
1. A motivation from a card trick

Suppose that you have eight cards in hand and choose a card from them in your mind. Hold the

deck face-up in one hand, and deal it into two piles with face up, like left, right, left, right.... After

that pick the pile containing the chosen card with face up, and stack the remaining pile face-up on it.

Repeat this process three times. Then hold the deck face-down and turn off the top card. Is it the

card you choose? - NO. Turn off the next. Is it? - NO. Do it again. Is it? - YES! Figure 1 illustrates

the process, where the number 1 is the target.
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Figure 1. 8-card trick (the number 1 is the target.)

As you see, this trick is a variation of the well-known 21-card trick or Gergonne’s trick, which was

observed firstly by J. D. Gergonne[6]. It may be natural to understand this trick as an existence of

an attracting fixed point of some discrete dynamical system. Actually the behavior of the target card

is emulated by the map T : {0, 1, . . . , 7} → {0, 1, . . . , 7},

T (x) =

{
7− x

2 , if the target is in the left pile, i.e., its position x is even,

7− x−1
2 , if the target is in the right pile, i.e., its position x is odd,

= 7−
�x
2

�
,

which has the unique stable fixed point x = 5, third from the bottom of the deck. Gergonne’s trick is

generalized to p-pile version, where the number n of cards is multiple of p [3][7], however, in this paper

we prove the existence of a unique stable fixed point or a unique doubly periodic point for arbitrary

n and p (Theorem 2.7): it is not necessary that the p piles are of the same number of cards. For

instance, in the case of 11-card with two piles, the target is fixed at fourth from the bottom, while in

the case of 9-card with two piles, the target appears at third and fourth from the bottom alternately.

Such a kind of card tricks are often treated as a combinatorial matter or a phenomenon caused by

some discrete dynamics. In [7], p-pile problem with n = hp cards has been translated into a dynamics

of f : x �→
�
x+ r

p

�
, which has been analysed in combinatorial manner. In contrast to their approach,

we introduce a suitable continuous map which approximates the piecewise constant map associated

with the p-pile problem like T (x) stated above, so that the orbit of each x under the continuous map

accompanies the orbit under the piecewise constant one. As a result, the global stability of the fixed

point of the continuous map is inherited to the fixed point of the piecewise constant map.
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2. Continuous approximation

Let p < n be natural numbers with n = Ap + B, 0 ≤ B < p. We deal n pieces of cards into p

piles and stack them again in following way: hold the deck face-up, and deal it face-up from the top

to the bottom; deal each p pieces of cards (and B pieces of cards at the last turn) into p piles in

random order. Then pick the pile face-up which contains the target card and stack the remaining

piles face-up on it. We call this process p-shuffle. p-shuffle causes a permutation on {0, . . . , n − 1},
where we assign k − 1 to the k-th card from the top of the deck. Then the target is traced by a map

T : {0, . . . , n− 1} → {0, . . . , n− 1} as follows.

Proposition 2.1. p-shuffle moves the target at the position x ∈ {0, 1, . . . , n− 1} to the position at

(2.1) T (x) = n− 1−
�
x

p

�
.

Proof. Since any x ∈ {0, . . . , n− 1} is written as x = kp+ q where k =
�
x
p

�
and 0 ≤ q < p, the target

appears after k times repetition of dealing p cards to p piles. Thus the target is stacked at the k+1-th

from the bottom of the pile. As p-shuffle arranges the pile containing the target at the bottom of the

deck, the target is at the (k + 1)-th from the bottom of the deck. Thus T (x) = n− 1− k. �

It is convenient for our discussion to change coordinates as

(2.2) S(x) = n− 1− T (n− 1− x) =

�
n− 1− x

p

�
,

and we introduce a ‘continuous approximation’

(2.3) F (x) =
n− 1− x

p

of S(x).

