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Abstract

Delsarte, Goethals, and Seidel (1977) used the linear programming method in order
to find bounds for the size of spherical codes endowed with prescribed inner products
between distinct points in the code. In this paper, we develop the linear programming
method to obtain bounds for the number of vertices of connected regular graphs endowed
with given distinct eigenvalues. This method is proved by some “dual” technique of the
spherical case, motivated from the theory of association scheme. As an application of
this bound, we prove that a connected k-regular graph satisfying g > 2d − 1 has the
minimum second-largest eigenvalue of all k-regular graphs of the same size, where d is the
number of distinct non-trivial eigenvalues, and g is the girth. The known graphs satisfying
g > 2d − 1 are Moore graphs, incidence graphs of regular generalized polygons of order
(s, s), triangle-free strongly regular graphs, and the odd graph of degree 4.

Key words: linear programming bound, graph spectrum, expander graph, Ramanujan graph,
distance-regular graph, Moore graph.

1 Introduction

Delsarte [19] has introduced the linear programming method to find bounds for the size of
codes with prescribed distances over finite field. This is called Delsarte’s method, and he
stated it for codes in certain special association schemes, so called Q-polynomial schemes,
including the Johnson scheme and the Hamming scheme. Delsarte, Goethals, and Seidel [20]
gave the linear programming method on the Euclidean sphere. This is naturally generalized
to the compact two-point homogeneous spaces [35]. Delsarte’s method is also extended to
various situations like the permutation codes [49], the Grassmannian codes [4], or the ordered
codes [8]. The linear programming is very powerful to solve optimization problems, for in-
stance maximizing the size of codes for given distances [43, 41], or maximizing the minimum
distance for a fixed cardinality [37, 15]. In the present paper, we develop the linear program-
ming method to find bounds for the order of connected regular graphs with given distinct
eigenvalues. This method is not based on Delsarte’s but a kind of “dual” technique of the
spherical case inspired from the theory of association schemes.

Let X be a finite set, and R0, . . . , Rd symmetric binary relations on X. The i-th adjacency
matrix Ai is defined to be the matrix indexed by X whose (x, y)-entry is 1 if (x, y) ∈ Ri,
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0 otherwise. A configuration X = (X, {Ri}di=0) is called a symmetric association scheme of

class d if {Ai}di=0 satisfies the following: (1) A0 = I (identity matrix), (2)
∑d

i=0Ai = J

(all-ones matrix), (3) there exist real numbers pkij such that AiAj =
∑d

k=0 p
k
ijAk for all

i, j ∈ {0, 1, . . . , d}. The vector space A spanned by {Ai}di=0 over C forms a commutative
algebra, and it is called the Bose–Mesner algebra of X. It is well known that A is semi-simple
[6, Section 2.3, II], hence it has the primitive idempotents E0 = (1/|X|)J ,E1, . . . ,Ed, which
form a basis of A.

We have two remarkable classes of association schemes so called P -polynomial association
schemes and Q-polynomial association schemes. An association scheme is said to be P -
polynomial if for each i ∈ {0, 1, . . . , d} there exists a polynomial vi of degree i such that
Ai = vi(A1). A P -polynomial scheme has the relations as the path distances of the graph
(X,R1), and (X,R1) becomes a distance-regular graph [11]. An association scheme is said
to be Q-polynomial if for each i ∈ {0, 1, . . . , d} there exists a polynomial v∗i of degree i
such that |X|Ei = v∗i (|X|E◦

1), where ◦ means the multiplication is the entry-wise product.
Roughly speaking, the P -polynomial schemes and the Q-polynomial schemes correspond to
discrete cases of the concepts of two-point homogeneous spaces and rank 1 symmetric spaces,
respectively [6, Section 3.6, III], [16, Chapter 9].

By swapping the matrix multiplication · and the entry-wise multiplication ◦, the bases
{Ai}di=0 and {Ei}di=0 very similarly behave in the Bose–Mesner algebra. The following are
basic equations for the bases [6, Section 2.2, 2.3, II]:

d∑
i=0

Ai = J = |X|E0,

d∑
i=0

Ei = I = A0, (1)

Ai ◦Aj = δijAi, Ei ·Ej = δijEi, (2)

Ai ·Aj =

d∑
k=0

pkijAk, Ei ◦Ej =
1

|X|

d∑
k=0

qkijEk, (3)

Ai =

d∑
j=0

Pi(j)Ej , Ei =
1

|X|

d∑
j=0

Qi(j)Aj , (4)

