
1. A motivation from the Pythagorean tuning

‘Stack the perfect fifth intervals iteratively, modulo octave’ — this is the most simple construction of

the chromatic musical scale, called the Pythagorean tuning, and commonly used in Europe in the medieval

period. Starting with the musical note F , the tuning goes

F
+p5−−→ C

+p5−−→ G
+p5−−→ D

+p5−−→ A
+p5−−→ E

+p5−−→ B
+p5−−→ F# +p5−−→ C# +p5−−→ G# +p5−−→ D# +p5−−→ A# +p5−−→ · · · ,

where +p5 means a stack of a perfect fifth interval, that is, to multiply the frequency of each tone by 3/2.

Since two notes an octave apart, i.e., one musical pitch and another with double frequency, sound ‘the

same’, this tuning process is emulated by a circle rotation R/Z � x �→ x+ log2(3/2) ∈ R/Z. The continued

fractional approximation log2(3/2) � [1, 1, 2, 2] = 7/12 induces a cyclic sequence of 12 notes

F
+p5−−→ C

+p5−−→ G
+p5−−→ D

+p5−−→ A
+p5−−→ E

+p5−−→ B
+p5−−→ F# +p5−−→ C# +p5−−→ G# +p5−−→ D# +p5−−→ A# +p5−−→ F,

called the circle of fifths, and hence the chromatic scale consists of 12 tones, CC#DD#EFF#GG#AA#B,

by rearranging the notes in small order of frequencies modulo octaves. The Pythagorean tuning is reproduced

by the translation T : Z/12Z � x �→ x+7 ∈ Z/12Z. It is noticeable that the first 7 notes F,C,G,D,A,E,B

in the circle of fifths form the diatonic scale CDEFGAB on C, known as the collection of white keys of

piano keyboard.

As is well known in the mathematical music theory, the diatonic collection has significant features, in

particular, Myhill’s property we discuss mainly in this report is an embodiment of the maximal evenness

concept. Consider any successive n ( �≡ 0 mod 12) notes in the chromatic scale, the number of diatonic notes

contained in the n notes are of just two kinds, k and k+1 for some k depending on n only. It is remarkable

that only the collections of successive 5 or 7 notes in the circle of fifths fulfill Myhill’s property. Myhill’s

property itself represents a spatial structure of the diatonic scale, while the ‘successive’ notes in the circle

of fifths indicates a temporal feature of the translation T . So, is it a mere coincidence that the number

7 ≡ −5 (mod12) of notes satisfying Myhill’s property equals the extent of translation T : x �→ x + 7 ≡
x − 5 (mod12)? However mechanical words associated with the fraction 7/12 connect these phenomena.

Indeed, when we attach each note to a number in Z/12Z by semi-tone encoding C = 0, C# = 1, . . . , B = 11,⌊
7
12(k + 7)

⌋
−

⌊
7
12(k + 6)

⌋
= 1 holds if and only if k corresponds to a diatonic note. Inspired by Noll’s

work [11], we investigate a spatio-temporal symmetry on T (Proposition 3.2, or cf.[7] Theorem 3.4), and we

elucidate the reason for the coincidence by the fact that the multiplicative inverse of 7 in Z/12Z coincides

with itself. Actually, we give a characterization of Myhill’s property described in terms of dynamics of the

translation T (Theorem 3.4).

2. Mechanical words and Myhill’s property

This section is devoted to describe the relation between mechanical words and Myhill’s property. Let

{0, 1}Z be the set of all bi-infinite sequences over the alphabet {0, 1}, and {0, 1}∗ be the set of all finite

sequences over {0, 1}. The transpose tv and complement v of a bi-infinite sequence v = (vk) are defined by

(tv)k = v1−k and (v)k = 1 − vk respectively. Let σ : {0, 1}Z → {0, 1}Z be a shift operator σ(v)k = vk+1.
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The period of {0, 1}Z is, if it exists, the minimal number p satisfying σp(v) = v. Given a finite sequence

u = u1 · · ·un ∈ {0, 1}∗, the length |u| of u is n, and for b = 0, 1 we put

|u|b = #{k | uk = b, k = 1, . . . , n},

where we call |u|1 the height of u. We see |u| = |u|0 + |u|1. The language L(v) of v = (vk) ∈ {0, 1}Z is a

set of all finite subsequence of v:

