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Abstract

In the underlying Planck scale theory we introduce a certain type of discrete

symmetry, which potentially brings the stability of the weak-scale hierarchy un-

der control. Under the discrete symmetry the µ-problem and the tadpole prob-

lem can be solved simultaneously without relying on some fine-tuning of param-

eters. Instead, it is required that doublet Higgs and color-triplet Higgs fields

reside in different irreducible representations of the gauge symmetry group at

the Planck scale and that they have distinct charges of the discrete symmetry

group.



Recently, it is greatly expected that many characteristic features of low-energy

effective theory are attributable to various types of symmetry in the underlying

Planck scale theory, such as in superstring theory. It is plausible that the gauge

symmetry G at the Planck scale is larger than the standard gauge group Gst =

SU(3)C × SU(2)L × U(1)Y . Since the larger G should be broken to Gst, some Gst-

neutral fields are needed to be contained in the theory and to develop non-zero

vacuum expectation values (VEVs) at some intermediate energy scales. And further-

more, it is likely that there exist certain discrete symmetries at the Planck scale.

As suggested from Gepner model [1] , such symmetries may have their origin in

symmetrical structure of compactified space in superstring theory. The discrete sym-

metries put some restrictions on interactions including various couplings related to

Gst-neutral fields. Then restricted couplings of Gst-neutral fields to the other fields

reflect on the low-energy effective theory. In addition, the magnitude of VEVs of

Gst-neutral fields would be governed by the discrete symmetry and small ratios of

the VEVs to the Planck scale would yield the hierarchical structure to the effective

theory. Consequently, the discrete symmetries and Gst-neutral fields would constitute

vital ingredients of determining hierarchical structure of the effective theory.

In constructing realistic unified models we need to treat with a large hierarchy

between two mass scales, i.e. the unification scale and the electroweak scale [2]. In

general, such models are confronted with the so-called hierarchy problem. Namely,

the weak-scale hierarchy is destabilized by quadratically divergent radiative correc-

tions. Supersymmetry (SUSY) is an attractive idea to cure partially this problem and

renders the hierarchy technically natural [3]. However, the lightness of Higgs doublets

at the tree level is not assured by SUSY and some fine-tuning of parameters is needed

at the tree level [4]. For example, in the minimal SUSY SU(5) GUT there appear 5

and 5∗ Higgs superfields, in which Higgs doublets (Hu, Hd) and Higgs triplets (g, gc)
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are contained. From proton stability Higgs triplets should be superheavy. While

Higgs doublets should not be superheavy since they constitute an important ingredi-

ent of the low-energy model. Their mass terms in the superpotential are assumed to

be

W ∼ µHuHd + Mgggc (1)

with µ = O(102GeV) and Mg = O(MGUT). Why is µ the electroweak scale but not

the unification scale ? This is the so-called µ-problem. Although SUSY protects

this mass hierarchy Mg ≫ µ against radiative corrections, the mass hierarchy at

tree level have to be fine-tuned. Many other GUT models also suffer from the µ-

problem. When Higgs doublets and Higgs triplets belong to the same irreducible

representations of G, such as to 5 and 5∗ of SU(5), coupling constants of Higgs

doublets and of Higgs triplets to the singlet or adjoint Higgs are of the same order.

In order to get triplet-doublet mass splitting without fine-tuning, we are enforced to

introduce additional Higgs fields with the larger representations of G. However, it

seems that these enlargements of the Higgs sector are rather complicated and bring

about another problem to the models [5]. Therefore, it is likely that Higgs doublets

and Higgs triplets reside in different irreducible representations of the gauge group

G at the Planck scale.