Ai · J = kiJ , |X|Ei ◦ I = miI, (5)

Ai ◦ I = 0 (i ̸= 0), Ei · J = 0 (i ̸= 0), (6)

τ(Ai) = |X|ki, tr(Ei) = mi, (7)

tr(Ai) = 0 (i ̸= 0), τ(Ei) = 0 (i ̸= 0), (8)

k0 = 1, m0 = 1, (9)

where δij denotes the Kronecker delta, τ(M) denotes the summation of all entries in M , ki
is the degree of the graph (X,Ri), and mi is the rank of Ei. Here pkij is called the intersection
number, and it is equal to the size of {z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj} with (x, y) ∈ Rk.
Naturally pkij is a non-negative integer. On the other hand, qkij is called the Krein number, it
can be proved that it is a non-negative real number [46]. Such a kind of similar properties
obtained by swapping Ai, Ei, multiplications, and corresponding parameters is called a dual
property. It is obviously seen that the dual concept of P -polynomial scheme is Q-polynomial
scheme. There are a number of non-trivial dual properties between P -polynomial schemes
and Q-polynomial schemes [39, 6], and several conjectures are still left [39].
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Table 1: Dual properties between regular graph and spherical set

regular graph spherical set reason

A: adjacency matrix E: Gram matrix bases
k: degree m: dimension (5),(7)
regular spherical (5)

eigenvalues inner products (4)
connected constant weight (9)
no loop spherical 1-design (6)

no multiple edge spherical 2-design (2)
τ tr (7), (8)

Moore graph tight spherical design tightness

F
(k)
i (x) Q(m)

i (x)

tr(F
(k)
i (A)) ≥ 0 τ(Q(m)

i (E◦)) ≥ 0 [48, 20]

tr(F
(k)
i (A)) = 0 for 1 ≤ i ≤ g − 1 τ(Q(m)

i (E◦)) = 0 for 1 ≤ i ≤ t
⇔ girth g ⇔ spherical t-design [48, 20]

The matrix Ai is regarded as a regular graph. The matrix Ei is positive semidefinite with
equal diagonals, and it is interpreted as a spherical set. We can observe the dual relationship
of Ai and Ei in the Bose–Mesner algebra, and it shows how properties of graphs dually
correspond to those of spherical sets. For example, (4) says that eigenvalues of graphs dually
correspond to inner products in spherical sets. Table 1 shows the dual correspondence of the
properties of graphs and spherical sets.

We can interpret the Euclidean sphere Sm−1 as a continuous case of Q-polynomial scheme.

The polynomial v∗i on aQ-polynomial scheme corresponds to the Gegenbauer polynomialQ(m)
i

on Sm−1 [20]. We have fundamental parameters s and t for a finite subset X in Sm−1. The
parameter s is just the number of the Euclidean distances between distinct points in X. If X
has only s distances, then we have

|X| ≤
(
m+ s− 1

s

)
+

(
m+ s− 2

s− 1

)
. (10)

The other parameter t is the strength in the sense of spherical design. We call X a spherical
t-design if for any polynomial f in m variables of degree at most t the following equation
holds:

1

|Sm−1|

∫
Sm−1

f(x)dx =
1

|X|
∑
x∈X

f(x),

where |Sm−1| is the volume of Sm−1. One of unexpected results is that if t ≥ 2s − 2 holds,
then X has the structure of a Q-polynomial scheme with the relations of distances [20]. For
a spherical 2e-design X in Sm−1, we have an absolute bound [20]:

|X| ≥
(
m+ e− 1

e

)
+

(
m+ e− 2

e− 1

)
.

A spherical design is said to be tight if it attains this equality. A tight design satisfies t = 2s
[20], and hence it becomes a Q-polynomial scheme. A tight design also attains the bound

(10). Moreover the polynomial v∗i of a tight design coincides with Q(m)
i .
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For connected regular graph, we have a very similar situation to the above argument on
the sphere. Let G be a connected k-regular graph with v vertices. Throughout this paper, we
assume a graph is simple. Since a graph with d+1 distinct eigenvalues is of diameter at most
d, we can change the assumption of the Moore bound to the number of eigenvalues. Namely
if G has only d+ 1 distinct eigenvalues, then we have

v ≤ 1 + k

d−1∑
j=0

(k − 1)j .

If equality holds, then G is called a Moore graph. Tutte [50] showed that if G is of girth 2e+1,
then we have

v ≥ 1 + k

e−1∑
j=0

(k − 1)j .