L(v) = {vi · · · vj | i, j ∈ Z, i ≤ j} ∪ {ε},

where ε denotes the empty sequence with the length |ε| = 0. Putting Lk(v) = {u ∈ L(v) | |u| = k}, we see

L(v) =
∪∞

k=0 Lk(v). For any subset S ⊂ L(v), we call |S|1 = {|u|1 | u ∈ S} the height set.

Definition 2.1 (Myhill’s property). A bi-infinite sequence v said to be satisfying Myhill’s property whenever

#|Lk(v)|1 = 2 holds for any k ≥ 1. v said to be satisfying Myhill’s property with period p whenever

#|Lk(v)|1 = 2 holds for any k �≡ 0 (mod p).

The set of bi-infinite sequences with Myhill’s property is denoted by M∞ and the set of periodic sequences

with Myhill’s property with period p is denoted by Mp. We denote �α� = max{n ∈ Z | n ≤ α}, �α� =

min{n ∈ Z | n ≥ α} and {α} = α− �α� for a real number α.

Definition 2.2 (Mechanical word). For a real number α > 0, the bi-infinite sequence M (α) = v = (vk) ∈
{0, 1}Z defined by vk = �kα� − �(k − 1)α� is called lower mechanical word of v. The bi-infinite sequence

M ′ (α) = v = (vk) ∈ {0, 1}∞ defined by vk = �kα� − �(k − 1)α� is called upper mechanical word of v.

Note that if v ∈ {0, 1}Z has the period p ≥ 1, #|Lk(v)|1 = 1 holds whenever k ≡ 0 (mod p). Conversely

#|Lk(v)|1 = 1 implies that the period p of v is a factor of k. Then we define the height of the periodic

sequence v by |v|1 = q where q is the unique element of |Lp(v)|1. Also note that the mechanical word

M
(
q
p

)
has the period p and the height q.

It is easy to see �−α� = −�α� and �−α� = −�α�, hence

M ′ (α)k = �kα� − �(k − 1)α� = �(1− k)α� − �−kα� = M (α)1−k = tM (α)k

Moreover �−α� = −�α� + 1 and �−α� = −�α� − 1 holds whenever α �∈ Z. As �k(1− α)� = k + �−kα� =

k − �kα�, we see

M ′ (1− α)k = �k(1− α)� − �(k − 1)(1− α)� = 1− (�kα� − �(k − 1)α�) = 1− vk = M (α)k.

Hence,

Lemma 2.3. For any real number 0 < α < 1, M ′ (α) = tM (α) = M (1− α) holds.

Firstly we show that any mechanical word has Myhill’s property.

Theorem 2.4. The mechanical word of any irrational number 0 < α < 1 has Myhill’s property: M (α) ∈
M∞. The mechanical word of any irreducible fraction 0 < q

p < 1 has Myhill’s property of the period p:

M
(
q
p

)
∈ Mp.

Proof. Let v be the lower mechanical word M (α) of a irrational number 0 < α < 1. Take any word

vk · · · vk+l−1 ∈ Ll(v) of the length l. Representing lα = a+ β with a = �lα� and β = {lα}, the height of the

word is given as

|vk · · · vk+l−1|1 = �(k − 1)α+ lα� − �(k − 1)α� = a+ �(k − 1)α+ β� − �(k − 1)α� .