In anticipation of explaining µ = O(102GeV), several authors introduced a Gst-

neutral field N [6], provided that Higgs triplets have a large mass Mg whereas Higgs

doublets remain massless at the unification scale. In this scenario there exist trilinear

couplings with N . The superpotential is given by

W ∼ Mgggc + fHNHuHd + fgNggc . (2)

Unless we have some kinds of selection rule on trilinear couplings, the coupling con-

stants fH and fg are to be O(1). Suppose N develops a nonzero VEV with O(102GeV)
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via some mechanism, the µ-term is induced as

µ = fH〈N〉 = O(102GeV). (3)

Even if this is the case, however, we encounter a new hierarchical problem. A trilinear

coupling of the singlet N to superheavy Higgs triplets g, gc brings about large mass

correction to Higgs doublet scalar fields through tadpole diagrams as shown in Fig.1.

Fig. 1

The contribution of tadpole diagrams to Higgs scalar mass is given by

δm2
Hu,Hd

∼
MgfgfHm3

3/2

m2
N

, (4)

where mN represents the scalar mass of N . Since the soft SUSY breaking terms give

the scalar mass, mN becomes of the order of m3/2 = O(1TeV). This mass correction

is extremely large compared to O(m2
3/2). Thus the coupling of N to g, gc destabilizes

the mass hierarchy Mg ≫ µ. This is the so-called tadpole problem or light singlet

problem [7].

In this paper we propose a new model with a certain type of discrete symmtery.

The discrete symmetry implies a stringent selection rule on renormalizable and non-

renormalizable interactions given by the superpotential. In the model a mirror pair of

Gst-neutral fields N and N is contained and develops a very large VEV 〈N〉 = 〈N〉.

Without relying on some fine-tuning among parameters we obtain the relations

µ = fH〈N〉, fH < O

(

m3/2

〈N〉

)

, fg = O(1) (5)

for effective couplings, respectively, with Mg = O(〈N〉) ≫ m3/2 and m2
N = O(m2

3/2).

The smallness of the coupling fH is explained naturally from the discrete symmetry.
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It follows that

µ < O(m3/2), δm2
Hu,Hd

= O(µ m3/2). (6)

In this model the µ-problem and the tadpole problem are closely linked together and

solved simultaneously.

In the model proposed here we are based on the following scheme of superstring or

supergravity models. The gauge symmetry group G at the Planck scale ΛP is rank-

five or rank-six, such as in E6-inspired models. In matter superfields there appear

doublet Higgs superfields Hu, Hd and color-triplet Higgs superfields g, gc which reside

in distinct irreducible representations of G. In addition to these chiral superfields, we

have a mirror pair of Gst-neutral but G-charged chiral superfields N and N . Existence

of mirror fields is likely in superstring models. It is supposed that as far as gauge

invariance is concerned, the couplings NHuHd and Nggc are allowed whereas the

couplings NHuHd and Nggc are forbidden.

Let us introduce certain discrete symmetries at the Planck scale, which may be

a reflection of the geometrical structure of the compactified space. In fact, pecu-

liar discrete symmetries come into Gepner model in which the compactified space is

constructed algebraically by a tensor product of N = 2 superconformal field theory

[1]. Concretely, the discrete symmetry Zk+2 or Zk+2 × Z2 is derived from N = 2

superconformal field theory with the level k in which each matter superfield has a

distinct charge of the discrete symmetries. The discrete symmetries put a stringent

selection rule on allowed couplings in the superpotential. In the present model it is

assumed that allowed couplings are given by

W =
λH

Λ2p
P

(NN)pNHuHd + λgNggc +
λN

Λ2l−1
P

(NN)l+1 + · · · , (7)

where 1 ≤ p, l and the coefficients λH , λg, λN are O(1). As we will see later, the

exponents p and l are determined according as the discrete charges of the matter
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superfields. Our assumption contains that there appears a trilinear coupling only for

colored Higgs fields because of special values of the discrete charge of the products

(HuHd) and (ggc).

Incorporating the soft SUSY breaking terms, we can get the scalar potential V .