The graph that attains this equality becomes a Moore graph. It is well known that a Moore
graph is distance-regular. Actually we can show that if g ≥ 2d− 1 holds, then G is distance-

regular (Theorem 6). Let F
(k)
i be the polynomial of degree i defined by (11) and (12) in

Section 2. The polynomial vi of a k-regular Moore graph coincides with F
(k)
i . Apparently

the dual concept of tight spherical design is Moore graph, and the polynomial F
(k)
i dually

corresponds to the Gegenbauer polynomial Q(m)
i .

The linear programming method for spherical codes is essentially based on the positive

definiteness of the Gegenbauer polynomials, namely τ(Q(m)
i (E◦)) ≥ 0, where E is the Gram

matrix. In this paper, we dually show the linear programming method for connected regular

graphs by using the property tr(F
(k)
i (A)) ≥ 0, where A is the adjacency matrix.

We can apply the linear programming method for determining the graph maximizing the
spectral gap. The spectral gap of a graph is the difference between the first and second largest
eigenvalues of the graph. The edge expansion ratio h(G) of a k-regular graph G = (V,E) is
defined as

h(G) = min
S⊂V,|S|≤|V |/2

|∂S|
|S|

,

where ∂S = {{u, v} | u ∈ S, v ∈ V \ S, {u, v} ∈ E}. By the spectral gap τ of G, we
have τ/2 ≤ h(G) ≤

√
2kτ [2, 3, 21]. This implies that a graph with large spectral gap has

high connectivity. The second-largest eigenvalue cannot be much smaller than 2
√
k − 1 [2].

Ramanujan graphs have an asymptotically smallest possible second-largest eigenvalue (see
[33]). Several regular graphs with very small second-largest eigenvalues are determined (see
[36]).

The dual concept of the graphs maximizing the spectral gap is well known as optimal
spherical code in the sense of maximizing the minimum distance. The optimal configurations
of n points on S2 are known only for n ≤ 13, and n = 24 [22, Chapter 3], [42]. For higher
dimensions, the linear or semidefinite programming bound determined many optimal codes
[37, 15, 5]. In particular, we have a strong theorem using the parameters s and t, namely if
t ≥ 2s − 1 holds, then the set is optimal [37, 15]. In the present paper, as the dual theorem
of it, we prove that a connected k-regular graph satisfying g ≥ 2d has the minimum second-
largest eigenvalue of all k-regular graphs of the same size, where d is the number of distinct
non-trivial eigenvalues, and g is the girth.
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2 Linear programming method

In the present section, we give the linear programming bounds for connected regular graphs.

First let us introduce certain polynomials F
(k)
i (x) which play a key role in the linear program-

ming method. Indeed F
(k)
i (x) is the polynomial attached to the homogeneous tree of degree

k, which is an infinite distance-regular graph.
A graph G = (V,E) is said to be locally finite if the degree of any vertex is finite. We

also consider an infinite graph here. A path in a graph is a sequence of vertices, where any
two consecutive vertices are connected. Let d(x, y) be the shortest path distance from x ∈ V
to y ∈ V . The i-th distance matrix Ai of G is defined to be the matrix indexed by V whose
(x, y)-entry is 1 if d(x, y) = i, 0 otherwise. In particular A1 is called the adjacency matrix of
G.

A locally finite graph G = (V,E) is called a distance-regular graph if for any choice of
x, y ∈ V with d(x, y) = k, the number of vertices z ∈ V such that d(x, z) = i, d(z, y) = j
is independent of the choice x, y. For x, y ∈ V with d(x, y) = k, the number pkij = |{z ∈
V |d(x, z) = i, d(z, y) = j}| is called the intersection number of a distance-regular graph.
We use the notation ai = pi1,i, bi = pi1,i+1, and ci = pi1,i−1. The intersection array of a
distance-regular graph is defined to be ∗ c1 c2 · · ·

a0 a1 a2 · · ·
b0 b1 b2 · · ·

 .

The matrix Ai of a distance-regular graph can be written as the polynomial vi in A1 of degree
i [11, page 127], where vi is defined by

v0(x) = 1, v1(x) = x,

ci+1vi+1(x) = (x− ai)vi(x)− bi−1vi−1(x) (i = 1, 2, . . .).

A homogeneous tree of degree k is an infinite distance-regular graph with intersection
numbers

b0 = k, bi = k − 1(i = 1, 2, . . .), ci = 1(i = 1, 2, . . .), ai = 0(i = 0, 1, 2, . . .).

