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1 Introduction

It is likely that in the framework of a unified theory, the characteristic patterns of

fermion masses and mixings are closely linked to the flavor symmetry. In addition,

it is feasible that the flavor symmetry also controls the GUT scale, the µ scale and

the Majorana mass scale of R-handed neutrinos. In a previous paper[1] the authors

introduced the flavor symmetry ZM × ZN × D4 into the SU(6) × SU(2)R string-

inspired model, where ZM and ZN are R and ordinary symmetries, respectively. The

dihedral group D4 is also an R symmetry. The inclusion of D4 is motivated by the

phenomenological observation that the R-handed Majorana neutrino mass for the

third generation is nearly equal to the geometrical average of the string scale MS and

the electroweak scale MZ . In the string theory it can be expected that the discrete

flavor symmetries including the dihedral group D4 arise from the symmetric structure

of the compact space.

It has been pointed out that all non-gauge symmetries are strongly violated by

quantum gravity effects around the Planck scale and hence in the low-energy effec-

tive theory we cannot have any global symmetries.[2] This statement holds even for

the discrete symmetry introduced above. In contrast to the situation for non-gauge

symmetries, if the flavor symmetries are unbroken discrete subgroups of local gauge

symmteries, the discrete flavor symmetries are stable with respect to quantum grav-

ity effects and therefore remain in the low-energy effective theory. Such discrete

flavor symmetries are subject to certain anomaly cancellation conditions.[3, 4] These

conditions are so stringent that many candidates of discrete symmetries are ruled

out. Although in Ref.[1] the authors found interesting solutions that yield not only

fermion mass hierarchies but also hierarchical energy scales, the flavor symmetry

adopted there is inconsistent with the anomaly-free conditions. The purpose of this

paper is to explore the non-anomalous flavor symmetry ZM × ZN ×D4 and to find

phenomenologically viable anomaly free solutions.

This paper is organized as follows. In section 2 we briefly explain the main features

of the SU(6) × SU(2)R string-inspired model, in which ZM × ZN and the dihedral

group D4 symmetries are introduced as the flavor symmetry. We use a projective

representation of D4, which is expected to arise in the theory on a compact space

with non-commutative geometry. It is pointed out that the D4 symmetry is an ex-

tension of the R-parity. In section 3 we study phenomenological constraints on the
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flavor charges of the matter fields. These constraints come from fermion mass hi-

erachies and mixings and also from hierarchical energy scales. The anomaly-free

conditions are given in section 4. Important conditions arise from the flavor-gauge

mixed anomalies. In section 5 we solve the anomaly-free conditions, taking account of

the phenomenological constraints and present a large mixing angle (LMA)-MSW so-

lution. However, small mixing angle (SMA)-MSW solutions could not be found in the

region of plausible parameter values. The distinction between these solutions results

from the difference in the flavor charge assignments. We obtain phenomenologically

viable results regarding fermion masses and mixings and also regarding hierarchical

energy scales, including the GUT scale, the µ scale and the Majorana mass scale of

R-handed neutrinos. The final section is devoted to summary and discussion.

2 SU (6) × SU (2)R Model

The SU(6) × SU(2)R string-inspired model considered here is studied in detail in

Refs. [5, 6, 7, 8, 9]. In this section we review the main features of the model.

(i). The unified gauge symmetry G at the string scale MS is assumed to be SU(6)×
SU(2)R.

(ii). Matter consists of chiral superfields of three families and one vector-like multi-

plet, i.e.,

3 × 27(Φ1,2,3) + (27(Φ0) + 27(Φ)), (1)

in terms of E6. The superfields Φ in 27 of E6 are decomposed into irreducible

representations of G = SU(6) × SU(2)R as

Φ(27) =




φ(15, 1) : Q,L, g, gc, S,

ψ(6∗, 2) : (U c, Dc), (N c, Ec), (Hu, Hd),
(2)

where the pair g and gc and the pair Hu and Hd represent colored Higgs and

doublet Higgs superfields, respectively, N c is the right-handed neutrino super-

field, and S is an SO(10) singlet.
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(iii). Gauge invariant trilinear couplings in the superpotential W take the forms

(φ(15, 1))3 = QQg +QgcL+ gcgS, (3)

φ(15, 1)(ψ(6∗, 2))2 = QHdD
c +QHuU

c + LHdE
c + LHuN

c

+SHuHd + gN cDc + gEcU c + gcU cDc. (4)

The gauge group G = SU(6) × SU(2)R can be obtained from E6 through the

Hosotani mechanism or flux breaking on multiply-connected manifolds.[10, 11, 12]

We construct the multiply-connected manifold K as the coset K0/Gd of a simply-

connected K0 modded out by a discrete group Gd of K0. In the presence of a back-

ground gauge field for extra-dimensional components, we have a nontrivial holonomy

Ud on K = K0/Gd. This nontrivial Ud gives rise to the discrete symmetry Gd, which

is an embedding of Gd into E6. The unbroken gauge group G is the subgroup of E6

whose elements commute with all elements of Gd. When the holonomy Ud is of the

form

Ud = exp(πiI3(SU(2))), (5)

we obtain Gd ≡ Z
(W)
2 , where I3 represents the third direction of an appropriate SU(2)

in E6. The gauge group G becomes SU(6) × SU(2).[13] The superfield 27 of E6 is

decomposed into two irreducible representations φ(15, 1) and ψ(6∗, 2), which are

even and odd under Z
(W)
2 parity, respectively.

