the scale MI ∼ 1016GeV

due to nonzero VEVs of S and S. The gauge symmetry is spontaneously broken as

SU(4)C × U(1)ξ → SU(3)C × U(1)ρ, (37)
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whereas SU(2)L×U(1)θ remains unbroken. This U(1)ρ gauge field V (ρ)
µ , its generator

Qρ and its gauge coupling gρ(MI) are given by

V ρ
µ =

1
√

9g4(MI)2 + 7gξ(MI)2

{√
7gξ(MI) Gµ + 3g4(MI) V (ξ)

µ

}

, (38)

Qρ =
1

4
(
√

7 T15 + 3Qξ), (39)

gρ(MI) =
4g4(MI) gξ(MI)

√

9g4(MI)2 + 7gξ(MI)2
, (40)

where Gµ stands for the gauge field associated with T15 and g4(MI) and gξ(MI) are the

gauge couplings at the scale MI for SU(4)C and U(1)ξ, respectively. A generator T15 of

SU(4)C is of the form T15 = diag(1, 1, 1,−3)/2
√

6 for the fundamental representation.

At the intermediate scale MI we have two U(1) gauge groups i.e. U(1)θ × U(1)ρ. In

Table 4 we show these U(1)-charges of matter fields. Through the symmetry breaking

all of g, gc, Hu and Hd but only one family of Hu and Hd become massive at MI .

These massive fields do not contribute to the evolution of gauge couplings at energies

below MI . Since the summation runs over all massless fields Ψ′
0, we obtain

b′θρ
[1]

=
∑

f∈Ψ′

0

q
(θ)
f q

(ρ)
f = −

√
6

7
6= 0,

b′θθ
[1]

=
∑

f∈Ψ′

0

(

q
(θ)
f

)2
=

57

7
, (41)

b′ρρ
[1]

=
∑

f∈Ψ′

0

(

q
(ρ)
f

)2
=

297

28
.

Table 4

As explained in section 2, we carry out the orthogonal transformation for U(1) gauge

fields. If we denote new U(1)-basis as U(1)σ × U(1)τ , we get
(

V (σ)
µ

V (τ)
µ

)

=

(

cos φ sin φ
− sin φ cos φ

)(

V (θ)
µ

V (ρ)
µ

)

,

(

gσ(MI) Qσ

gτ (MI) Qτ

)

=

(

cos φ sin φ
− sin φ cos φ

)(

gθ(MI) Qθ

gρ(MI) Qρ

)

(42)
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with the rotation angle

tan 2φ =
2gθ(MI) gρ(MI) b′θρ

[1]

gθ(MI)2 b′θθ
[1] − gρ(MI)2 b′ρρ

[1]
. (43)

The gauge couplings of new U(1)-basis are given by

gσ(MI)
2 = gθ(MI)

2 cos2 φ + gρ(MI)
2 sin2 φ,

gτ (MI)
2 = gθ(MI)

2 sin2 φ + gρ(MI)
2 cos2 φ. (44)

In the range MI − MS the one-loop coefficients of the β-function become

b′ij
[1]

= diag ( 0 3 b′σσ
[1] b′ττ

[1]) ) (i, j = 3, 2, σ, τ), (45)

where

gσ(MI)
2 b′σσ

[1]
=

1

2

{

gθ(MI)
2 b′θθ

[1]
+ gρ(MI)

2 b′ρρ
[1]
}

+
gθ(MI)

2 b′θθ
[1] − gρ(MI)

2 b′ρρ
[1]

2 cos 2φ
,

gτ (MI)
2 b′ττ

[1]
=

1

2

{

gθ(MI)
2 b′θθ

[1]
+ gρ(MI)

2 b′ρρ
[1]
}

− gθ(MI)
2 b′θθ

[1] − gρ(MI)
2 b′ρρ

[1]

2 cos 2φ
. (46)

If the gauge kinetic mixing between U(1)θ and U(1)ρ is negligible at one-loop level,

the two-loop coefficients of β function in this region could be expressed as

b′ij
[2]

=











48 12 12/7 67/14
32 39 25/7 10/7

96/7 75/7 489/49 162/49
268/7 30/7 162/49 4619/392











(i, j = 3, 2, θ, ρ). (47)

Since U(1)σ- and U(1)τ -charges are functions of gθ(MI), gρ(MI) and φ, the expressions

in terms of U(1)σ × U(1)τ -basis are complicated and the correct b′ij
[2] is obtained

numerically as seen later. Thus we can solve the renormalization group equations

over the energy range MI ≥ µ ≥ MS.

