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Density-wave instability in a two-dimensional dipolar Fermi gas
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We consider a uniform dipolar Fermi gas in two dimensions (2D) where the dipole moments of fermions are
aligned by an orientable external field. We obtain the ground state of the gas in the Hartree-Fock approximation
and investigate random-phase-approximation stability against density fluctuations of finite momentum. It is
shown that the density-wave instability takes place in a broad region where the system is stable against collapse.
We also find that the critical temperature can be a significant fraction of Fermi temperature for a realistic system
of polar molecules.
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I. INTRODUCTION

The realization of ultracold molecules confers remarkable
opportunities to study new states of quantum matter and is also
of much interest for quantum computing [1]. In particular, the
investigation of polar molecules is a good candidate for study-
ing various quantum many-body states because the anisotropic
and long-range nature of the dipole-dipole interaction offers
rich properties that do not occur in nondipolar systems [2].

Recently K.-K. Ni et al. succeeded in creating a dense gas
of 40K-87Rb polar molecules with temperature T ≈ 2.5TF [3],
where TF is the Fermi temperature. For the absolute
rovibrational ground state of the fermionic molecule attained
in the experiment, the magnitude of the electric dipole moment
is 0.566 D, yielding to significant interaction effects in a
degenerate gas of dipolar fermions at lower temperatures. As
shown in Ref. [4], the anisotropy of the dipole-dipole interac-
tion results in a deformed Fermi surface of the ground state of
a dipolar Fermi gas. Since the Fermi surface is the determining
factor in low-energy properties of the Fermi system, theoretical
studies of collective oscillations [5,6], stability [7], expansion
dynamics after turning off the trapping potential [5,8], zero
sound propagation in a homogeneous system [9,10], and
equilibrium properties at finite temperatures [11–13] under
the deformed Fermi surface have been done recently.

Some of most fascinating challenges of a dipolar Fermi
gas concern phase transitions of possible ordered phases. So
far, the realization of superfluid phase in three dimensions
(3D) [14,15] and two dimensions (2D) [16,17], biaxial nematic
phase [18], and ferromagnetic phase of two-component
mixtures [19] have been proposed theoretically. Moreover,
there is another interesting ordered phase arising from the
repulsive part of the long-range dipole-dipole force, a density
wave phase.

*takamiya@auecc.aichi-edu.ac.jp

In a density wave phase, translational invariance is broken
spontaneously, resulting in a distorted density distribution [20].
The phase transition of the charge density wave in a one-
dimensional (1D) conductor was originally discussed by
Peierls [21], who found the instability of a metallic state
at zero temperature. In the mid-1970s, the charge and spin
density waves were discovered in experiments and a number
of interesting phenomena were found in static and dynamic
properties of the density waves [22].

In the present article, we consider a uniform dipolar Fermi
gas in 2D with the dipole moments aligned to an orientable
external field. We study a realization of the phase transition
of a density wave by evaluating the stability condition for the
thermal equilibrium state in a random phase approximation
(RPA). By calculating the critical temperature Tc, we show
that the density wave can be achieved at a significant fraction
of TF for a realistic system of polar molecules. Here we note
that the density wave is brought purely by the interaction effect
in contrast to the density waves in an optical lattice potential
as discussed in Refs. [23,24].

This article is organized as follows. Section II presents the
mean field model of the uniform gas of fermions interacting
via dipole-dipole forces in 2D. Section III presents the
ground-state properties at zero temperature and discusses RPA
stability. We obtain a phase diagram at zero temperature as
a variance of the magnitude of the interaction strength and
the angle between the direction of the dipole moments and
normal direction of the 2D plane. Section IV applies our model
to dipolar Fermi gases at finite temperatures, which leads to
the critical temperature of the density-wave phase transition.
Section V is a summary.