As 0 ≤ β < 1, we see �(k − 1)α+ β� − �(k − 1)α� ∈ {0, 1}, showing |vk · · · vk+l−1|1 ∈ {a, a + 1}, hence
#|Ll(v)|1 ≤ 2.
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For k = 1, we have |v1 · · · vl|1 = �lα�−�0� = a. By the fact that the fractional parts {mα}, m ∈ Z is dense

in the unit interval [0, 1], we take a sequence {mk} ⊂ Z such that {mkα} is smallest in {{mα} | 1 ≤ m ≤ mk}.
Then taking such mk greater than l, we see {mkα} < {(mk − l)α} by definition. It comes from the

decomposition

�mkα�+ {mkα} = �lα�+ {lα}+ �(mk − l)α�+ {(mk − l)α}
that {mkα} = {lα}+ {(mk − l)α} − 1 holds, hence �mkα� = �lα�+ �(mk − l)α�+ 1. Consequently,

|vmk−l · · · vmk
|1 = �mkα� − �(mk − l)α� = �lα�+ 1 = a+ 1,

showing that #|L(v)|1 = 2. In case of a irreducible fraction q
p , only by taking mk = p, we show Myhill’s

property of the period p for M
(
q
p

)
. �

Conversely, any periodic sequence over {0, 1} with Myhill’s property coincides with a mechanical word

for an irreducible fraction.

Theorem 2.5. Let v ∈ {0, 1}Z be a bi-infinite sequence with the period p ≥ 2 and the height q > 0. If v

has Myhill’s property with the period p, then q is prime to p and there exists s ∈ Z with σs(v) = M
(
q
p

)
or

M ′
(
q
p

)
.

To show this fact, we prepare following lemmas.

Lemma 2.6. For v ∈ Mp with p ≥ 3, L2(v) = {00, 01, 10} if and only if 2|v|1 < p, and L2(v) = {11, 01, 10}
if and only if 2|v|1 > p. 2|v|1 = p never occurs.

Proof. As #|L1(v)|1 = 2 by Myhill’s property of v, we have L1(v) = {0, 1}. Then the periodicity of v brings

01, 10 ∈ L2(v), hence only either L2(v) = {00, 01, 10} or L2(v) = {11, 01, 10} occurs because of Myhill’s

property #|L2(v)|1 = 2. When 00 ∈ L2(v), take a subword u with the length p and the prefix 1. As 11 never

appears in v, each 1 in u has unique successor 0, showing p ≥ 2|u|1 = 2|v|1. p = 2|v|1 implies u = (10)|v|1 ,

which contradicts to 00 ∈ L2(v), hence p > 2|v|1. Similarly, 11 ∈ L2(v) brings p < 2|v|1. �

Therefore Mp has a decomposition Mp = M0
p

�
M1

p, where Mb
p = {v ∈ Mp | bb ∈ L(v)}, b = 0, 1.

Lemma 2.7. For v ∈ M0
p with the period p ≥ 3 and |v|1 ≥ 2, it holds that

{z | 10z1 ∈ L(v)} = {
�

p

|v|1

�
− 1,

�
p

|v|1

�
}.

For v ∈ M1
p with the period p ≥ 3 |v|0 ≥ 2, it holds that

{z | 01z0 ∈ L(v)} = {
�

p

|v|0

�
− 1,

�
p

|v|0

�
}.

Proof. Suppose v ∈ M0
p, meaning 11 �∈ L(v) by Lemma 2.6, hence z0 = min{z | 10z1 ∈ L(v)} ≥ 1. Note

that |v|1 ≥ 2 and 11 �∈ L(v) bring 010z01 ∈ L(v), hence p ≥ z0 + 3. If 010z10 ∈ L(v) holds for some

z ≥ z0 + 2, we see 0z0+2, 010z0 ∈ Lz0+2(v) while 10z01 ∈ Lz0+2(v), which contradicts to #|Lz0+2(v)|1 = 2.

Then, if 10z0+11 �∈ L(v), we see that z = z0 is a unique integer fulfilling 10z1 ∈ L(v), consequently we get

|Lz0+1(v)|1 = {1}, contrary to Myhill’s property of v. Therefore we have {z | 10z1 ∈ L(v)} = {z0, z0 + 1}.
Choosing a subword u = vk · · · vk+p−1 of v with the length p and vk+p−1 = 1, we see that u consists of

words 0z01 and 0z0+11. Then equations

p = a(z0 + 1) + b(z0 + 2) and a+ b = |v|1,

hold for some positive integer a, b, hence p = |v|1(z0+1)+ b. Thus we obtain z0+1 =
�

p
|v|1

�
. The argument

above also works for the case 11 ∈ L(v) by exchanging the letters 0 and 1. �
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Lemma 2.8. Consider a morphism φz : Mp → {0, 1}Z defined by