Let us observe how the trajectory of F (x) escorts that of S(x). For any x ∈ R, x denotes the

maximum

x = max{x′ | S(x′) = S(x)}.
By definition, for any ε > 0 we have

S(x+ ε) =

�
n− 1− (x+ ε)

p

�
<

�
n− 1− x

p

�
= S(x),

which means S(x) =

�
n− 1− x

p

�
=

n− 1− x

p
= F (x) and x ∈ Z. Also we see

(2.4) {x′ | S(x′) = S(x)} = (x− p, x]

and S(x− p) = S(x) + 1 = F (x− p).

Proposition 2.2. Take a, b ∈ R with |a− b| < 1, and put ak = F k(a), a0 = a and bk = Sk(b), b0 = b.

Then |ak − bk| < 1 holds for any k ∈ N. In particular,

|F k(x)− Sk(x)| < 1

holds for any x ∈ R and k ∈ N.

Proof. Suppose that |ak − bk| < 1 holds for some k ≥ 0. We see S(bk) = S(bk) = F (bk) by definition.

It follows from bk ∈ (bk − p, bk] and bk, bk ∈ Z that |bk − bk| ≤ p− 1. Thus we have

|ak+1 − bk+1| = |F (ak)− S(bk)| = |F (ak)− F (bk)| =
1

p
|ak − bk|

≤ 1

p

(
|ak − bk|+ |bk − bk|

)
<

1

p
(1 + p− 1) = 1,
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hence the assertion for ak’s and bk’s. Since F (x)−S(x) gives the fractional part of F (x), the assertion

holds in the case of a = b = x. �

The dynamics F (x) has a unique fixed point x∗ =
n− 1

p+ 1
. As F (x) is decreasing, x∗ < x (resp.

x < x∗) leads F (x) < F (x∗) = x∗ < x (resp. x < x∗ < F (x)). It comes from the equation

|F (x)− F (x∗)| = 1

p
|x− x∗| for any x that

|F k(x)− F k(x∗)| = 1

p
|F k−1(x)− F k−1(x∗)| = · · · = 1

pk
|x− x∗|,

which shows x∗ is globally stable. Similar assertion holds on S(x), however, whose discreteness causes

a little bit modification as follows.

Proposition 2.3. For x◦ =

⌊
n− 1

p+ 1

⌋
, S(x◦) = x◦ holds when n �≡ 0 (mod p + 1). When n ≡

0 (mod p+ 1), we have S(x◦) = x◦ + 1 and S(x◦ + 1) = x◦.

Proof. As S(x) ∈ Z, x = S(x) means x ∈ Z and

n− 1− x

p
= x+

t

p
, i.e., (p+ 1)x = n− 1− t

holds for some t = 0, . . . , p−1, hence n ≡ t+1 �≡ 0 (mod p+1). Thus for n = h(p+1)+ t with h ∈ Z

and t = 1, 2 . . . , p, we see

x◦ =

⌊
n− 1

p+ 1

⌋
= h+

⌊
t− 1

p+ 1

⌋
= h

and

S(x◦) =

⌊
n− 1− h

p

⌋
= h+

⌊
t− 1

p

⌋
= h,

hence S(x◦) = x◦. When n = h(p+ 1), we see

x◦ =

⌊
n− 1

p+ 1

⌋
= h+

⌊
− 1

p+ 1

⌋
= h− 1.

Therefore we have

S(x◦) =

⌊
n− 1− (h− 1)

p

⌋
= h = x◦ + 1 and S2(x◦) =

⌊
n− 1− h

p

⌋
= h+

⌊
−1

p

⌋
= h− 1 = x◦.

�

Since Proposition 2.2 shows that the dynamics of F (x) approximates that of S(x), and F (x) has

the unique globally stable fixed point x∗, we also expect that x◦ is a unique globally stable fixed or

doubly periodic point of S(x). Actually it is true. To show this, we need following technical results.

Proposition 2.4. For any real numbers a, b, consider sequences ak+1 = F (ak), a0 = a and bk+1 =

S(bk), b0 = b, and suppose that |ak−bk| < 1 holds for any k ∈ N. If bk−ak ≥ 1

p+ 1
or ak−bk ≥ p

p+ 1

holds for some k, then |al − bl| ≥
1

p+ 1
for all l ≤ k.