The next stage of the symmetry breaking is brought about at the scale MR =

MS ∼ 103GeV through a nonzero VEV of sneutrino ν̃c. The gauge symmetry G′ =
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SU(3)C × SU(2)L × U(1)σ × U(1)τ is spontaneously broken into Gst = SU(3)C ×
SU(2)L × U(1)Y . Then we have the relation

QY =

√

27

35
Qθ −

√

8

35
Qρ, (48)

gY (MS) QY = gσ(MS) Qσ cos ϕ + gτ (MS) Qτ sin ϕ. (49)

The angle ϕ is defined by

tanϕ = −gσ(MS) u

gτ (MS) v
, (50)

where

u =
1

gσ(MI)





√

8

35
gθ(MI) cos φ +

√

27

35
gρ(MI) sin φ



 ,

v =
1

gτ (MI)



−
√

8

35
gθ(MI) sin φ +

√

27

35
gρ(MI) cos φ



 . (51)

The U(1)Y -gauge coupling is of the form

gY (MS) =
gσ(MS) gτ (MS)

√

{gσ(MS) u}2 + {gτ (MS) v}2

gθ(MI) gρ(MI)

gσ(MI) gτ (MI)
. (52)

According to the symmetry breaking, νc and the 4-th generation of l and ec decouple

from the effective theory at energies below MS. Detailed mass spectra of neutralinos

and charginos around this scale have been studied in Ref.[10]. Finally, at energies

below MS the effective theory becomes non-supersymmetric. As a consequence, in

the region from MS to MZ the evolution of gauge couplings is descibed in terms of

the coefficients of the β-function

b′′ij
[1]

= diag (−17/3 −2 74/15 ) , (53)

b′′ij
[2]

=







−2/3 6 22/15
16 81/4 5/4

176/15 15/4 277/60





 (i, j = 3, 2, Y ). (54)

In Table 5 we illustrate gauge hierarchies of the present model.

Table 5
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We are now in a position to carry out numerical analysis of the renormalization

group evolution of gauge couplings. In the four-generation Calabi-Yau models the

intermediate energy scale MI is around 1016GeV. Therefore, here we take MI as

MI = 1015∼17GeV. (55)

And also the soft supersymmetry breaking scale MS is taken as

MS = 102∼4GeV. (56)

In the present analysis, after studying the solution in which unification condition is

fulfilled for non-abelian gauge couplings, we manipulate the evolution of the abelian

gauge couplings. As a consequence of the contribution from extra dc and d
c

fields

in the energy range MI − MS, the unification of nonabelian gauge couplings occurs

at α−1
st = 6 ∼ 10 and MX = O(1019)GeV. Taking this situation into account, let us

consider the following two parametrizations for a universal value of gauge coupling

and energy scales.

Case (a):

α−1
st = 6.09, MX = 1.1 × 1019GeV,

MI = 1.0 × 1016GeV, MS = 1.0 × 103GeV. (57)

Case (b):

α−1
st = 6.14, MX = 3.3 × 1018GeV,

MI = 1.0 × 1015GeV, MS = 1.0 × 103GeV. (58)

As numerical results in the case (a) we have

MC = 1.01 × 1018GeV (59)

and the magnitudes of the string threshold corrections

α−1
4 (MC) − α−1

st = 1.00,

α−1
2 (MC) − α−1

st = 2.84,

α−1
θ (MC) − α−1

st = 4.96, (60)

α−1
ξ (MC) − α−1

st = 5.94.
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It is worthy to note that the threshold corrections are sizable compared with α−1
st .

By the use of Eqs.(34) to (36), the running gauge couplings in the region MC − MI

can be calculated. The gauge couplings at the intermediate scale MI become

α−1
4 (MI) = 8.76,

α−1
2 (MI) = 14.11,

α−1
θ (MI) = 20.41, (61)

α−1
ξ (MI) = 23.24.

Using Eq.(40) we have

α−1
ρ (MI) = 16.90. (62)

From Eq.(44), in the SU(3)C × SU(2)L × U(1)σ × U(1)τ -basis these results are ex-

pressed as

α−1
3 (MI) = 8.76,

α−1
2 (MI) = 14.11,

α−1
σ (MI) = 20.38, (63)

α−1
τ (MI) = 16.92,

where the rotation angle φ is given by

tanφ = 0.082. (64)

Next, the coefficients of the β-function in the region MI − MS are numerically esti-

mated as

b′ij
[1]

= diag ( 0.00 3.00 8.10 10.65 ) ,

b′ij
[2]

=











48.00 12.00 1.57 4.91
32.00 39.00 3.74 1.28
12.58 11.22 9.75 3.55
39.26 3.85 3.55 11.54











. (i, j = 3, 2, σ, τ) (65)

Due to the gauge kinetic mixing the elements of b′ij
[2] with i and/or j = σ, τ deviate

from those in Eq.(47) about 10%. After running the gauge couplings down to the
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soft susy breaking scale MS, we obtain

α−1
3 (MS) = 10.89,

α−1
2 (MS) = 30.38,

α−1
σ (MS) = 59.79, (66)

α−1
τ (MS) = 69.37.