In the conventional GUT-type models, unless an adjoint or higher representation

matter (Higgs) field develops a non-zero VEV, it is impossible for a large gauge

symmetry such as SU(5) or SO(10) to be spontaneously broken down to the standard

model gauge group GSM via the Higgs mechanism. Contrastingly, in the present

model, matter fields consist only of 27 and 27. The symmetry breaking of G =

SU(6) × SU(2)R down to GSM can take place via the Higgs mechanism without

matter fields of adjoint or higher representations. In addition, SU(6) × SU(2)R is

the largest of such gauge groups. Furthermore, it should be noted that doublet Higgs

and color-triplet Higgs fields belong to different irreducible representations of G, as

shown in Eq. (2). As a consequence, the triplet-doublet splitting problem is solved

naturally.[5]

As the flavor symmetry, we introduce ZM × ZN and D4 symmetries and regard

ZM and ZN as the R and non-R symmetries, respectively. Assuming that M and N

are relatively prime, we combine these symmetries as

ZM × ZN = ZMN . (6)
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Table 1: Assignment of ZMN charges for matter superfields

Φi (i = 1, 2, 3) Φ0 Φ

φ(15, 1) ai a0 a

ψ(6∗, 2) bi b0 b

In this case we stipulate that the Grassmann number θ in the superfield formalism

has the charge (±1, 0) under ZM ×ZN . The charge of θ under ZMN is denoted as qθ,

which becomes a multiple of N , and qθ ≡ ±1 (mod M). The ZMN charges of matter

superfields are denoted as ai and bi, etc., as shown in Table I.

Introduction of the dihedral group D4 = Z2 ×Z4 is motivated by the phenomeno-

logical observation that the R-handed Majorana neutrino mass for the third genera-

tion is nearly equal to the geometrical average of MS and MZ . The Z2 and Z4 groups

are expressed as

Z2 = {1, g1}, Z4 = {1, g2, g
2
2, g

3
2}, (7)

respectively, and we have the relation

g1g2g
−1
1 = g−1

2 . (8)

The elements g1 and g2 correspond to reflection and rotation by π/2 of a square,

respectively.

The reader might think that the D4 symmetry is somewhat unfamiliar as the fla-

vor symmetry. However, examples of D4 symmetric Calabi-Yau space can be easily

constructed as follows. We first note that zero locus of the 5th-order defining polyno-

mial in CP 4 is a simple example of the Calabi-Yau space. Denoting the homogeneous

coordinates of CP 4 as zi (i = 1, 2, · · · 5), we take the defining polynomial as

P (z) =
5∑

i=1

z5
i + cz3

5(z1z3 + z2z4), (9)

where c is a complex constant. The defining polynomial P (z) is invariant under the

transformation

g1 : z1 ↔ z3, zi → zi, (i = 2, 4, 5) (10)
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which composes Z
(A)
2 = {1, g1}, and also under the transformation

g2 : z1 → z2 → z3 → z4 → z1, z5 → z5, (11)

which composes Z4 = {1, g2, g
2
2, g

3
2}. These transformations yield the dihedral

group D4 = Z
(A)
2 ×Z4. Then, D4 symmetry arises on the compact space constructed

here. This simple example suggests that it is not so unusual that the dihedral group

D4 is included among the flavor symmetries in the effective theory from the string

compactification.

Furthermore, when c is real, instead of the above Z
(A)
2 transformation, we may

adopt another Z2 transformation,

g′1 : z1 → z3, z3 → z1, zi → zi, (i = 2, 4, 5) (12)

which is a combined transformation Z
(AC)
2 consisting of Z

(A)
2 and complex conjuga-

tion. The operation of complex conjugation corresponds to the reversal of the string

orientation. Under this transformation, P (z) transforms into P (z) = P (z). Then,

the defining polynomial remains essentially unchanged. Although chiral matter su-

perfields transform into anti-chiral ones, the terms coming from the superpotential
∫
dθ2W +

∫
dθ

2
W (13)

are invariant under the Z
(AC)
2 transformation, provided that θ (θ) transforms into

θ (θ) simultaneously.

It is assumed that the flavor symmetry contains the dihedral group D4. Here

we denote this D4 as Z
(F)
2 ×Z4. In a string with discrete torsion, the coordinates

in the compact space become non-commutative and are represented by a projective

representation of the flavor symmetry.[14, 15, 16] This non-commutativity of the

coordinates corresponds to brane fluctuations. The non-commutative coordinates

are concretely represented in terms of matrices.[17] Massless matter fields in the

effective theory correspond to the degree of freedom of deformation of the compact

space and are expressed by functions of non-commutative coordinates. Therefore,

massless matter fields turn out to be of matrix form. Specifically, the matter fields are

described in terms of the ordinary four-dimensional fields mutiplied by the matrices

associated with the non-commutativity of the compact space. The four-dimensional

Lagrangian of the theory should belong to the center of the non-commutative algebra.
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As pointed out in Ref.[1], this implies that a new type of flavor symmetry arises in

the theory on a compact space with non-commutative geometry.