φz :

{
0z1 �→ 0,

0z+11 �→ 1
for v ∈ M0

p, and φz :

{
1z0 �→ 0,

1z+10 �→ 1
for v ∈ M1

p,

where z =
�

p
|v|1

�
−1 for v ∈ M0

p and z =
�

p
|v|0

�
−1 for v ∈ M1

p. Then for v ∈ M0
p with |v|1 ≥ 2, w = φz(v)

is contained in M|v|1 with the height |w|1 = p − |v|1(z + 1) ≡ p (mod |v|1). For v ∈ M1
p with |v|0 ≥ 2,

w = φz(v) is contained in M|v|0 with the height |w|1 = p− |v|0(z + 1) ≡ p (mod |v|0).

Proof. We only show the assertion in the case of v ∈ M0
p. It comes from the definition of φz that the

subword 0z1 appears |v|1 times in each subword u ∈ Lp(v) with the suffix 1. After removing the factors

0z1’s from u, there remain 0’s corresponding to the factors 0z+11’s, of which number is p− |v|1(z+1). As a

result, we see that w has the period |v|1 and the height |w|1 = p− |v|1(z+1). Thus #|Lk(w)|1 = 1 holds if

and only if k is a multiplier of |v|1, hence #|Lk(w)|1 ≥ 2 for k < |v|1. Since w has Myhill’s property if and

only if w does by definition, we only consider the case 00 ∈ L(w). Suppose that for some k, there exists

a, b, c ∈ Lk(w) with |a|1 < |b|1 < |c|1. By definition of φz, the inverse images x = φ−1
z (a), y = φ−1

z (b) and

z = φ−1
z (c) consist of 0z1’s and 0z+11’s, hence |x| < |y| < |z| and |x|1 = |y|1 = |z|1. Also note that 0z1x

or 0z+11x appears in v and the suffix of z is 1. Then there exists p ∈ L|y|−|x|(v) with px ∈ L|y|(v) and

|p|1 ≥ 1, z′ ∈ L|y|(v) and s ∈ L|z|−|y|(v) with z = z′s and |s|1 ≥ 1. Consequently, we have |px| = |y| = |z′|
and |px|1 > |y|1 > |z′|1, hence we come to a contradiction #|Lk(v)|1 ≥ 3. Thus #|Lk(w)|1 = 2 holds for

any k �≡ 0 (mod p). �

We come to the proof of Theorem 2.5.

Proof. (proof of Theorem 2.5) Suppose that v ∈ M2, then we see v = (01)Z as L1(v) = {0, 1}, hence we see
v or σ(v) coincides with the mechanical word M(12). As v ∈ M0

p is equivalent to v ∈ M1
p, without loss of

generality, it is sufficient to prove the assertion in the case of v ∈ M0
p with p ≥ 3. Putting w0 = v, define

sequences wl+1 = φzl(w
l) with zl =

�
pl
ql

�
− 1 inductively, where pl is the period of wl and ql = |wl|1−b

when wl ∈ Mb
pl
, b ∈ {0, 1}. We always assume wl ∈ M0

pl
by taking wl for wl instead of wl itself when

wl ∈ M1
pl
. By definition of φzl , we see |wl|1 > |wl+1|1. Thus |wt|1 = 1 holds for some l = t, which means

wt = (0pt−11)Z. It is easily seen that wt coincides with a mechanical word M
(

1
pt

)
up to translation by σ.