Proposition 2.4 is a consequence of following lemma.

Lemma 2.5. Under the notations and the assumptions stated in Proposition 2.4, we see followings.

(1) If ak+1 ≤ bk+1, then it holds that

ak ≥ bk = bk and 0 ≤ bk+1 − ak+1 <
1

p
.

(2) If bk+1 − ak+1 ≥
1

p+ 1
, then ak − bk ≥ p

p+ 1
holds.
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(3) If ak+1 − bk+1 ≥
p

p+ 1
, then bk − ak ≥ 1

p+ 1
holds.

Proof. (1)Since F (x) is decreasing and bijective, the inequality F (ak) ≤ S(bk) = S(bk) = F (bk) means

bk ≤ bk ≤ ak. Then the assumption |ak − bk| < 1 derives bk = bk as bk, bk ∈ Z. Hence

bk+1 − ak+1 = S(bk)− F (ak) = F (bk)− F (ak) =
1

p
(ak − bk) =

1

p
(ak − bk) <

1

p
.

(2) Suppose bk+1 − ak+1 ≥
1

p+ 1
, then (1) shows bk = bk and ak > bk. Thus

1

p+ 1
≤ S(bk)− F (ak) = F (bk)− F (ak) =

ak − bk
p

=
ak − bk

p
,

hence the inequality.

(3) As bk+1 = S(bk) = F (bk), we have

p

p+ 1
≤ ak+1 − bk+1 = F (ak)− F (bk) =

bk − ak
p

,

hence

(2.5) ak ≤ bk − p+ 1− 1

p+ 1
.

Combining the assumption |ak − bk| < 1 and the fact bk ∈ (bk − p, bk]∩Z, we see bk = bk − p+1 > ak.

Substituting bk = bk + p− 1 in (2.5), we get the inequality bk − ak ≥ 1

p+ 1
. �

Proof. (proof of Proposition 2.4)

It comes from Lemma 2.5 that bk − ak ≥ 1

p+ 1
induces ak−1 − bk−1 ≥ p

p+ 1
>

1

p+ 1
, hence

bk−2 − ak−2 ≥
1

p+ 1
and so on. Inductively we obtain bl − al ≥

1

p+ 1
for all l ≤ k. �

Proposition 2.6. Suppose

(2.6) |F k+1(x)− F k(x)| ≤ 1

holds for some k ∈ N. Then Sk+1(x) ∈ {x◦, x◦ + 1} holds whenever n ≡ 0 (mod p + 1), and

Sk+1(x) = x◦ holds whenever n �≡ 0 (mod p+ 1).

Proof. Firstly we show no integer exists between xk+1 and x∗ whenever |xk+1 − xk| ≤ 1 holds, where

xk denotes F k(x). Suppose that some integer u fulfills xk+1 < u < x∗ < xk. Taking v = n − 1 − pu,

we see u = S(v) = F (v). As F (x) is bijective and decreasing, we get xk+1 < u < x∗ < v < xk and

hence a contradiction 1 ≤ |v−u| < |xk −xk+1| ≤ 1. The case xk < x∗ < u < xk+1 is shown by similar

argument.

Thus we assume the inequality u ≤ xk+1 < x∗ ≤ u+ 1 holds for some u ∈ Z. As |xk+1 − yk+1| < 1

by Proposition 2.2, where yk+1 denotes Sk+1(x) ∈ Z, we see yk+1 = u or u+1. Suppose yk+1 = u+1.

The inequality xk+1 < x∗ ≤ u+ 1 = yk+1 = S(yk) = S(yk) = F (yk) derives yk ≤ yk ≤ x∗ < xk, then

we have yk = yk = u on account of |xk − yk| < 1. Thus we have F (yk) = S(yk) = yk + 1 and hence

n = (p+ 1)(yk + 1), showing that x◦ = yk +

⌊
p

p+ 1

⌋
= yk and then Sk+1(x) = x◦ + 1.