The scale of SUSY breaking (m3/2) is supposed to be O(1TeV). The running scalar

masses squared m2
N and m2

N
for N and N are O(m2

3/2). Since N couples to colored

Higgs with a sizable trilinear coupling constant, m2
N possibly becomes negative even

at large energy scale [8]. When m2
N + m2

N
< 0, N and N develop nonzero VEVs. By

minimizing V , we obtain the VEVs [9] [10]

〈N〉 = 〈N〉 ≡ Λ ∼ ΛP

(

m3/2

ΛP

)1/2l

, (8)

which is sufficiently large compared to m3/2. For instance, we have Λ >∼ 1016GeV for

l ≥ 3. The magnitude of the scale Λ is controlled by the discrete charges of N and

N . Although spontaneous breaking of the gauge symmetry occurs at the scale Λ,

the D-flatness condition is satisfied and then SUSY is preserved at this scale. In the

symmetry breaking a combination (N−N)/
√

2 is absorbed by a vector superfield due

to the Higgs mechanism. The remaining component (N + N − 2Λ)/
√

2 (≡ N ′) has

a mass of order O(m3/2) irrespective of l. For the sake of convenience we introduce

the notation x defined by

x =
Λ

ΛP
∼
(

m3/2

ΛP

)1/2l

. (9)

This small ratio x becomes an efficient parameter in describing the hierarchical struc-

ture of the effective theory.

Now we proceed to study the low-energy effective superpotential W eff below the

scale Λ. From Eqs. (7) to (9) the bilinear terms in W eff becomes

W eff
2 = µ HuHd + Mg ggc + MN N ′2 (10)
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with

µ ≃ λH x2p+1ΛP , (11)

Mg = λg Λ = λg xΛP , (12)

MN ≃ λN x2lΛP ≃ m3/2. (13)

Colored Higgs fields get a mass of O(〈N〉), while doublet Higgs mass µ is controlled

by the exponent p. Explicitly, µ is given by

µ ≃ x2(p−l)+1 m3/2. (14)

Therefore, when p ≥ l, the µ-problem is solved. In what follows we take the condition

p ≥ l (15)

and then µ <∼ xm3/2 < O(1TeV). For example, we obtain µ = O(102GeV) for

p = l ∼ 8.

To address ourselves to the tadpole problem, we study the trilinear terms in W eff

which are of the form

W eff
3 = fH N ′HuHd + fg N ′ggc + fN N ′3, (16)

where

fH ≃ λH x2p, fg = λg/
√

2, fN ≃ λN x2l−1. (17)

As a consequence of the discrete symmetry it follows that we have

fg = O(1) (18)

for N ′ggc coupling, whereas

fH =
µ

Λ
≪ 1 (19)
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for N ′HuHd coupling. The tadpole contribution to the Higgs mass becomes

δm2
Hu,Hd

≃
MgfgfHm3

3/2

m2
N

≃ MgfHm3/2 ≃ µ m3/2. (20)

This implies that the tadpole problem is solved simultaneously together with the µ-

problem under the condition (15). This is due to the fact that both the µ-term and

the trilinear coupling N ′HuHd are induced from the nonrenormalizable interaction

(NN)p NHuHd in the underlying theory.

For illustration we take up Zα as a simple example of the discrete symmetry, where

α is an integer larger than one. As mentioned above, this type of discrete symmetry

possibly comes into Calabi-Yau string models. In Table I we tabulate Zα-charges

of matter superfields, where b and c represent Zα-charges of the products (HuHd)

and (ggc), respectively. Generally, as is the case with Gepner model, Grassmann

number θ also has a nonzero charge denoted as −d in Table I. Each charge is taken

as 0 ≤ a, a, b, c, d < α. Since the superpotential (7) is assumed to be a consequence

of the Zα symmetry, we have the relations

p(a + a) + a + b + 2d ≡ 0
a + c + 2d ≡ 0

(l + 1)(a + a) + 2d ≡ 0











mod α, (21)

where 1 ≤ p, l < α. When a, a, b, d are given, c and the exponents p and l are

determined from these equations. To get a nontrivial solution, the conditions a +

a, b − c 6≡ 0 (mod α) should be satisfied. The above relations lead to

(p − l)(a + a) + b − a ≡ 0 mod α. (22)