To begin with, let us consider a projective representation of the dihedral group

D4 = Z
(F)
2 ×Z4. It is easy to see that a projective representation of this D4 is given

by the unitary matrices

γ(g1) =


 0 1

1 0


 = σ1, γ(g2) =


 1 0

0 i


 ≡ σ4, (14)

which satisfy the relations

γ(g1) γ(g2) γ(g1)
−1 = i γ(g2)

−1, γ(g1)
2 = γ(g2)

4 = 1. (15)

In this case we have

γ(g1 g
2
2) =


 0 −1

1 0


 = −iσ2, γ(g2

2) =


 1 0

0 −1


 = σ3. (16)

In D4 there exist five conjugacy classes,

{1}, {g1, g1g
2
2}, {g2

2}, {g2, g
3
2}, {g1g2, g1g

3
2}. (17)

Correspondingly, for example, 1 and σi (i = 1, 2, 3, 4) transform as

γ(g1) {1, σ1, σ2, σ3, σ4} γ(g1)
−1 = {1, σ1, −σ2, −σ3, iσ

−1
4 }, (18)

γ(g2) {1, σ1, σ2, σ3, σ4} γ(g2)
−1 = {1, σ2, −σ1, σ3, σ4}. (19)

To each matter superfield we assign a “D4-charge” which is expressed in terms of the

representation matrices of D4.

We now define a combined transformation Z
(FC)
2 consisting of Z

(F)
2 and hermitian

conjugation. In addition, we define a combined transformation consisting of Z
(FC)
2

and Z
(W)
2 by Z

(FCW)
2 and require that the theory be Z

(FCW)
2 gauge-invariant. This

means that the theory on a manifold K0 is modded out by the combined Z
(FCW)
2 .

Because the field φ(15, 1) is even under Z
(W)
2 , Z

(FC)
2 odd states are projected out

for φ(15, 1). Then the representation of D4 for the field φ(15, 1) is 1 or σ1. This

situation is described in Table II. In this table, σ4 is redefined by attaching the phase
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Table 2: Z2 parities of matter superfields

Z
(W)
2 Z

(FC)
2 Z

(FCW)
2

(15, 1) 1 + + +

(15, 1) σ1 + + +

(15, 1) σ2 + − −
(15, 1) σ3 + − −
(15, 1) σ4 + − −
(15, 1) σ−1

4 + − −
(6∗, 2) 1 − + −
(6∗, 2) σ1 − + −
(6∗, 2) σ2 − − +

(6∗, 2) σ3 − − +

(6∗, 2) σ4 − − +

(6∗, 2) σ−1
4 − − +

Table 3: Assignment of “D4 charges” to matter superfields

Φi (i = 1, 2, 3) Φ0 Φ

φ(15, 1) σ1 1 1

ψ(6∗, 2) σ2 σ3 σ4

factor exp(iπ/4). Then, σ4 and σ−1
4 become odd under Z

(FC)
2 . On the other hand,

since ψ(6∗, 2) is odd under Z
(W)
2 , Z

(FC)
2 even states are projected out for ψ(6∗, 2).

Then the representation of D4, i.e. σ2, σ3, σ4 or σ−1
4 , is attached to the field ψ(6∗, 2).

The disappearance of σ1 (σ2) from the spectra of ψ(6∗, 2) (φ(15, 1)) induces the

breakdown of D4 = Z
(F)
2 ×Z4 to Z

(F)
2 × Z2.

We are now in a position to assign the “D4-charges” to matter fields, as shown

in Table III, and σ1 to the Grassmann number θ. It is worth noting that the σ3

transformation yields the R-parity. In fact, we find that

σ3σ1σ
−1
3 = −σ1, σ3σ2σ

−1
3 = −σ2 (20)
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Table 4: R-parities of matter superfields

Φi (i = 1, 2, 3) Φ0 Φ

φ(15, 1) − + +

ψ(6∗, 2) − + +

and

σ31σ
−1
3 = 1, σ3σ4σ

−1
3 = σ4, σ3σ3σ

−1
3 = σ3. (21)

In other words, the R-parities of the superfields Φi (i = 1, 2, 3) for three generations

are all odd, while those of Φ0 and Φ are even. This is shown in Table IV. Therefore,

the dihedral flavor symmetry D4 is an extension of the R-parity. When ψ(6∗, 2)0

and ψ(6∗, 2) develop non-zero VEVs, the Z
(F)
2 symmetry is spontaneously broken.

Eventually, the dihedral flavor symmetry D4 = Z
(F)
2 ×Z4 is spontaneously broken

down to Z
(R)
2 symmetry. This Z

(R)
2 symmetry is a remnant of the Z4 symmetry and

is identified with the R-parity.

3 Fermion mass hierarchies and mixings

In this section we study phenomenological requirements, which yield many constraints

on the assignments of the discrete flavor charges. Our purpose is to explain not only

the fermion mass hierarchies and the mixings but also the hierachical energy scales,

including the breaking scale of the GUT-type gauge symmetry, the intermediate

Majorana masses of the R-handed neutrinos and the scale of the µ term.