Using Eq.(52) we get

α−1
Y (MS) = 63.60 (67)

with tanϕ = −0.711. Finally the gauge couplings at the electroweak scale turn out

to be

α−1
3 (MZ) = 8.82,

α−1
2 (MZ) = 29.71, (68)

α−1
Y (MZ) = 65.45.

Fig.2

In Fig.2 we show the running behavior of the gauge couplings for the case (a). On

the other hand, experimental values of gauge couplings at the electroweak scale MZ

are [11]

α−1
3 (MZ) = 8.83 ± 0.28,

α−1
2 (MZ) = 29.75 ± 0.11, (69)

α−1
Y (MZ) = 58.89 ± 0.11.

The calculated value of α−1
Y (MZ) is about 10% too large compared with the experi-

mental value.
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To improve the calculated value of α−1
Y (MZ), it seems to be better to lower the

intermediate scale while to fix the soft susy breaking scale. Thus we take the case

(b) as the second parametrization. In the case (b) we obtain

MC = 1.00 × 1018GeV (70)

and

α−1
3 (MZ) = 9.01,

α−1
2 (MZ) = 29.65, (71)

α−1
Y (MZ) = 64.16.

The value of α−1
Y is still inconsistent with the experimental value. The other para-

metrizations also can hardly improve the situation significantly. In conclusion, it is

difficult to unify the gauge couplings along this scenario.

5 Summary and Discussion

We investigated the unification of gauge couplings in the Calabi-Yau superstring

model. In these models with one Kähler class modulus the unification scheme is

constrained by the string threshold corrections. This constraint implies that gauge

couplings join at the energy larger than the string compactification scale, i.e. MX >

MC . On the other hand, in the renormalization group evolution of abelian gauge

couplings we are frequently confronted with a gauge kinetic mixing problem. In

superstring models the rank of the gauge group at MC is larger than that of the

standard gauge group. Then in many of the superstring derived models more than

one U(1) gauge group are contained at various stages of symmetry breaking and there

possibly exist gauge kinetic mixing in the effective theory. In fact, as a consequence of

the contribution from extra fields which do not exist in the MSSM, it was found that

the gauge kinetic mixing takes place in the four-generation superstring models. In the
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presence of such mixing it is necessary for us to diagonalize the gauge kinetic terms.

We studied the mixing effect in the four-generation Calabi-Yau model systematically

through this paper. At the string scale the U(1)-basis was chosen in such a way

that the gauge kinetic mixing terms disappear. At energies below the intermediate

energy scale MI at which the gauge symmetry is spontaneously broken, the gauge

kinetic mixing terms emerge again in the effective theory. Then we carried out the

transformation of U(1) -basis again and selected the basis in which we have no gauge

kinetic mixing. By solving the renormalization group equations for gauge couplings,

we explored an advisable solution which is consistent with the experimental values

of gauge couplings at the electroweak scale MZ . However, no such a solution is

found. When we first take a desirable solution for the unification of non-abelian gauge

couplings, the extrapolated value of α−1
Y from the string scale to the electroweak scale

is ∼ 10% too large compared with the experimental value.

From the viewpoint of the string unification the constraints on the energy scale

and matter contents are quite instructive to construct viable superstring models.

One of the interesting possibilities is the case that a right-handed sneutrino has a

large VEV such as 1010∼12GeV. To preserve the supersymmetry at this scale, the

conditions of the F-flatness and the D-flatness should be guaranteed. Then in such

models we need to have at least a pair of νc of 27 and νc of 27. As an example of the

models in which νc and νc as well as S and S are contained as chiral superfields, the

three-generation model is known [12]. In the three-generation model, however, there

appear too many mirror quarks and leptons. Then, when we carry out the evolution

of gauge couplings from the scale MZ to higher energy scale, the gauge couplings

blow up at energies below 1015GeV [13]. In addition, the intermediate scale MI turns

out to be lower than O(1015)GeV in the model. This contradicts with the proton

stability. Making use of the constraints from the string unification on the energy

scale and matter contents, it is interesting to find out viable models in which we have

S, νc and S, νc chiral superfields.
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Table Captions

Table 1 Chiral superfields belonging to 27 and 27 in E6. These fields

are classified according as their Z5-charges of the discrete group Gd which is an

embedding of Gd into E6. Their representations in the non-abelian gauge groups

SU(3)C × SU(2)L × SU(2)R for the model (i) and SU(4)C × SU(2)L for the model

(ii) are described in the parentheses. Their multiplicities ( their generation numbers

and anti-generation numbers) at the string scale are also given in the square brackets.