Let F
(k)
i denote a polynomial of degree i defined by:

F
(k)
0 (x) = 1, F

(k)
1 (x) = x, F

(k)
2 (x) = x2 − k, (11)

and
F

(k)
i (x) = xF

(k)
i−1(x)− (k − 1)F

(k)
i−2(x) (12)

for i ≥ 3. Let q =
√
k − 1. The polynomials F

(k)
i form a sequence of orthogonal polynomials

with respect to the weight

w(x) =

√
4q2 − x2

k2 − x2
(13)

on the interval [−2q, 2q] (see [34, Section 4]). Note that F
(k)
i (k) = k(k − 1)i−1 for any i ≥ 1.

A path u0 ∼ u1 ∼ · · · ∼ up is said to be reducible if any sequence ui ∼ uj ∼ ui appears
[48]. A path is said to be irreducible if the path is not reducible.
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Theorem 1 ([48]). Let G be a connected k-regular graph with adjacency matrix A. Then the

(u, v)-entry of F
(k)
i (A) is the number of irreducible paths of length i from u to v.

By Theorem 1, the following is obvious.

Corollary 1. Let G be a connected k-regular graph with adjacency matrix A. Then the
following are equivalent.

(1) tr(F
(k)
i (A)) = 0 for each 1 ≤ i ≤ g − 1, and tr(F

(k)
g (A)) ̸= 0.

(2) G is of girth g.

The following is the linear programming bound for connected regular graphs.

Theorem 2. Let G be a connected k-regular graph with v vertices. Let τ0 = k, τ1, . . . , τd be

the distinct eigenvalues of G. Suppose there exists a polynomial f(x) =
∑

i≥0 fiF
(k)
i (x) such

that f(k) > 0, f(τi) ≤ 0 for any i ≥ 1, f0 > 0, and fi ≥ 0 for any i ≥ 1. Then we have

v ≤ f(k)

f0
. (14)

Proof. Let A be the adjacency matrix of G. From the spectral decomposition A =
∑d

i=0 τiEi,
we have

d∑
i=0

f(τi)Ei = f(A) =
∑
i≥0

fiF
(k)
i (A) = f0I +

∑
i≥1

fiF
(k)
i (A). (15)

Taking the traces in (15), we have

f(k) = tr(f(k)E0) ≥ tr(
d∑

i=0

f(τi)Ei) = tr(f0I +
∑
i≥1

fiF
(k)
i (A)) ≥ tr(f0I) = vf0.

Therefore we have v ≤ f(k)/f0.

Remark 1. We can normalize f0 = 1 in Theorem 2.

Remark 2. Let f be a polynomial which satisfies the condition in Theorem 2. The equality

holds in (14) if and only if fitr(F
(k)
i (A)) = 0 for any i = 1, . . . , deg(f), and f(τi) = 0 for any

i = 1, . . . , d. In particular, if fi > 0 for any i, then the girth of G is at least deg(f) + 1 by
Corollary 1.

Remark 3. Theorem 2 can be expressed as the following linear programming problem and
its dual.

v ≤ max
mi

{
1 +m1 + · · ·+md | −

∑d
i=1 miF

(k)
j (τi) ≤ F

(k)
j (k), j = 1, . . . , u,

mi ≥ 0, i = 1, . . . , d

}
,

v ≤ min
fj

{
1 + f1F

(k)
1 (k) + · · ·+ fuF

(k)
u (k) | −

∑u
j=1 fjF

(k)
j (τi) ≥ 1, i = 1, . . . , d,

fj ≥ 0, j = 1, . . . , u

}
,

where u is the degree of f , mi is the multiplicity of τi and f0 = 1.

Remark 4. Delsarte, Goethals, and Seidel [20] gave the linear programming bounds for
spherical codes by using inner products and Gegenbauer polynomials, instead of eigenvalues

and F
(k)
i . This is the dual version of Theorem 2.
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3 Minimizing the second-largest eigenvalue

For fixed v and k, a graph G is said to be extremal expander if G has the minimum second-
largest eigenvalue in all k-regular graphs of order v. A disconnected graph is not extremal
expander, because the first and second largest eigenvalues are equal. In the present section,
we obtain extremal expander graphs for several v and k by applying the linear programming

method. First we give several results related to F
(k)
i (x).