In the R-parity even sector, it is assumed that the superpotential contains the

terms

W1 ∼M3
S


λ0

(
φ0φ

M2
S

)2n

+ λ1

(
φ0φ

M2
S

)n (
ψ0ψ

M2
S

)m
+ λ2

(
ψ0ψ

M2
S

)2m

 , (22)

with λi = O(1), where the exponents are non-negative integers that satisfy the ZMN
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symmetry conditions,

2n(a0 + a) − 2qθ ≡ 0,

n(a0 + a) +m(b0 + b) − 2qθ ≡ 0, (mod MN) (23)

2m(b0 + b) − 2qθ ≡ 0.

The dihedral symmetry D4 requires m ≡ 0 (mod 4). Then, for the sake of simplicity

we put m = 4. As discussed in Ref.[1], we consider the case that M is odd and N ≡ 2

(mod 4). Furthermore, the ZMN charges are chosen as

a0 + a = −4, b = odd, ai, bi = even, (i = 0, 1, 2, 3) (24)

and

ai + aj , a0, a, bi + bj ≡ 0. (mod 4) (25)

In this case we obtain

n =
1

4
(MN − qθ) = −(b0 + b). (26)

Through the minimization of the scalar potential with the soft SUSY breaking mass

terms characterized by the scale m̃0 ∼ 103 GeV, matter fields develop non-zero VEVs.

In Refs. [18] and [19] we studied the minimum point of the scalar potential in detail.

The gauge symmetry is spontaneously broken in two steps with a feasible parameter

region of the coefficients λi. The scales of the gauge symmetry breaking are given by

|〈φ0〉| = |〈φ〉| = MS ρ
1/2(2n−1),

|〈ψ0〉| = |〈ψ〉| ≃ MS ρ
n/8(2n−1). (27)

The parameter ρ is defined by ρ = c m̃0/MS, where c ≃ n−3/2 f(λ0, λ1, λ2). Here

we take the numerical values MS ∼ 5 × 1017GeV[20] and c ∼ 10−2. Thus, we have

ρ ∼ 2 × 10−17. The D-flat conditions require |〈φ0〉| = |〈φ〉| and |〈ψ0〉| = |〈ψ〉| with

O(MS ρ) accuracy. Under the assumption n > m = 4, we have

|〈φ0〉| > |〈ψ0〉|. (28)

In what follows, we use the notation

〈φ0〉〈φ〉
M2

S

= x,
〈ψ0〉〈ψ〉
M2

S

= x
n
4
+δN , (29)
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with xδN ∼ 1. Then we have

x2n−1 = ρ ∼ 2 × 10−17. (30)

The gauge symmetry is spontaneously broken at the scale |〈φ0(15, 1)〉|, and sub-

sequently at the scale |〈ψ0(6
∗, 2)〉|. This yields the symmetry breakings

SU(6) × SU(2)R
〈φ0〉−→ SU(4)PS × SU(2)L × SU(2)R

〈ψ0〉−→ GSM, (31)

where SU(4)PS is the Pati-Salam SU(4).[21] Since the fields that develop non-zero

VEVs are singlets under the remaining gauge symmetries, they are assigned as

〈φ0(15, 1)〉 = 〈S0〉 and 〈ψ0(6
∗, 2)〉 = 〈N c

0〉. Below the scale |〈φ0〉|, the Froggatt-

Nielsen mechanism acts for non-renormalizable interactions.[22] In the first step of

the symmetry breaking, the fields Q0, L0, Q, L and (S0 −S)/
√

2 are absorbed by the

gauge fields. Through subsequent symmetry breaking, the fields U c
0 , E

c
0, U

c
, E

c
and

(N c
0 −N

c
)/
√

2 are absorbed.

The colored Higgs mass arises from the term

z00

(
S0S

M2
S

)ζ00
S0g0g

c
0, (32)

with z00 = O(1). The ZMN symmetry controls the exponent ζ00 as

− 4ζ00 + 3a0 − 2qθ ≡ 0, (mod MN) (33)

where we have used a0+a = −4. Due to the Froggatt-Nielsen mechanism, the colored

Higgs mass can be expressed as

mg0/gc
0
∼ xζ00 〈S0〉. (34)

In order to guarantee the longevity of the proton, ζ00 should be sufficiently small

compared to n. For this reason, we rewrite Eq. (33) as

− 4ζ00 + 3a0 − 2qθ = 0, (35)

which gives a small non-negative value of ζ00 when 3a0 − 2qθ is a small non-negative

multiple of 4.
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Similarly, the µ term induced from

h00

(
S0S

M2
S

)η00
S0Hu0Hd0, (36)

with h00 = O(1), is of the form

µ ∼ xη00 〈S0〉. (37)

The exponent η00 is determined by

− 4η00 + a0 + 2b0 − 2qθ ≡ 0. (mod MN) (38)

In order to obtain µ ∼ O(102)GeV, we need η00 ∼ 2n. Then, when b0 is even and

a0 + 2b0 ≤ 0, we rewrite Eq. (38) as

− 4η00 + a0 + 2b0 − 2qθ = −2MN. (39)

We now turn to the quark/lepton mass matrices. The mass matrix for up-type

quarks comes from the term

mij

(
S0S

M2
S

)µij

QiU
c
jHu0, (i, j = 1, 2, 3) (40)

with mij = O(1). The exponent µij is determined by

− 4µij + ai + bj + b0 − 2qθ ≡ 0. (mod MN) (41)