Assume that wl+1 coincides with a mechanical word M
(
ql+1

pl+1

)
, that is, each letter wl+1

k in wl+1 is given

by
�
ql+1

pl+1
k
�
−

�
ql+1

pl+1
(k − 1)

�
. By definition, we see φzl(0

νk1) = wl+1
k where νk = zl + wl+1

k . Then we see

Ak := |φ−1
zl

(wl+1
1 · · ·wl+1

k )| = k(zl + 1) + |wl+1
1 · · ·wl+1

k |1 = k(zl + 1) +

�
ql+1

pl+1
k

�
,

hence φ−1
zl

(wl+1
k ) = wl

Ak−1+1 · · ·wl
Ak

= 0νk1, showing that wl
m = 1 if and only if m = Ak for some k. (See

Figure 1.) However, the inequalities
ql+1

pl+1
k − 1 <

�
ql+1

pl+1
k
�
≤ ql+1

pl+1
k induce

k(zl + 1) +
ql+1

pl+1
k − 1 < Ak ≤ k(zl + 1) +

ql+1

pl+1
k.

By the construction of the sequences ul’s, we see pl+1 = ql and pl = pl+1(zl + 1) + ql+1. Then we have
ql
pl
Ak =

pl+1

pl+1(zl + 1) + ql+1
Ak ≤ k <

pl+1

pl+1(zl + 1) + ql+1
(Ak + 1) =

ql
pl
(Ak + 1),

hence
�
ql
pl
Ak

�
= k and

�
ql
pl
(Ak + 1)

�
= k + 1 =

�
ql
pl
Ak+1

�
. Consequently, we have

�
ql
pl
(A+ 1)

�
−

�
ql
pl
A

�
=

{
0, Ak + 1 ≤ A < Ak+1 for some k,

1, A = Ak for some k,
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that is, wl also coincides with a mechanical word M ′
(
ql
pl

)
. �

ϕ

w
l

0
ν11 0

ν21 0
νk1 0

νp1 ν k

ν k

= zl + w
l+1
k

A

M

k = Ak +

=
w
l+1=

q

p
wl+11

1

wl+12 · · ·

· · ·

wl+1k

k

· · ·

· · ·

w

A 2A A A

l+1

-1

p

p

(zl + 1)k +
ql+1

pl+1

k

l+1

l+1

l+1

zl
( + 1)

Figure 1. Correspondence between wl and wl+1 through φzl .

3. A dynamical characterization of Myhill’s property

A fractional expansion of a real number 0 < α < 1, α = 1
σ0 +

1
σ1 +

1
σ2 + ··· is denoted by α = [σ0, σ1, σ2, . . . ]

for short. We start with the following well known facts on fractional expansions.

Proposition 3.1. For a real number 0 < α < 1, consider sequences {σk}, {αk} and {Pk =

(
ek
fk

)
} defined

inductively by

σk = �αk−1/αk� , αk+1 = αk−1 − σkαk, Pk+1 = σkPk + Pk−1,

α−1 = 1, α0 = α, P−1 =

(
0
1

)
, P0 =

(
1
0

)
.

(3.1)

for k ≥ 0. Then we have

(1) α = [σ0, σ1, σ2, . . . ] and

(
1
α

)
= αk−1Pk + αkPk−1 for k ≥ 0.

(2) fk+1/ek+1 gives the k + 1-th continuant [σ0, . . . , σk] of α and fk+1ek − fkek+1 = det(Pk+1 Pk) =

(−1)k+1. Particularly, a ∈ {fk+1, ek} and b ∈ {fk, ek+1} are prime to each other.

(3) It holds that ek/ek+1 = [σk, . . . , σ0] and fk/fk+1 = [σk−1, . . . , σ0].

Proof. (1) The assertion comes from the definition of continued fractional expansion and induction. (2) As

(Pk+1 Pk) = (P0 P−1)

(
σ0 1
1 0

)
· · ·

(
σk 1
1 0

)
=

(
σ0 1
1 0

)
· · ·

(
σk 1
1 0

)
, we have det(Pk+1 Pk) = (−1)k+1. (3)

Taking the transpose, we have

(
ek+1 fk+1

ek fk

)
=

(
σk 1
1 0

)
· · ·

(
σ0 1
1 0

)
, hence the assertion. �

Let us consider the circle rotations ρ : R/Z � x �→ x + α ∈ R/Z associated with a finite continued

fraction α = [σ0, . . . , σn−1] = fn/en and its transpose tρ(x) = x + tα where tα = [σn−1, . . . , σ0] = en−1/en.