Theorem 3. Let F
(k)
i (x)F

(k)
j (x) =

∑i+j
l=0 pl(i, j)F

(k)
l (x) for real numbers pl(i, j). Then we

have p0(i, j) = F
(k)
i (k)δij and pl(i, j) ≥ 0 for all l, i, j. Moreover pl(i, j) > 0 if and only if

|i− j| ≤ l ≤ i+ j and l ≡ i+ j (mod 2).

Proof. Let Tk be a homogeneous tree of degree k. Let Ai be the i-th distance matrix of Tk,

and pkij the intersection number of Tk. Since F
(k)
i (x) is the polynomial attached to Tk, we

have

i+j∑
l=0

pl(i, j)Al =

i+j∑
l=0

pl(i, j)F
(k)
l (A1) = F

(k)
i (A1)F

(k)
j (A1) = AiAj =

i+j∑
l=0

plijAl. (16)

Clearly pl(i, j) = plij holds. This theorem now follows by a counting argument.

Since F
(k)
i+1(k)− (k − 1)F

(k)
i (k) = 0 holds, let G

(k)
i (x) denote the polynomial of degree i

G
(k)
i (x) =

F
(k)
i+1(x)− (k − 1)F

(k)
i (x)

x− k

for any i ≥ 1, and G
(k)
0 (x) = 1. By the three-term recurrence relation (12), it holds that

G
(k)
i (x) =

i∑
j=0

F
(k)
j (x).

From Lemmas 3.3, 3.5 in [15], G0, G1, . . . are monic orthogonal polynomials with respect to
the positive weight u(x) = (k − x)w(x) on the interval [−2q, 2q], where w(x) is defined in
(13).

Theorem 4 ([15, Theorem 3.1]). Let p0, p1, . . . be monic orthogonal polynomials with deg(pi) =
i. Then for any α ∈ R, the polynomial pn + αpn−1 has n distinct real roots r1 < · · · < rn.
Moreover for k < n,

∏k
i=1(x− ri) has positive coefficients in terms of p0(x), p1(x), . . . , pk(x).

The following is a key theorem.

Theorem 5. Let G be a connected k-regular graph of girth g. Assume the number of distinct
eigenvalues of G is d+ 1. If g ≥ 2d holds, then G is an extremal expander graph.

Proof. Let τ0 = k > τ1 > . . . > τd be the distinct eigenvalues of G. We show the polynomial

f(x) = (x− τ1)

d∏
i=2

(x− τi)
2 =

2d−1∑
i=0

fiF
(k)
i (x)
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satisfies the condition in Theorem 2. It trivially holds that f(k) > 0, and f(τi) = 0 for any
i = 1, . . . , d.

Let A be the adjacency matrix of G. If the diameter of G is greater than d, then the
number of distinct eigenvalues is greater than d + 1. Thus the diameter of G is at most
d. Since g ≥ 2d holds, the diameter is exactly d. Then G partially has the structure of

a homogeneous tree around any vertex, namely F
(k)
i (A) = Ai for any i = 0, 1, . . . , d − 1.

Because the Hoffman polynomial [31] of G is of degree d, there exists a natural number e such
that

d−1∑
i=0

F
(k)
i (A) +

1

e
F

(k)
d (A) = J ,

where J is the all-ones matrix. Note that the roots of the Hoffman polynomial P (x) =∑d−1
i=0 F

(k)
i (x) + (1/e)F

(k)
d (x) are the non-trivial distinct eigenvalues of G [31].

For some positive constant number c, the polynomial f(x) can be expressed as

f(x) =
cP (x)2

x− τ1
=

c

e

G
(k)
d (x)− (1− e)G

(k)
d−1(x)

x− τ1
P (x).

By Theorem 4, g(x) = (G
(k)
d (x)− (1− e)G

(k)
d−1(x))/(x− τ1) has positive coefficients in terms

of G
(k)
0 (x), G

(k)
1 (x), . . . , G

(k)
d−1(x). This implies that g(x) has positive coefficients in terms of

F
(k)
0 (x), F

(k)
1 (x), . . . , F

(k)
d−1(x). By Theorem 3, it is shown that f(x) has positive coefficients

in terms of F
(k)
0 (x), F

(k)
1 (x), . . . , F

(k)
2d−1(x). Thus f(x) satisfies the condition in Theorem 2.