II. DIPOLAR FERMI GAS IN 2D

We consider a gas of dipolar fermions of mass m and electric
or magnetic dipole moment d. The dipoles are confined by
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FIG. 1. (Color online) Experimental setup of 2D dipolar
fermions. The dipole moments are aligned by an orientable external
field, E, that forms the angle θ0 with respect to the z axis. The
symbol ϕ denotes the azimuthal angle with respective to the x axis
of the relative coordinate of two particles in the x-y plane.

a harmonic trapping potential V (z) = mω2
zz

2/2 with a trap
frequency ωz in the z direction. For h̄ωz � εF where εF is
the Fermi energy, the system is effectively 2D. The dipole
moments are aligned by an external electric or magnetic field,
E, subtending an angle θ0 with respect to the z axis as shown
in Fig. 1. In this case, the Hamiltonian of the system is given
by

Ĥ =
N∑

i=1

− h̄2

2m
∇2

i + 1

2

∑
i �=j

Vdd (r i − rj ), (1)

where N is the number of fermions and r i is the position
vector of ith particle in the x − y plane. The 2D dipole-dipole
interaction in Eq. (1) is described by

Vdd (r) = d2

r3
{1 − 3 sin2 θ0 cos2 ϕ}

= d2

r3

{
P2(cos θ0) − 3

2
sin2 θ0 cos 2ϕ

}
, (2)

where ϕ is the azimuthal angle relative to the x axis; see
Fig. 1. In this expression, we have a second-order Legendre
polynomial, P2(cos θ0) = (3 cos2 θ0 − 1)/2. According to the
procedure introduced in Ref. [10], the momentum representa-
tion of the 2D dipole-dipole interaction of Eq. (2) is given by
Vdd (q) = V0 + V2d (q) where

V0 = 2πd2P2(cos θ0)
1

rc

, (3)

V2d (q) = πd2q{−2P2(cos θ0) + sin2 θ0 cos 2φ}. (4)

In Eq. (4), φ is the angle with respect to the qx axis. In Eq. (3),
rc is a cutoff length and an order of size of a dipolar particle,
say, the size of a polar molecule, where the dipole moment
is no longer an ideal dipole moment. Thus, the divergence in
the limit of rc → 0 is artificial [25]. As we see, however, the
total energy for dipolar fermions is always finite even in the
limit of rc → 0. Thus, we do not need to pay attention to such
an artificial divergence. Different treatment for the quasi-2D
dipole-dipole interaction has been also discussed in Ref. [26].

The thermal equilibrium state of dipolar fermions at a
temperature T is assumed to be translational invariant in the
x-y plane. In the Hartree-Fock (HF) approximation, the total

energy per area derived from the Hamiltonian of Eq. (1) is
represented by

Etot = Ekin + Eint, (5)

Ekin =
∫

d2k

(2π )2

h̄2k2

2m
f (k), (6)

Eint = −1

2

∫
d2k

(2π )2

∫
d2k′

(2π )2
f (k)f (k′)V2d (k − k′), (7)

where f (k) is the Fermi distribution function at T

f (k) = 1

exp{[(ε(k) − µ]/kBT } + 1
, (8)

with Boltzman constant kB and the chemical potential µ. The
single particle energy ε(k) is obtained by solving the self-
consistent HF equation,

ε(k) = h̄2k2

2m
−

∫
d2k′

(2π )2
V2d (k − k′)f (k′), (9)

under the constraint for the number density of fermions in 2D:

n2d =
∫

d2k

(2π )2
f (k). (10)

We note that the mean field interaction energy Eint of
Eq. (7) is the sum of the direct and exchange energy, where a
total cancellation of the short-range interaction V0 of Eq. (3)
occurs due to Fermi statistics. Thus, the divergence of V0 in
the limit of rc → 0 disappears in Eint or Etot.

III. GROUND STATE AND STABILITY
AT ZERO TEMPERATURE

In this section, we obtain the ground state at zero temper-
ature T = 0 in the HF approximation where the distribution
function is replaced by

f (k) = �(εF − ε(k)), (11)

with µ = εF . In this equation, �() denotes Heaviside’s step
function. When the external field tilts with respect to the z

axis, the anisotropy of V2d (q) in the 2D momentum space
causes the deformed Fermi surface. Before the study of
numerical calculations in the HF approximation, we introduce
a variational approach that captures physical insight of the
ground state.