The 3 × 3 mass matrix is given by

Mijvu = mij x
µijvu , (42)

where vu = 〈Hu0〉. In order to account for the experimental fact that the top-quark

mass is of O(vu), we expect µ33 ≃ 0 and set

− 4µ33 + a3 + b3 + b0 − 2qθ = 0. (43)

This relation holds when a3 + b3 + b0 ≡ 0 (mod 4). Furthermore, we choose the

parameterization

α1 > α2 > α3 = 0, β1 > β2 > β3 = 0, (44)

12



where αi and βi are integers defined by

αi =
1

4
(ai − a3), βi =

1

4
(bi − b3). (45)

Then the mass matrix Eq. (42) is of the form

M× vu =




m11x
α1+β1 m12x

α1+β2 m13x
α1

m21x
α2+β1 m22x

α2+β2 m23x
α2

m31x
β1 m32x

β2 m33


× xµ33 vu. (46)

The mass eigenvalues for up-type quarks become

(mu, mc, mt) ∼ (xα1+β1, xα2+β2, 1) × xµ33 vu (47)

at the string scale MS.

In the down-quark sector, the mass matrix is given by[5, 6, 7, 8]

gc Dc

M̂d =
g

D


 ySZ yNM

0 ρdM




(48)

in MS units, where yS = 〈S0〉/MS, yN = 〈N c
0〉/MS, ρd = vd/MS and vd = 〈Hd0〉.

Since gc and Dc are indistinguishable under the standard model gauge group GSM,

mixings occur between these fields. Consequently, the mass matrix for down-type

quarks becomes a 6 × 6 matrix. The above 3 × 3 g -gc submatrix coming from the

term

zij

(
S0S

M2
S

)ζij
S0gig

c
j (49)

is given by

Zij = zij x
ζij , (50)

with zij = O(1). Flavor symmetry requires the conditions

− 4ζij + ai + aj + a0 − 2qθ ≡ 0. (mod MN) (51)
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Then, with ai + aj ≡ 0 (mod 4), as shown in Eq. (25), we set

− 4ζ33 + 2a3 + a0 − 2qθ = 0. (52)

The eigenstates of the mass matrix (48) contain three heavy modes and three light

modes. An important phenomenological constraint results from the observed pattern

of quark mixings. As pointed out in Ref. [8], when the relation

xδd ∼ 1 (53)

is satisfied, where

δd =
[
α1 + ζ33 +

1

2

]
−
[
β1 + µ33 +

1

2

(
n

4
+ δN

)]
, (54)

we obtain

θ12 ∼ xα1−α2 , θ23 ∼ xα2 . (55)

By taking xα1 ∼ λ3 and xα2 ∼ λ2 with λ ∼ 0.22, we can reproduce a phenomenolog-

ically acceptable pattern of the CKM matrix :

VCKM ∼




1 λ λ5

λ 1 λ2

λ3 λ2 1


 . (56)

At the string scale MS, the mass spectra of the light modes become

(md, ms, mb) ∼ (xα1+β1+δd, xα2+β1, xα2+β1−α1+δd) × xµ33 vd (57)

for δd ≥ 0, and

(md, ms, mb) ∼ (xα1+β1, xα2+β1+δd, xα2+β1−α1+δd) × xµ33 vd (58)

for δd < 0.

In the charged lepton sector, the mass matrix has the 6 × 6 form[5, 6, 7, 9]

H+
u Ec+

M̂l =
H−
d

L−


 ySH 0

yNM ρdM




(59)
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in MS units. Because Hd and L also have the same quantum number under GSM,

mixings occur between these fields. The above 3 × 3 Hd -Hu submatrix coming from

hij

(
S0S

M2
S

)ηij

S0HdiHuj (60)

is expressed as

Hij = hijx
ηij , (61)

with hij = O(1). ¿From the flavor symmetry, we have the conditions

− 4ηij + bi + bj + a0 − 2qθ ≡ 0. (mod MN) (62)

Again, by assuming bi + bj ≡ 0 (mod 4), we set

− 4η33 + 2b3 + a0 − 2qθ = 0. (63)

The eigenstates of the mass matrix (59) contain three heavy modes and three light

modes.

In the neutral sector, there exist five types of matter fields, H0
u, H

0
d , L

0, N c and

S. Then we have the 15 × 15 mass matrix[5, 6, 7, 9]

H0
u H0

d L0 N c S

M̂NS =

H0
u

H0
d

L0

N c

S




0 ySH yNMT 0 ρdMT

ySH 0 0 0 ρuMT

yNM 0 0 ρuM 0

0 0 ρuMT N T T

ρdM ρuM 0 T S




(64)

in MS units, where ρu = vu/MS. In this matrix, the 6 × 6 submatrix

M̂M =


 N T T

T S


 (65)

plays the role of the Majorana mass matrix in the seesaw mechanism. The 3 × 3

submatrix N is induced from the terms

M−1
S

(
S0S

M2
S

)νij

(ψiψ)(ψjψ), (i, j = 1, 2, 3) (66)
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where the exponents are given by

− 4νij + bi + bj + 2b− 2qθ ≡ 0. (mod MN) (67)

In fact, these terms lead to the Majorana mass terms

MS NijN
c
iN

c
j ∼ MS x

νij

(
〈N c〉
MS

)2

N c
iN

c
j . (68)