Suppose yk+1 = u. If u ≤ x∗ < u + 1 then u = x◦, hence Sk+1(x) = x◦. If x∗ = u + 1 = yk+1 + 1,

meaning that x∗ is an integer, we see x◦ = x∗ =
n− 1

p+ 1
, hence

yk = F−1(yk+1) = F−1(x◦ − 1) = n− 1− px◦ + p = x◦ + p.
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As the integer yk is contained in the interval (yk − p, yk] = (x◦, x◦ + p], we see yk ≥ x◦ + 1, while the

inequality

1 ≥ xk − F (xk) =
(p+ 1)xk − (n− 1)

p
=

p+ 1

p
(xk − x◦)

holds. Then we obtain

yk − xk ≥ x◦ + 1− p

p+ 1
− x◦ =

1

p+ 1
.

Applying Proposition 2.4, we obtain |yl − xl| ≥
1

p+ 1
for any 0 ≤ l ≤ k, which contradicts to our

situation x0 = y0 = x. Therefore the case x∗ = yk+1 + 1 does not occur.

Assume the inequality u ≤ x∗ < xk+1 ≤ u + 1 for some u ∈ Z, then we have u = x◦. The same

argument above induces yk+1 = u or u+1. The case yk+1 = u = x◦ shows the assertion. Thus suppose

yk+1 = u+1 = x◦+1. Applying Lemma 2.5 (1) as xk+1 ≤ yk+1, we have yk = yk ≤ xk < x∗ < xk+1 ≤
yk+1. The assumption |xk+1 − xk| ≤ 1 induces

1 ≥ xk+1 − xk =
n− 1− xk

p
− xk =

p+ 1

p
(x∗ − xk),

that is, x∗ − xk ≤ p

p+ 1
, while we need xk − yk <

p

p+ 1
by Proposition 2.4, hence x∗ − yk <

2p

p+ 1
.

If yk+1 − yk ≥ 2 holds, we have

2 ≤ yk+1 − yk = F (yk)− yk =
p+ 1

p
(x∗ − yk),

hence a contradiction x∗ − yk ≥ 2p

p+ 1
. Thus we see 0 < yk+1 − yk ≤ 1, that is, yk = yk+1 − 1 = x◦.

The equation x◦ + 1 = yk+1 = S(yk) = F (yk) = F (x◦) gives n = (p + 1)x◦. Therefore yk+1 = x◦

occurs if and only if n ≡ 0 (mod p+ 1). The assertion is proved. �

Theorem 2.7. For any x ∈ R and k ≥ log{(p+ 1)|x− x∗|}
log p

, where x∗ =
n− 1

p+ 1
, we have

(2.7) Sk(x) = x◦ =

⌊
n− 1

p+ 1

⌋

whenever n �≡ 0 (mod p+ 1), and

(2.8) Sk(x) ∈ {x◦, x◦ + 1}

whenever n ≡ 0 (mod p+ 1). In particular, (2.7) or (2.8) holds for all x ∈ [0, n− 1] whenever

(2.9) k ≥ 1 +
log(n− 1)

log p

holds. x◦ is a globally fixed or doubly periodic point of S(x).

Proof. By definition, we have

|F k+1(x)− F k(x)| = 1

p
|F k(x)− F k−1(x)| = 1

pk
|F (x)− x| = (p+ 1)|x− x∗|

pk+1
.

Thus the condition (2.6) is equivalent to the inequality k + 1 ≥ log{(p+ 1)|x− x∗|}
log p

. Therefore the

assertion comes from Proposition 2.6 and Proposition 2.3. In particular, since

max{|x− x∗| | x ∈ [0, n− 1]} = |n− 1− x∗| = (n− 1)p

p+ 1

holds, we obtain the assertion for all x ∈ [0, n− 1]. �

Consequently, Theorem 2.7 shows that if we use the p-shuffle, we can perform p-pile version of

Gergonne’s tricks for n cards, whenever n �≡ 0 (mod p+ 1).
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3. Illustrations and improvements

3.1. The case n ≡ 0 (mod p + 1). In this case, S(x) has doubly periodic points x◦ =

⌊
n− 1

p+ 1

⌋
and

x◦ + 1, which are globally attracting.