Thus, if b ≡ a and if a + a is prime to α, we obtain

p = l. (23)

This case is in accord with the condition (15). More concretely, when a = a = b =

d = 1 and α is odd, we get p = l = c + 1 = α − 2.
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Table I

As for the generation structure of the Gst-neutral fields, so far it is postulated

that we have only a pair of N and N . Generally, however, the multiplicities of N and

of the mirror superfield N do not coincide with each other but rather in superstring

models the difference of these multiplicities corresponds to the generation number.

Taking this situation into consideration, we change the above model with a pair of N

and N for another model with a double Gst-neutral field N0, N1 and a single mirror

field N . In this case the discrete symmetry is put to Zα ×Z2 (or Z2α). As suggested

from superstring models, matter fields would have individual discrete charges for

every generation. If N0, N , (HuHd) and (ggc) are all even under Z2 and if N1 is odd,

the superpotential W does not contain odd terms with respect to N1 due to the Z2

symmetry. Indeed, the superpotential is written as

W =
λH

Λ2p
P

(N0N)pN0HuHd + λgN0ggc +
λ

(0)
N

Λ2l−1
P

(N0N)l+1

+
λ

(2)
N

Λ2n−1
P

(N0N)n−1(N1N)2 + · · · . (24)

Since N0 has a sizable trilinear coupling to ggc while N1 does not, it is natural that

the running scalar mass squared m2
N0

becomes negative but m2
N1

remains positive

at large energy scale. When m2
N0

+ m2
N

< 0, N0 and N develop nonzero VEVs

whereas 〈N1〉 = 0. In view of the circumstances it follows that the present model

exhibits hierarchical structure of the effective superpotential quite similar to that of

the previous model. Therefore, under the condition p ≥ l the µ-problem and the

tadpole problem are solved also in this model. It is expected that the considerations

described here can be reasonably generalized to the models with more complicated
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generation structure of matter fields.

In conclusion, a certain type of discrete symmetries for the underlying Planck scale

theory can control the weak-scale hierarchy of the effective theory. Under the discrete

symmetries the µ-problem and the tadpole problem are closely linked together and are

solved simultaneously. This is because the µ-term and the trilinear coupling NHuHd

in the low-energy effective theory have their origins in the common nonrenormalizable

interaction. The solution is assured by the condition (15). It should be emphasized

that we do not rely on some fine-tuning of parameters. Instead, it is required that

doublet Higgs and colored Higgs fields reside in different irreducible representations

of the gauge symmetry at the Planck scale and that they have distinct charges of

the discrete symmetry. In view of the phenomenological result that in the minimal

supersymmetric standard model gauge couplings are unified at the scale O(1016GeV)

smaller than the Planck scale [11], it is tempting to find GUT-type models consistent

with such particle assignments. As pointed out by the authors [12], there are such

GUT-type string models. It is very interesting to construct phenomenologically viable

GUT-type models which satisfies the condition (15).
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Figure Captions

Fig. 1 A tadpole diagram which contributes to Higgs scalar mass. Hu, Hd and

g, gc stand for doublet Higgs and colored Higgs fields, respectively. The Gst-neutral

field is denoted as N .

Table Captions

Table I Charges of the discrete symmetry Zα for matter superfields. b and c

represent charges of the products (HuHd) and (ggc), respectively. In general, Grass-

mann number θ also has a nonzero charge denoted as −d.

Table I

Fields Zα-charges
N a
N a

(HuHd) b
(ggc) c

θ −d
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This figure "fig1-1.png" is available in "png"
 format from:

http://arXiv.org/ps/hep-ph/9504368v1

http://arXiv.org/ps/hep-ph/9504368v1