Phenomenologically, it is desirable for the Majorana mass of the third generation to

be 1010 − 1012 GeV. This scale is nearly equal to the geometrical average of MS and

MZ :

MSx
ν33

(
〈N c〉
MS

)2

∼ 10 ×
√
MSMZ ∼ 50 ×MS

√
ρ. (69)

This implies

ν33 +
n

4
∼ 0.9 × n. (70)

When b3 is even but b is odd, the flavor symmetry leads to

− 4ν33 + 2b3 + 2b− 2qθ = −MN. (71)

Because the right-hand side of this equation is not −2MN but −MN , we can obtain

solutions consistent with Eq. (70). The submatrix S induced from

M−1
S

(
S0S

M2
S

)σij

(φiφ)(φjφ) (72)

is expressed as

Sij ∼ xσij

(
〈S〉
MS

)2

. (73)

The exponents are determined by

− 4σij + ai + aj + 2a− 2qθ ≡ 0. (mod MN) (74)
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The submatrix T induced from

M−1
S

(
S0S

M2
S

)τij
(φiφ)(ψjψ) (75)

is given by

Tij ∼ xτij
〈S〉〈N c〉
M2

S

. (76)

The flavor symmetry yields the conditions

− 4τij + ai + bj + a+ b− 2qθ ≡ 0. (mod MN) (77)

Because only b is taken as an odd integer, we have no solution to satisfy Eq. (77).

This means that T = 0.

We now proceed to discuss phenomenological constraints resulting from the lepton

flavor mixings. As pointed out in Ref. [9], in the present framework there are two

possibilities for realistic patterns of the MNS matrix, that is, the LMA-MSW solution

and the SMA-MSW solution. The LMA solution can be derived when the relation

xδL ∼ 1 (78)

holds, where

δL =
[
α1 + α2

2
+ µ33 +

1

2

(
n

4
+ δN

)]
−
[
β1 + η33 +

1

2

]
. (79)

In this case we have

tan θMNS
12 ∼ x

α1−α2
2

+δL ∼
√
λ xδL ,

tan θMNS
23 ∼ x

α1−α2
2

−δL ∼
√
λ x−δL , (80)

tan θMNS
13 ∼ xα1−α2 ∼ λ,

and the mass spectra of the light charged leptons become

(me, mµ, mτ ) ∼ (xα1+β1, xβ2+
α1+α2

2
−δL, xα2) × xµ33 vd. (81)

The neutrino masses are given by

(mν1, mν2 , mν3) ∼ (x2(α1−α2), xα1−α2−2δL , 1) × v2
u

MS
x2(α2+µ33)−ν33−

n
4
−δN . (82)
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In a similar way, the SMA solution is obtained when the relation

xδS ∼ 1 (83)

is satisfied, where

δS =
[
α1 + µ33 +

1

2

(
n

4
+ δN

)]
−
[
β2 + η33 +

1

2

]
. (84)

In this case, the parameterizations xβ1 ∼ λ4 and xβ2 ∼ λ2 lead to

tan θMNS
12 ∼ xβ1−β2−δS ∼ λ2x−δS ,

tan θMNS
23 ∼ xδS , (85)

tan θMNS
13 ∼ xβ1−β2 ∼ λ2.

We then obtain the mass spectra

(me, mµ, mτ ) ∼ (xα1+2β1−β2−δS , xα1+β2, xα1−δS) × xµ33 vd (86)

for light charged leptons and

(mν1 , mν2 , mν3) ∼ (x2(β1−β2), x2δS , 1) × v2
u

MS
x2(α1+µ33−δS)−ν33−

n
4
−δN (87)

for neutrinos.

4 Anomaly-free conditions

It is known that all non-gauge symmetries break down around the Planck scale due

to quantum gravity effects.[2] On the other hand, phenomenologically it seems that

the flavor symmetries are necessary for explaining the fermion mass hierarchies and

the mixings. Therefore, it would be natural for the flavor symmetries to be unbroken

discrete subgroups of local gauge symmteries. If this is the case, the discrete flavor

symmetries would be stable with respect to quantum gravity effects and then remains
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in the low-energy effective theory. Such discrete flavor symmetries should be non-

anomalous.[3, 4]

If the ZMN symmetry considered here arises from certain gauge symmetries and

if anomaly cancellation does not occur via the Green-Schwartz mechanism,[23] the

ZMN symmetry itself should be non-anomalous. Because the gauge symmetry at

the string scale is assumed to be SU(6) × SU(2)R, the mixed anomaly conditions

ZMN ·(SU(6))2 and ZMN ·(SU(2)R)2 are imposed on the ZMN charges of the massless

matter fields. The heavy fermions decouple in ZMN · (SU(6))2 and ZMN · (SU(2)R)2

anomalies but not in the cubic Z
3
MN and the mixed ZMN · (Graviton)2 anomalies.

At present, however, we have no information about the heavy modes. Therefore, the

cubic Z
3
MN and the mixed ZMN · (Graviton)2 anomaly conditions are not relevant

to the constraints on the flavor charges of matter fields in the low-energy effective

theory.