These maps have the same period en, as fn and en, or en−1 and en are prime to each other respectively

by Proposition 3.1 (2). Thus the circle rotations ρ and tρ are regarded as translations on Z/enZ, that

is, Z/enZ � k �→ k + fn ∈ Z/enZ and Z/enZ � k �→ k + en−1 ∈ Z/enZ respectively. Since en−1fn ≡
(−1)n (mod en), we note that (−1)nen−1 is nothing but the multiplicative inverse f−1

n ∈ (Z/enZ)
× of fn.

Consequently, the spatio-temporal symmetry of circle rotations are stated as follows.

Proposition 3.2 (Spatio-temporal symmetry. cf.[7] Theorem 3.4). Take an element f ∈ (Z/eZ)× and

consider the translations on (Z/eZ)2,

η(x, y) = (x+ 1, y + f) and θ(x, y) = (x+ f−1, y + 1).

Then we have ηf
−1

= θ and θf = η.

Proof. The proof is straightforward, e.g., θf (x, y) = (x+ f · f−1, y + f) = (x+ 1, y + f) = η(x, y). �
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Definition 3.3. For any subset D ⊂ Z/eZ, we associate a periodic sequence v(D) ∈ {0, 1}Z as

v(D)k = 1 if and only if k ≡ l (mod e) for some l ∈ D.

A subset D is called a Myhill set of period e whenever v(D) ∈ Me.

For a subset D ⊂ Z/eZ, v(D) ∈ Me describes a spatial feature how D is embedded in Z/eZ. However,

the theorem below states that the Myhill set D has a temporal characterization in terms of a dynamics on

Z/eZ.

Theorem 3.4 (Dynamical characterization of Myhill’s property). Consider a subset D ⊂ Z/eZ with the

cardinality #|D| = f relatively prime to e, and take a translation

T : Z/eZ � x �→ x+ f−1 ∈ Z/eZ,

where f−1 is a multiplicative inverse of f ∈ (Z/eZ)×. Then D is a Myhill set of the period e if and only if

D is a collection of successive f images of some element g ∈ Z/eZ by T , namely

D = {g, T (g), T 2(g), . . . , T f−1(g)} = {g, g + f−1, g + 2f−1, . . . , g + 1− f−1}.

Proof. Suppose v(D) ∈ Me. We see |v(D)|1 = f by definition. Theorem 2.5 shows that v(D) coincides

with M
(
f
e

)
or M ′

(
f
e

)
up to translation by σ. Assume v(D) = M

(
f
e

)
. The equation v(D)k =

�
f
e k

�
−�

f
e (k − 1)

�
= 1 is equivalent to fk ≥

�
fk
e

�
e > f(k − 1), that is, k ∈ D if and only if f > {fk}e ≥ 0

holds as an inequality on Z, where we put {a}e =
�
a
e

�
e. By the definition of θ stated in Proposition 3.2,

we see that 0 ≤ π2(θ
b(0, 0)) = b < f holds on Z if and only if b = 0, 1, . . . , f − 1, where π2 denotes a

projection (Z/eZ)2 � (x, y) �→ y ∈ Z/eZ. Consequently 0 ≤ {fk}e = π2(η
k(0, 0)) = π2(θ

fk(0, 0)) < f is

equivalent to fk ∈ {0, 1, . . . , f − 1}, as an element of Z/eZ, hence k ∈ {0, f−1, 2f−1, . . . , (f − 1)f−1} =

{0, T (0), . . . , T f−1(0)}. Theorem 2.4 induces the converse. �

Since g + kf−1 ≡ g + 1 − f−1 − (f − k − 1)f−1 (mod e), by putting g′ = g + 1 − f−1, the Myhill set is

also represented as D = {g′, g′ − f−1, g′ − 2f−1, . . . , g′ − (f − 1)f−1} = {g′, T−1(g′), T−2(g′), . . . , T 1−f (g′)}.
Therefore any Myhill set is symmetric in Z/eZ. Consider a continued fraction f/e = [σ0 . . . , σn−1] and its

transpose e′/e = t[σn−1, . . . , σ0]. As is stated above, f−1 ≡ (−1)ne′ (mod e). Therefore we obtain another

representation of Myhill sets.