Table 2 Multiplicities(generation numbers) of available fields in the respective

energy ranges MC − MI , MI − MS and MS − MZ .

Table 3 Quantum numbers of chiral superfields in the bases used at MC and in

the range MC−MI . The representations of chiral superfields in SU(4)C×SU(2)L are

also shown in the parentheses of the first row. To diagonalize bij U(1)γ ×U(1)δ-basis

is transformed to U(1)θ × U(1)ξ-basis (see text).

Table 4 U(1)-charges of chiral superfields in the bases used at MI and MS.

The spontaneous breaking SU(4)C × U(1)ξ → SU(3)C × U(1)ρ occurs at the scale

MI .

Table 5 Gauge hierarchies in the present four-generation model. At the

string scale MC and at the intermediate scale MI the transformations of U(1)-basis

are carried out so as to diagonalize the one-loop coefficients of the β-function.
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Figure Captions

Fig. 1 The gauge kinetic mixing at one-loop level. When bAB 6= 0, this

diagram gives rise to the mixing term F (A)
µν F (B)µν .

Fig. 2 Evolution of the gauge couplings in the case (a). The intermediate

scale MI and the soft susy breaking scale MS are taken as 1016GeV and 103GeV,

respectively. The energy scale MX at which gauge couplings have a common value is

1.1 × 1019GeV. The experimental values of gauge couplings at the electroweak scale

are also indicated.
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Table 1

model Z5-charge fields in 27 fields in 27

0 S (1,1,1) S (1,1,1)

Hu, Hd (1,2,2) Hu, Hd (1,2,2)

[5 generations] [1 anti-generation]

1 dc, uc (3∗,1,2) ——

[4 generations]

2 g (3,1,1) ——

(i) ec, νc (1,1,2) ——

[4 generations]

3 gc (3∗,1,1) ——

l (1,2,1) ——

[4 generations]

4 Q (3,2,1) ——

[4 generations]

0 S,dc (4∗,1) S,d
c

(4,1)

[5 generations] [1 anti-generation]

1 Hd (1,2) ——

ec (1,1) ——

[4 generations]

(ii) 2 uc,g (6,1) ——

[4 generations]

3 gc,νc (4∗,1) ——

l (1,2) ——

[4 generations]

4 Q,Hu (4,2) ——

[4 generations]
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Table 2

fields MC − MI MI − MS MS − MZ

dc 5 5 4

S 5 5 0

d
c
, S 1 1 0

Hu, Hd 4 1 1

g, gc 4 0 0

Q, uc 4 4 4

l, νc, ec 4 4 3

Table 3

fields 2
√

6Qψ 2
√

10Qχ 2
√

15Qη 2
√

6Qγ 2Qδ 2
√

7Qθ 2
√

42Qξ

(dc, S) (4∗, 1) (1,4) (3,0) (−1, 5) 1 −1 0 −7

(gc, νc) (4∗, 1) (−2, 1) (−2,−5) (−1, 5) 1 1 2 5

(Q, Hu) (4,2) (1,−2) (−1, 2) (2,−4) 1 0 1 −1

(uc, g) (6,1) (1,−2) (−1, 2) (2,−4) −2 0 −2 2

Hd (1,2) −2 −2 −1 −2 1 −1 8

l (1,2) 1 3 −1 −2 −1 −3 −4

ec (1,1) 1 −1 2 4 0 4 −4
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Table 4

fields 2
√

42Qξ 2
√

6T15 2
√

42Qρ 2
√

7Qθ 2
√

15QY

dc −7 −1 −7 0 2

S −7 3 0 0 0

gc 5 −1 2 2 2

νc 5 3 9 2 0

Q −1 1 1 1 1

Hu −1 −3 −6 1 3

uc 2 2 5 −2 −4

g 2 −2 −2 −2 −2

Hd 8 0 6 −1 −3

l −4 0 −3 −3 −3

ec −4 0 −3 4 6
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Table 5

MC

U(1)γ U(1)δ SU(4)C SU(2)L

U(1)θ U(1)ξ | |
‖

bij
| | | |

⇓ | ↓ ↓ |
↓ U(1)ξ SU(4)C |

MI U(1)θ U(1)ρ SU(3)C |
U(1)σ U(1)τ | |

‖ | | | |
‖

b′ij
| | | |

‖ | | | |
⇓ ↓ ↓ | |

MS

U(1)σ U(1)τ | |

U(1)Y | |
⇓ b′′ij ↓ ↓ ↓
MZ U(1)Y SU(3)C SU(2)L
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