Cards:    9  Piles:   2

3

0 85

。
x

orbit under

orbit under

S(x)

F(x)

Figure 2. Orbits of x = 5 for 9-
card and 2-pile trick.

3.2. The case n �≡ 0 (mod p + 1). In this case, S(x) has a unique globally stable fixed point x◦ =⌊
n− 1

p+ 1

⌋
. The left figure of Figure 3 illustrates the orbits for n = 8, p = 2 and x = 6 under F (x) and

S(x). As one see, S3(x) = x◦ = 2 holds for all x = 0, 1, . . . , 7, while the condition (2.9) for k stated

in Theorem 2.7 is k ≥ 1 +
log 7

log 2
> 3. In contrast, in the case of 17-card and 2-pile trick, k ≥ 5 is

required for Sk(13) = x◦, which coincides with k ≥ 1 +
log 16

log 2
= 5 (Figure 3 right). Therefore the

condition (2.9) may not necessary give the minimal value of k satisfying (2.7) for all x ∈ [0, n − 1].

This is because that our criterion (2.6) which ensures Sk+1(x) = x◦ is too strong.

Cards:    8  Piles:   2

orbit under

orbit under

0 6

3

7

。
x

x*

S(x)

F(x)

Cards:   17  Piles:   2

。
x

orbit under

orbit under

S(x)

F(x)

0

7

1613

Figure 3. Left: orbits of x = 6 for 8-card and 2-pile trick. Right: orbits of x = 13 for
17-card and 2-pile trick. The orbits under F (x) is drawn in red where (2.6) holds.

The original Gergonne’s trick corresponds to n = 21 and p = 3: as 21 �≡ 0 (mod 4), there exists a

globally stable fixed point x = 5. In contrast to our p-shuffle, however, the performer in the original

trick puts the pile containing the target card between the rest ones when he stacks three piles. Then

instead of T (x), we consider

M(x) =
n

p
− 1−

⌊
x

p

⌋
+

n

p
=

2n

p
− 1−

⌊
x

p

⌋
= 13−

⌊x
3

⌋
.

One see M(10) = 10, which means the middle of 21 cards is the fixed point.
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3.3. Improvement. Figure 4 illustrates an orbit under M(x) for the original Gergonne trick. We

take

G(x) = 13 +
1

3
− x

3
=

40− x

3

as a continuous approximation for M(x), so that the fixed point x∗ of G(x) accords with x◦ = 10.

Cards:   21  Piles:   3

orbit under

orbit under

M(x)

G(x)

0

13

18

。
x

Figure 4. Orbits of x = 18 for Gergonne’s trick.

By similar argument in Proposition 2.2, we see that the orbit of each x under G(x) accompanies

with the orbit under M(x). This property is described in a little bit general situation. For p ≥ 2

and n = Ap + B, 1 ≤ B ≤ p (hence A =

�
n− 1

p

�
), after dealing n pieces of cards into p piles,

choose q (≤ B − 1) piles that consists of A+ 1 pieces of cards where the target card is not contained,

and stack up them. Then stack the pile containing the target card on the top of the piles, and

stack up the remaining all piles on the above. We call this process (p, q)-shuffle. In the case of original

Gergonne’s trick, we repeat (3, 1)-shuffle. When (p, q)-shuffle is applied, the target card at the position

x ∈ {0, . . . , n − 1}, meaning that the card is arranged at the (x + 1)-th from the top of the deck, is

moved to the position at

(3.1) M(x) = n− 1−
(
(A+ 1)q +

�
x

p

�)
= n− 1−

�
n+ p− 1

p

�
q −

�
x

p

�
.