Corollary 3.5. Any Myhill set D in Z/eZ with cardinality #D = f is described as

D = {g + ke′ | k = 0, . . . , f − 1}, for some g ∈ Z/eZ

where e′/e = [σn−1, . . . , σ0] is a transpose of f/e = [σ0, . . . , σn−1].

4. Observation and discussion

To illustrate the results stated in the section 3, we consider a Myhill set D ⊂ Z/30Z with the cardinality

#D = 13. In this situation, e = 30, f = 13 and f−1 = 7 ∈ (Z/30Z)×, and we may assume v(D) coincides

with the lower mechanical word M
(
13
30

)
= (001010100101010010101001010101)Z (upper in Figure 2), which

represents the spatial arrangement of D in Z/30Z: the green polygon in lower circle in Figure 2. The middle

illustrates the dynamics of η : (x, y) �→ (x + 1, y + 13) and θ : (x, y) �→ (x + 7, y + 1) on (Z/30Z)2. It is

observed that the orbit of (0, 0) by η (blue lines) is traced by θ (pink lines), and vice versa. Theorem 3.4

states that the Myhill set D is reconstructed by the dynamics T : Z/30Z � x �→ x+ f−1 = x+ 7 ∈ Z/30Z:

the collection of the first f = 13 plots in the orbit of 0 by T coincides with D, ans its orbit is represented

by pink arrows in lower circle in Figure 2. Figure 3 illustrates the case e = 12 and f = 7, namely the 12

tone system derived from Pythagorean tuning. In this case, we have f = f−1 since 72 ≡ 1 (mod 12), hence
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n fraction Mechanical word Myhill set

3 13
30 = [2, 3, 4] 001010100101010010101001010101 D3 = {3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 0}

2 4
13 = [3, 4] 1 0 0 1 0 0 1 0 0 1 0 0 0 D2 = {3, 10, 17, 24}

1 1
4 = [4] 0 0 0 1 D1 = {24}

Table 1. Myhill resolution associated with [2, 3, 4].

the dynamics of η and θ are symmetric. The Myhill set D of cardinality 7 is constructed as the first f = 7

plots in the orbit of 0 by T : Z/12Z � x �→ x+ f−1 = x+ 7 ∈ Z/12Z, which coincides with the diatonic set

in musical set theory.

In [7], we have introduced a nested structure of ‘diatonic’ sets, which we call the sub-diatonic resolution

associated with a real number. Consider a real number 0 < α < 1 and its continued fractional expansion

α = [σ0, σ1, . . . ]. The transpose en−1/en = [σn−1, σn−2, . . . , σ0] of the n-th continuant fn/en = [σ0, . . . , σn−1]

induces a Myhill set Dn with cardinality #Dn = en−1 defined by v(Dn) = M
(
en−1

en

)
, and the associated

dynamics in the sense of Theorem 3.4 is given by Z/enZ � x �→ x+ fn ∈ Z/enZ. As is seen in the proof of

Theorem 3.4, mechanical words have a nested structure. It comes from Lemma 2.8 and Theorem 2.5 that

the morphism φz : Men → {0, 1}Z with z =
�

en
en−1

�
− 1 given in Lemma 2.8 induces a mechanical word

M ′
(
en−2

en−1

)
= tM

(
en−2

en−1

)
, where en−2/en−1 = [σn−2, . . . , σ0]. The morphism φz induces a natural bijection

Dn → Z/en−1Z, hence a Myhill set Dn−1 ⊂ Z/en−1Z is obtained by way of v(Dn−1) = M ′
(
en−2

en−1

)
with

cardinality #Dn−1 = en−2. In this manner, we obtain a sequence of embedding of Myhill sets

(4.1) D1 ↪→ D2 ↪→ · · · ↪→ Dn

associated with continued fractions 1/e1 = [σ0], e1/e2 = [σ1, σ0], . . . , en−1/en = [σn−1, . . . , σ0], which we call

a Myhill resolution associated with a continued fraction [σn−1, . . . , σ0]. For instance, Table 1 gives a Myhill

resolution D1 ↪→ D2 ↪→ D3 induced by [2, 3, 4]. It is noticeable that Myhill sets D2 is represented as the

successive 4 plots of an orbit by a translation not only on Z/13Z but also on Z/30Z, namely