Because the charged matter fields consist of (15, 1), (6∗, 2) and their conjugates

under SU(6) × SU(2)R, the mixed anomaly conditions become

4

[
3∑

i=0

(ai − qθ) + (a− qθ)

]

+ 2

[
3∑

i=0

(bi − qθ) + (b− qθ)

]
+ 12 qθ ≡ 0, (mod MN) (88)

6

[
3∑

i=0

(bi − qθ) + (b− qθ)

]
+ 4 qθ ≡ 0, (mod MN) (89)

for SU(6) and SU(2)R, respectively. These conditions are rewritten as

4 aT + 2 bT ≡ 18 qθ, 6 bT ≡ 26 qθ, (mod MN) (90)

where

aT =
3∑

i=0

ai + a, bT =
3∑

i=0

bi + b. (91)

Noting that aT is even and bT is odd, we obtain

aT − bT ≡ 1

2
MN − 2 qθ, (mod MN) (92)

6 aT ≡ 14 qθ. (mod MN) (93)
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Because the Grassmann number θ has charge (±1, 0) under ZM ×ZN , in the case

M ≡ 0 (mod 3), we have no solutions of the anomaly condition Eq. (93). Thus

M 6≡ 0. (mod 3) (94)

In a previous paper[1], we chose M = 15 and N = 14. This choice contradicts the

above conditions. Therefore, in the next section we explore viable solutions that are

consistent with these anomaly conditions. The anomaly conditions are so stringent

that many types of discrete symmetries are ruled out. In fact, as seen in the next

section, we find a LMA solution but no SMA solution.

Finally, we would like to remark that the D4 = Z
(F)
2 ×Z4 mixed anomaly condi-

tions are satisfied in the present model. As seen from Tables II and III, under Z
(FC)
2 ,

φ(15, 1)i (i = 0, 1, 2, 3) and φ(15, 1) are even, while ψ(6∗, 2)i (i = 0, 1, 2, 3) and

ψ(6∗, 2) are odd. Since these fields are even-dimensional representations of SU(6)

and also of SU(2)R, the present matter content is anomaly-free with respect to the

Z
(FC)
2 mixed anomaly. For the Z4 mixed anomalies, we have to take account of the

relation

g1 g2 g
−1
1 = g−1

2 . (95)

Specifically, g1 does not commutate with g2 but does commutate with g2
2. This

relation implies that Z4 charges are additive not mod 4 but mod 2. Therefore, in

order to determine whether the Z4 mixed anomaly conditions are satisfied, it is enough

to determine whether Z
(R)
2 , which is a subgroup of Z4, is anomalous. As shown in

Table IV, under Z
(R)
2 , φ(15, 1)i and ψ(6∗, 2)i (i = 1, 2, 3) superfields are odd, while

φ(15, 1)0, ψ(6∗, 2)0, φ(15, 1) and ψ(6∗, 2) are even. Their fermion components

have opposite R-parities. Therefore, Z
(R)
2 mixed anomalies of φ0(ψ0) and φ(ψ) cancel

pairwise with each other.

5 Anomaly-free solutions

In section 3 we studied a set of phenomenological conditions, which can be expressed

as

−(b0 + b) = n =
1

4
(MN − qθ),
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−4ζ00 + 3a0 = 2qθ,

−4η00 + a0 + 2b0 = −8n,

−4µ33 + a3 + b3 + b0 = 2qθ, (96)

−4ζ33 + 2a3 + a0 = 2qθ,

−4η33 + 2b3 + a0 = 2qθ,

−4ν33 + 2b3 + 2b = −4n + qθ.

Desirable values of the colored Higgs mass and µ are obtained in the case

ζ00 ∼ 0, η00 ∼ 2n. (97)

The observed fermion mass spectra require parameterizations in which µ33 ∼ 0,

xα1 ∼ λ3, xβ1 ∼ λ4 and xα2 ∼ xβ2 ∼ λ2. In order to account for the observed

pattern of the CKM matrix, we impose the condition

ζ33 ∼ β1 − α1 + µ33 +
1

2

(
n

4
− 1

)
. (98)

The LMA solution is obtained under the condition

η33 ∼
α1 + α2

2
− β1 + µ33 +

1

2

(
n

4
− 1

)
, (99)

while the condition for the SMA solution becomes

η33 ∼ α1 − β2 + µ33 +
1

2

(
n

4
− 1

)
. (100)

In addition, from Eq. (70) we have the condition

ν33 ∼
2

3
n. (101)

When M , N and qθ are given, and when ζ00, η00, µ33, ζ33, η33 and ν33 are also given,

we have too many relations, because there are five undetermined ZMN charges a0, b0,

b, a3 and b3, with the seven equations given in Eq. (96). The existence of a solution

is not certain, and proving or disproving its existence is a subtle matter.