A. Variational method

In Refs. [4,5], we developed a variational method (VM) to
a 3D dipolar Fermi gas, which describes the deformed Fermi
surface with an ellipsoidal shape. In Ref. [16], Bruun and
Taylor applied the VM to a 2D dipolar Fermi gas with the
variational density distribution

f (k) = �

(
k2
F0 − α2k2

x − 1

α2
k2
y

)
, (12)

where the positive parameter α describes an elliptical Fermi
surface and kF0 ≡ √

4πn2d . When θ0 �= 0, the minus sign of
the interaction energy (7) and the anisotropy of V2d (q) tend to
stretch the Fermi surface along the x axis, leading to α < 1.
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Under the assumption of the distribution function of
Eq. (12), the total energy in VM in units of h̄2n2

2d/m is given
by (see Appendix)

Etot = π

2

(
1

α2
+ α2

)
− 32

15
gI (α; θ0), (13)

where g ≡ 4md2kF0/3πh̄2 and I (α; θ0) is defined by

I (α; θ0) ≡ −2P2(cos θ0)

α
E(1 − α4)

+ sin2 θ0

α

{
− 2α4

1 − α4
K(1−α4)+ 1 + α4

1 − α4
E(1−α4)

}
(14)

for α < 1 and I (α; θ0) = −π for α = 1. In Eq. (14), K(m) and
E(m) are the complete elliptic integrals of the first and second
kind defined by

K(m) =
∫ π/2

0
dθ

1√
1 − m sin2 θ

, (15)

E(m) =
∫ π/2

0
dθ

√
1 − m sin2 θ, (16)

respectively. We find the VM ground state by minimizing
the total energy (13), giving rise to an optimized variational
parameter α = α0.

B. Ground-state properties

Figure 2 shows the deformed Fermi surface in the 2D
momentum space in units of kF0 for g = 1.0 and θ0 =
arccos(1/

√
3) where P2(cos θ0) = 0. The crosses and solid

line correspond to results from numerical calculations in the
HF approximation and VM, respectively. It is shown that
the two results match very well, as is the case for a 3D
dipolar Fermi gas [9], and the Fermi wave number derived
from εF = ε(k), kF (φ), is dependent on φ. In Fig. 3, we
plot the aspect ratio of the Fermi surface, kF (π/2)/kF (0),
of the HF and VM ground state as a function of g for
θ0 = 0.1π,0.2π, arccos(1/

√
3). We note that the aspect ratio in

VM is given by kF (π/2)/kF (0) = α2
0; see Eq. (12). This result

reveals that the shape of Fermi surface is well approximated
by the elliptical shape for different values of g and θ0.

VM
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√

3)

kx/kF0

k
y
/
k
F

0

1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5

FIG. 2. Deformed Fermi surface for g = 1.0 and θ0 =
arccos(1/

√
3) derived from numerical calculations in the HF approx-

imation (crosses) and VM (solid line).
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FIG. 3. Aspect ratio of the Fermi surface, kF (π/2)/kF (0), as a
function of g for θ0 = 0.1π , θ0 = 0.2π , and θ0 = arccos(1/

√
3) from

top to bottom. The crosses, blank squares, and filled squares are results
of the HF ground state, and the solid line, dashed line, and dotted line
are results of the VM ground state.

We numerically calculate the Fermi energy, εF , by a partial
derivative of the total energy of the system with respect to
the number density n2d . Figure 4 shows a plot of εF in units
of h̄2n2d/m of the HF and VM ground state as a function of
g for different values of θ0. Again, two of the results agree
very well. As g increases, εF increases for θ0 = 0.1π,0.2π

and decreases for θ0 = arccos(1/
√

3). This result reveals that
an average effect of V2d (q) turns from repulsive to attractive
as the direction of the external field is further apart from the z

axis.