By Remark 2, G attains the linear programming bound obtained from f(x). Assume there
exists a graph G′ such that its second-largest eigenvalue is smaller than τ1, and it has the
same number of vertices as G. Then G′ also attains the linear programming bound obtained
from f(x). By Remark 2, G′ has only d distinct eigenvalues, and the girth of G′ is at least 2d.
Therefore G′ is of diameter at least d, it contradicts that the number of distinct eigenvalues
of G′ is greater than d. Thus G is an extremal expander graph.

Remark 5. Levenshtein [37] proved that a spherical s-distance set of strength t satisfying
t ≥ 2s − 1 is an optimal spherical code in the sense of maximizing the minimum distance.
This result is the dual version of Theorem 5. Cohn and Kumar [15] extended this result to
universally optimal codes.

We characterize connected regular graphs satisfying g ≥ 2d as follows.

Theorem 6. Let G be a connected k-regular graph of girth g, and with only d + 1 distinct
eigenvalues. If g ≥ 2d− 1 holds, then G is a distance-regular graph of diameter d.

Proof. Brouwer and Haemers [12] proved that a graph with the spectrum of a distance-regular
graph with diameter D and girth at least 2D − 1, is such a graph. The proof in [12] used
the fact that regularity, connectedness, girth, and diameter of a graph are determined by the
spectrum. Therefore the theorem of Brouwer and Haemers is interpreted as that a connected
regular graph with g ≥ 2D−1 is distance-regular. In general we have d ≥ D. Therefore in our
condition, g ≥ 2d− 1 ≥ 2D− 1 holds, and G is distance-regular. Since G is distance-regular,
d is equal to the diameter [11, Section 4.1].

Abiad, Van Dam, and Fiol [1] proved Theorem 6 independently.
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Table 2: Extremal expander graphs
v k g Eigenvalues Name

g 2 g 2 cos(2kπ/n); 1 ≤ k ≤ n− 1 g-cycle Cg

k + 1 k 3 0 complete Kk+1

2k k 4 0,−k comp. bipartite Kk,k

2
∑2

i=0 q
i q + 1 6 ±√

q,−(q + 1) inc. graph of PG(2, q) [48, 11]

2
∑3

i=0 q
i q + 1 8 ±

√
2q, 0,−(q + 1) inc. graph of GQ(q, q) [9, 11]

2
∑5

i=0 q
i q + 1 12 ±

√
3q,±√

q, 0,−(q + 1) inc. graph of GH(q, q) [9, 11]
10 3 5 15, (−2)4 Petersen [32]
50 7 5 228, (−3)21 Hoffman–Singleton [32]
35 4 6 214, (−1)14, (−3)6 Odd graph [40]
16 5 4 110, (−3)5 Clebsch [47, 25]
56 10 4 235, (−4)20 Gewirtz [12, 25]
77 16 4 255, (−6)21 M22 [30, 25]
100 22 4 277, (−8)22 Higman–Sims [30, 25]

PG(2, q): projective plane, GQ(q, q): generalized quadrangle,
GH(q, q): generalized hexagon, q: prime power

Remark 6. Delsarte, Goethals, and Seidel [20] proved that a spherical s-distance set of
strength t satisfying t ≥ 2s− 2 has the structure of a Q-polynomial association scheme. This
result is the dual version of Theorem 6.

The distance-regular graph with g ≥ 2d is called a Moore polygon [18] and it has the
following intersection array:∗ 1 1 · · · 1 c

0 0 0 · · · 0 k − c
k k − 1 k − 1 · · · k − 1 ∗

 ,

where c is a natural number. If c = 1, then the graph is a Moore graph and it does not exist
for d ≥ 3 (with k ≥ 3) [7, 17]. If c = k, then the graph is an incidence graph of a regular
generalized polygon of order (s, s) [11, Section 6.9], and it does not exist for d ≥ 7 (with
k ≥ 3) [23]. If c ̸= 1, k, then the graph is called a non-trivial Moore polygon, and it does not
exist for d ≥ 6 [18]. Strongly regular graphs of girth 4 are non-trivial Moore polygons.

Table 2 shows known examples of extremal expander graphs satisfying g ≥ 2d. The
following graphs are unique: Petersen graph [32], Hoffman–Singleton graph [32], Odd graph
[40], Clebsch graph [26, Theorem 10.6.4], Gewirtz graph [24], M22 graph [10], Higman–Sims
graph [24], PG(2, q) for q ≤ 8 [38, 27, 29], GQ(q, q) for q ≤ 4 [44, 45], and GH(2, 2) [14]. For
PG(2, 9), there are four non-isomorphic graphs [28, 51]. The uniqueness of other examples in
Table 2 is open.
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