As discussed in the previous section, the anomaly conditions are given by

aT − bT ≡ 1

2
MN − 2qθ, (mod MN) (102)

6aT ≡ 14qθ. (mod MN) (103)
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¿From the parameterization represented by a0+a = −4, b0+b = −n = −(MN−qθ)/4
and Eq. (45), aT and bT can be rewritten as

aT = 3a3 + 4(α1 + α2) − 4, bT = 3b3 + 4(β1 + β2) − n. (104)

Recalling that xα1 ∼ λ3 ∼ 10−2, and so forth, and that x2n−1 ∼ 2× 10−17, we obtain

the relations

α1 + α2 ∼ 0.4 × n, β1 + β2 ∼ 0.5 × n. (105)

Solutions of Eqs. (102) and (103) are found only in the case

aT − bT =
1

2
MN − 2qθ, (106)

aT =
1

3
(7qθ + 2MN). (107)

After some tedious calculations, we find a LMA solution for which

M = 19, N = qθ = 18, n = 81,

aT = 270, bT = 135 (108)

and x161 ∼ 2×10−17, x6.3 = λ ≃ 0.22. ZMN charges (MN = 342) of the matter fields

are listed in Table V. This parameterization leads to

(ζ00, η00, µ33, ζ33, η33, ν33) = (0, 158, 3, 17, 2, 51). (109)

The scales of the colored Higgs mass and µ are

mg0/gc
0

≃ 〈S0〉 = x0.5 ×MS ∼MS, (110)

µ ≃ x154.5 ×MS ∼ 100 GeV. (111)

The quark/lepton mass spectra at the scale MS become

(mu, mc, mt) ∼ (λ7.8, λ5.2, λ0.5) × vu,

(md, ms, mb) ∼ (λ7.8, λ6.7, λ3.5) × vd, (112)

(me, mµ, mτ ) ∼ (λ7.8, λ5.9, λ2.7) × vd

for −δd = δL ∼ 1. These results are in accord with a small value of tanβ ≡ vu/vd.

The CKM matrix turns out to be of the form

VCKM ∼




1 λ λ5

λ 1 λ2

λ3 λ2 1


 , (113)
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Table 5: Assignment of Z342 charges for matter superfields

Φ1 Φ2 Φ3 Φ0 Φ

φ(15, 1) a1 = 126 a2 = 102 a3 = 46 a0 = 12 a = −16

ψ(6∗, 2) b1 = 120 b2 = 80 b3 = 16 b0 = −14 b = −67

and the mixing angles in the MNS matrix become

tan θMNS
12 ∼ λ0.7, tan θMNS

23 ∼ λ0.3, tan θMNS
13 ∼ λ. (114)

The neutrino mass spectra are given by

(mν1, mν2, mν3) ∼ 10−1eV × (λ1.9, λ0.6, 1). (115)

Unlike the case for the LMA solution, we could not find phenomenologically viable

SMA solutions in the parameter region MN < 600 and m ≡ 0 (mod 4), because it

is difficult to realize a situation in which the condition (101) is compatible with

the other conditions. Recent experimental data on neutrino oscillations[24, 25, 26]

strongly suggest that the LMA-MSW solution is most favorable. The result obtained

here is consistent with these data.

6 Summary and discussion

In order to construct a string-inspired model that connects appropriately with low-

energy physics, it is of great importance to explore both the gauge symmetry and

the flavor symmetry at the string scale MS. We chose SU(6)×SU(2)R as the unified

gauge symmetry at MS. The gauge symmetry can be derived from the perturba-

tive heterotic superstring theory via the flux breaking. The symmetry breaking of

SU(6) × SU(2)R down to GSM can take place via the Higgs mechanism without

matter fields of adjoint or higher representations. Because the doublet Higgs and

the color-triplet Higgs fields exist in different irreducible representations, the triplet-

doublet splitting problem is solved naturally. As the flavor symmetry, we introduced

ZM × ZN and the dihedral group D4 symmetries. ZM and D4 are R symmetries,

23



while ZN is a non-R symmetry. Introduction of the dihedral group D4 is motivated

by the phenomenological observation that the R-handed Majorana neutrino mass for

the third generation is nearly equal to the geometrical average of MS and MZ . We

assigned the appropriate flavor charges to the matter fields. After studying the mixed

anomaly conditions, we solved them under many phenomenological constraints com-

ing from the particle spectra. With the stringent anomaly conditions, a LMA-MSW

solution was found, but no SMA-MSW solution was found. The solution includes

phenomenologically acceptable results concerning fermion masses and mixings and

also concerning hierarchical energy scales including the GUT scale, the µ scale and

the Majorana mass scale of R-handed neutrinos.

We obtained the reasonable particle spectra at an energy scale around the scale

MS as shown in the previous section. In order to investigate the particle spectra at

low-energies, we need to study the renormalization-group evolution of gauge couplings

and the effective Yukawa couplings and to incorporate the supersymmetry breaking

effect. In our LMA-MSW solution, the ratio md/me at MS is nearly unity, and also

we obtain mb/mτ ∼ λ at MS. These results are in contrast with those obtained from

some conventional GUT-type models, in which the ratio mb/mτ is predicted to be

unity at the GUT scale. In the present model, we have peculiar particle spectra.

In particular, there appear colored superfields with even R-parity around the TeV

region, which do not participate in proton decay. In the presence of these extra

colored particles, the SU(3)c gauge coupling remains almost unchanged in the whole

region ranging from MZ to MS. Therefore, the renormalization effects of SU(3)c in

our model are expected to become rather large compared with those in conventional

GUT-type models. Thus it seems that the particle spectra at MS obtained here are

consistent with those at low energies. A detailed study of the renormalization group

evolution will be presented elsewhere.

In this paper we assumed that the flavor symmetry contains the semi-direct prod-

uct group D4, which is an extension of R-parity. It would be interesting to explore

other possibilities for the semi-direct product flavor symmetry. Among them we may

find more simple flavor symmetries, which could lead to phenomenologically viable

results.
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