C. Stability condition

We examine the stability of the ground state and obtain a
phase diagram at zero temperature in the g-θ0 plane. To judge
the stability of the system, we take the RPA [27,28] and obtain
the stability condition

1 + V2d (q)χ (q) > 0, (17)

θ0 = arccos(1/
√

3)(VM)
θ0 = 0.2π(VM)
θ0 = 0.1π(VM)

θ0 = arccos(1/
√

3)(HF)
θ0 = 0.2π(HF)
θ0 = 0.1π(HF)

g

m
ε F

/
(h̄

2
n

2
d
)
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25

20

15

10

5

FIG. 4. Fermi energy as a function of g for θ0 = 0.1π , θ0 = 0.2π ,
and θ0 = arccos(1/

√
3) from top to bottom. The crosses, blank

squares, and filled squares are results of the HF ground state, and
the solid line, dashed line, and dotted line are results of the VM
ground state.
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VM (φ = π/2)
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FIG. 5. Single-particle energies ε(k,φ = 0) and ε(k,φ = π/2)
for g = 1.0 and for θ0 = arccos(1/

√
3) derived from numerical

calculations in the HF approximation (crosses and pluses) and VM
(solid and dashed lines). The dotted line represents the Fermi energy
in the HF approximation.

where χ (q) is the density-density response function against
density fluctuations of finite momentum q defined by

χ (q) =
∫

d2k

(2π )2

f (k + q) − f (k)

ε(k) − ε(k + q)
. (18)

As we have seen in the previous subsection, the aspect
ratio and the Fermi energy in VM approximate to those in the
HF approximation quite well. Thus, we calculate the response
function by use of the single-particle energy that reproduces
the variational distribution function (12). The single-particle
energy in VM reads

ε(k) = ε(0) + h̄2

2m
λ2

(
α2

0k
2
x + 1

α2
0

k2
y

)
, (19)

ε(0) = −h̄2k2
F0

4m
gI (α0,θ0), (20)

where λ represents the curvature of the single-particle energy
and is determined by the relationship

εF = ε(0) + λ2 h̄2k2
F0

2m
. (21)

Figure 5 shows the single-particle energy in the HF approxi-
mation and VM as a function of k = |k| at φ = 0 and π/2. The
single-particle energy in the VM matches with that in the HF
approximation below and near the Fermi energy. This result
reveals that the ground-state properties such as Fermi surface
(Fig. 2), aspect ratio (Fig. 3), and Fermi energy (Fig. 4) are
properly reproduced by the VM.

By use of the density distribution (12) and single-particle
energy (19) in Eq. (18), the analytic form of the response
function for q = (q,φ) is obtained by

χ (q) = m

2πλ2h̄2

[
1 −

√
1 −

(
2kF (φ)

q

)2

�(q − 2kF (φ))
]
,

(22)

where the angle-dependent Fermi wave number is given by

kF (φ) = kF0√
α2

0 cos2 φ + 1
α2

0
sin2 φ

. (23)
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χ(
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FIG. 6. Density-density response function in VM.

We plot χ (q) of Eq. (22) in Fig. 6 that is constant below
q � 2kF (φ), monotonically decreasing for q > 2kF (φ), and
shows a singular behavior at q = 2kF (φ).

Apart from θ0 = 0, the 2D dipolar interaction V2d (q) is
anisotropic and is most negative at φ = π/2 for a fixed
magnitude of momentum q. Thus the system is expected to
be unstable against density fluctuations of the momentum
q = (q,π/2). Once the condition

V2d

(
q,

π

2

)
χ

(
q,

π

2

)
� −1 (24)

is fulfilled, the system becomes unstable. The minimum value
of the left-hand side of Eq. (24) occurs at q = 2kF (π/2) =
2α0kF0. Thus, we obtain the instability condition of the system
as

g cos2 θ0
α0

λ2
� 2

3π
= 0.212. (25)

In case this condition is satisfied, the density fluctuation of
the momentum q = 2α0kF along the y axis starts to develop.
This indicates that the phase transition from a normal-phase
gas into a density-wave phase takes place for larger g and
smaller θ0. Note that the expected density wave is a planar wave
transverse to the dipolar direction. As shown in the instability
condition (25), the system becomes unstable even when θ0 = 0
that corresponds to the circular symmetric system. In this case,
the density wave of a spherical wave is possible to appear as a
stable ground state.