D2 = {0, S(0) = 0, S2(0) = 20 ≡ 7, S3(0) = 30 ≡ 4} ⊂ Z/13Z

where S(x) = x+ 10 is a translation by 10 ≡ 4−1 on Z/13Z, and

D2 = {3, T (3) = 10, T 2(3) = 17, T 3(3) = 24} ⊂ Z/30Z

where T (x) = x+ 7 is a translation by 7 ≡ 13−1 on Z/30Z.

The Myhill resolution induced from 7/12 = [1, 1, 2, 2] has a music theoretical meaning (Table 2). Myhill

sets Dk’s embedded in the chromatic scale Z/12Z form historic named scales: the diatonic scale D4, the

major pentatonic scale D3, the perfect 5th D2 and the unison D1. Also we note that two dynamical

representations exist for D3 and D2:

D3 = {2, S(2) = 5, S2(2) = 8 ≡ 1, S3(2) = 11 ≡ 4, S4(2) = 14 ≡ 0} ⊂ Z/7Z

where S(x) = x+ 3 is a translation by 3 ≡ 5−1 on Z/7Z, while

D3 = {0, T (0) = 7, T 2(0) = 14 ≡ 2, T 3(0) = 21 ≡ 9, T 4(0) = 28 ≡ 4} ⊂ Z/12Z

where T (x) = x + 7 is a translation by 7 ≡ 7−1 on Z/12Z, and D2 = {0, R(0) = 3} ⊂ Z/5Z where

R(x) = x+ 3 is a translation by 3 ≡ 2−1 on Z/5Z, while D2 = {0, T (0) = 7} ⊂ Z/12Z.

In light of Theorem 2.4, 2.5 and 3.4, we may understand, in the context of the Pythagorean tuning, the

reason not only why the ‘seven’ notes are selected as a diatonic scale from the twelve notes but also why the
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n fraction Mechanical word Myhill set Note name Scale name

4 7
12 = [1, 1, 2, 2] 101010110101 D4 = {0, 2, 4, 6, 7, 9, 11} {F,G,A,B,C,D,E} Diatonic

3 5
7 = [1, 2, 2] 1 1 1 01 1 0 D3 = {0, 2, 4, 7, 9} {F,G,A,C,D} Pentatonic

2 2
5 = [2, 2] 1 0 0 1 0 D2 = {0, 7} {F,C} Perfect 5th

1 1
2 = [2] 1 D1 = {0} {F} Unison

Table 2. Myhill resolution associated with [1, 1, 2, 2]. For inessential but technical reasons,
we adopt a morphism φ0 : 10 �→ 1, 1 �→ 0 as an embedding D3 ↪→ Z/12Z, and a morphism
φ0 : 01 �→ 1, 1 �→ 0, as an embedding D2 ↪→ Z/12Z.

‘successive’ seven notes are done as follows. The chromatic scale might be too complicated to sing, play or

tune musical instruments for the ancients; collections of less number of notes might be preferred. Because

of its simplicity, the Pythagorean tuning was widely adopted until medieval period. It was natural to select

musical tones by stacking the perfect fifth ‘successively’: iterations of x �→ x + 7 on Z/12Z. However,

when the stacking process should be stopped? To spin a melody smoothly, it might be preferred that the

selected musical notes are more evenly arranged in the octave, called the maximal evenness. For instance,

all adjacent two notes in the selected collection should have less kinds of ratios of frequencies. Myhill’s

property is a realization of the maximal evenness concept, and owing to Theorem 3.4, Myhill set is obtained

by just 7−1 ≡ 7 (mod12) times of the perfect fifth stacking. This is why the ‘successive seven’ notes in the

circle of fifth are selected as the diatonic scale.

Remark. The concept of spatio-temporal analysis on the Pythagorean tuning is based on the cut and

project method which widely applied to studies on aperiodic tilings and quasi-crystals[2][12][10].
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