Again we change the coordinate as

L(x) = m− 1−M(m− 1− x) =

�
m− 1− x

p

�

where m = n− (A+ 1)q. Note that the range of x is also changed to m− n ≤ x ≤ m− 1. The same

argument in Proposition 2.3 shows L(x◦) = x◦ where x◦ =

�
m− 1

p+ 1

�
.

Suppose m �≡ 0 (mod p+1), then we put m = (p+1)x◦+r+1 with 0 ≤ r ≤ p−1. In this situation,

we introduce a linear map

G(x) =
m− 1− (x+ r)

p
,
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so as to satisfy the equation G(x◦) = x◦. For m− n ≤ x ≤ m, x stands for the unique solution of the

equation L(x) = L(x) = G(x). As

G(x) =
m− 1− x− r

p
=

1

p
((p+ 1)x◦ − x) = x◦ +

1

p
(x◦ − x) ∈ Z

and

L(x) =

�
m− 1− x

p

�
=

�
(p+ 1)x◦ + r − x

p

�
= x◦ +

1

p
(x◦ − x) +

�
x− x+ r

p

�
,

the equation L(x) = G(x) brings 0 ≤ x − x + r ≤ p − 1, that is, r − p + 1 ≤ x − x ≤ r. Then we

improve Proposition 2.2 as follows.

Proposition 3.1. Put α = max

{
r + 1

p
,
p− r

p

}
≤ 1, where m = (p+1)x◦+ r+1 with 0 ≤ r ≤ p− 1.

Take a, b ∈ R with |a− b| ≤ α, and put ak = Gk(a), a0 = a and bk = Lk(b), b0 = b. Then |ak − bk| ≤ α

holds for any k ∈ N. In particular,

|Gk(x)− Lk(x)| ≤ α

holds for any x ∈ R and k ∈ N.

Proof. As is stated above, the inequality |x− x| ≤ max{r, p− 1− r} holds. Then we have

|ak+1 − bk+1| = |G(ak)−G(bk)| =
1

p
|ak − bk|

≤ 1

p

(
|ak − bk|+ |bk − bk|

)
≤ 1

p
(1 + max{r, p− 1− r}) = α.

�

In the case of (3, 1)-shuffle, we see m = 21−7 = 14, x◦ = �13/4� = 3 and hence r = 14−12−1 = 1.

Therefore we have an inequality

|Gk(x)− Lk(x)| ≤ 2

3
for any x ∈ R and k ∈ N.

We also improve the estimation of minimum number k satisfying Lk(x) = x◦. We see by Proposition

3.1 that yk+1 = Lk+1(x) = x◦ holds if

(3.2) xk = Gk(x) ∈ (x◦ − p+ 1 + r − β, x◦ + r + β),

where β = min{1− α, α}. We also have inductively

|xk+1 − x◦| = |G(xk)−G(x◦)| = |xk − x◦|
p

= · · · = |x− x◦|
pk+1

.

To fulfill (3.2), we need |xk+1 − x◦| ≤ max{r + β, p− 1− r + β}, hence the following.

Theorem 3.2. Let us consider (p, q)-shuffle on n pieces of cards, and put m = n −
�
n− 1 + p

p

�
q.

Suppose m �≡ 0 (mod p+ 1). Then for any x ∈ R and

(3.3) k ≥ log |x− x◦| − logmax{r + β, p− 1− r + β}
log p

,

we have

Lk(x) = x◦,

where we put x◦ =

�
m− 1

p+ 1

�
, r = m− 1− (p+1)x◦, β = min{α, 1−α} and α = max

{
r + 1

p
,
p− r

p

}
.
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In the case of (3, 1)-shuffle on 21 pieces of cards, we see x◦ = 3, m = 14, r = 1, α =
2

3
and β =

1

3
,

hence the inequality becomes

k ≥
log |x− 3| − log

4

3
log 3

.

In particular, as x ∈ [m − n,m − 1] = [−7, 13], Lk(x) = x◦ holds whenever k ≥
log 10× 3

4
log 3

> 2, that

is, k ≥ 3. This result reproduce Gergonne’s trick.
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