In density-wave instability, there are two key ingredients,
that is, the linear momentum dependence of V2d (q) and the
singular behavior of χ (q,π/2) at q = 2α0kF0. Thus, the
present mechanism of the density-wave instability in 2D
dipolar Fermi gases arises from the combined effects of the
long-range nature of the dipole-dipole interaction and the
Fermi surface effect in the 2D system. For 3D dipolar Fermi
gases, the dipole-dipole interaction does not depend on the
magnitude of momentum [4], and the Fermi surface effect is
less significant. Thus, the density-wave phase may not appear
in the 3D system.

Figure 7 shows a phase diagram at zero temperature in
terms of g and θ0. While the density-wave instability is
identified by Eq. (25), the collapse instability is identified with
a negative value of the inverse compressibility, κ−1 < 0 where

κ−1 = 2h̄2n2
2d

m

[
Etot + 7

8
g

∂Etot

∂g
+ 1

8
g2 ∂2Etot

∂g2

]
. (26)
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FIG. 7. Phase diagram at zero temperature in terms of g and θ0.

This result reveals that the density-wave phase transition takes
place in a broad region for larger g and smaller θ0 where the
system is stable against collapse [29].

IV. CRITICAL TEMPERATURE OF THE DENSITY-WAVE
PHASE TRANSITION

In this section, we apply our analysis for RPA stability
into dipolar Fermi gases at finite temperatures and obtain the
critical temperature of the density-wave phase transition.

To do so, we judge the stability condition (17)
with the density-density response function (18) using the
single-particle energy calculated by the self-consistent HF
equation (9) at a finite T without the variational ansatz. A
critical temperature of the phase transition, Tc, is the highest
temperature at which the condition

V2d

(
q,

π

2

)
χ

(
q,

π

2
; Tc

)
= −1 (27)

is fulfilled.
Figure 8 shows Tc in units of ideal gas Fermi temperature

T 0
F ≡ h̄2k2

F0/2mkB , as a function of g for θ0 = 0 (crosses),
θ0 = 0.2π (asterisks), and θ0 = arccos(1/

√
3) (squares). In

Fig. 8, we also plot results by replacing ε(k) in Eq. (8) with
the VM single-particle energy of Eq. (19) where λ and α0
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FIG. 8. Critical temperature Tc with the HF single-particle energy
as a function of g for θ0 = 0 (crosses), θ0 = 0.2π (asterisks), and
θ0 = arccos(1/

√
3) (squares). The solid line, dashed line, and dotted

line are Tc with the VM single-particle energy for θ0 = 0, 0.2π , and
arccos(1/

√
3), respectively.
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FIG. 9. Density-density response function in units of m/h̄2 for
g = 0.928, θ0 = arccos(1/

√
3), and T = 0.02T 0

F in the HF approxi-
mation (solid line) and VM (dashed line).

are results of the corresponding system at zero temperature.
The critical temperature with the HF single-particle energy is
higher than that with the VM single-particle energy for same
g and θ0. This indicates that the response function χ (q,π/2)
at around q = kF (π/2) in the HF approximation is larger than
that in the VM as shown in Fig. 9. This is a consequence
of overestimates at k > kF (π/2) for the VM single-particle
energy, as shown in Fig. 5, which leads to a decrease of
the response function via the denominator of the integrand
in Eq. (18).

It is well known that the charge density-wave instability
in the 1D conductor is due to the nesting property, that is,
the increase of the number of lower energy excitations of
particle-hole pairs near the Fermi surface [22]. The fact that
the curvature of the single-particle energy at φ = π/2 in the
HF approximation is lower than that in VM brings a large
enhancement of the nesting property for a highly deformed
Fermi surface. As shown in Fig. 8, the difference between the
two results is remarkable for larger θ0. Thus, we conclude that
the deformation of the Fermi surface furthers the density-wave
phase transition.

Finally, let us consider how high the critical temperature
will be for a realistic system. For 40K-87Rb polar molecules
with the electric dipole moment of 0.566 D observed by
JILA group [3], m = 127 u, and with the number density of
2.0 × 107 cm−2, we have g = 0.409. Figure 10 reveals that Tc

increases with decreasing θ0 and can be a significant fraction of
TF . Such a high critical temperature suggests that the density
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0 F
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FIG. 10. Critical temperature Tc as a function of θ0 for g = 0.409.
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wave of fermionic polar molecules can be observed in future
experiments [30].

V. SUMMARY

In the present article, we have studied a realization of
the density-wave phase transition in a 2D dipolar Fermi gas
where the dipole moments of fermions are aligned by an ori-
entable external field. To judge the stability of a normal gas, we
have investigated RPA stability against density fluctuations of
finite momentum. We showed that the density-wave instability
takes place in a broad region where the system is stable against
collapse. We found that the critical temperature Tc of the phase
transition in the mean field approximation can be achieved at
a significant fraction of TF for a realistic system of polar
molecules.

As discussed in Ref. [16], the superfluid phase transition
of p-wave Cooper pairs is possible to realize for θ0 >∼
arcsin(2/3) = 0.23π at T = 0. The combination of this and
our conclusions offers a challenging quest for a coexisting
phase of the superfluid and density-wave orders in a 2D dipolar
Fermi gas. This will be discussed in a future publication.

Note added. Recently, we found a preprint by Sun, Wu, and
Das Sarma [31] where the density-wave instability in a 2D
dipolar Fermi gas at zero temperature was studied with results
agree with those presented here.
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APPENDIX: CALCULATION OF VARIATIONAL ENERGY

In this appendix, we obtain the variational energy at zero
temperature under the assumption of the variational distribu-
tion function (12). The total energy in the HF approximation
is composed of the kinetic energy Ekin and interaction energy
Eint defined by Eqs. (6) and (7), respectively.

First, the kinetic energy is easily obtained by

Ekin = h̄2n2
2dπ

2m

(
1

α2
+ α2

)
. (A1)

Next, we calculate the interaction energy

Eint = −1

2

∫
d2k

(2π )2

∫
d2k′

(2π )2
f (k)f (k′)V2d (k − k′)

= −4d2

π3
k5
F0I (α; θ0)C,

where I (α; θ0) is defined by Eq. (14) and

C =
∫ ∞

0
dx x2

∫ ∞

0
dyy

∫ π/2

0
dφ�(1−x2−y2−2xy cos φ).

We define the function f (φ) as

f (φ) = 1 − x2 − y2 − 2xy cos φ � fmin,

where fmin = 1 − (x + y)2. If fmin � 0, then �(f (φ)) = 1 for
0 � φ � π/2; otherwise, �(f (φ)) = 1 for φ0 � φ � π/2 and
�(f (φ)) = 0 for 0 � φ < φ0 where the angle φ0 is determined
by f (φ0) = 0, that is

φ0 = arccos

(
1 − x2 − y2

2xy

)
.

With C = C1 − C2, where

C1 = π

2

∫ 1

0
dx x2

∫ √
1−x2

0
dy y = π/30

and

C2 =
∫ 1

0
dx x2

∫ √
1−x2

1−x

dy y arccos

(
1 − x2 − y2

2xy

)
= π/30 − 2/45,

we obtain the interaction energy as

Eint = −32

15

h̄2n2
2d

m
gI (α; θ0). (A2)

Combining Eq. (A1) and Eq. (A2), we obtain the variational
energy as

Etot = h̄2n2
2d

m

[
π

2

(
1

α2
+ α2

)
− 32

15
gI (α; θ0)

]
. (A3)
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