
Abstract

We shall study the k-summability of formal solutions for the Cauchy problem of
linear partial differential equations with constant coefficients. We employ the method
of successive approximation for the analysis of summability.

1 Results

We consider the following Cauchy problem for linear partial differential equations with con-

stant coefficients

(E)




∂tU(t, x) =
m∑

j=0

aj∂
m−j
x U(t, x),

U(0, x) = ϕ(x) ∈ Ox,

where (t, x) ∈ C2, m ≥ 2 and aj ∈ C (j = 0, 1, . . . , m), a0 �= 0. Here the symbol Ox denotes

the set of holomorphic functions in a neighborhood of the origin x = 0.

This Cauchy problem has a unique formal solution of the form

(1.1) Û(t, x) =
∑
n≥0

Un(x)
tn

n!
, U0(x) = ϕ(x).

From the assumptions that m ≥ 2 and a0 �= 0, this formal solution is divergent in general.

We shall study the summability of this formal solution.

Before stating our result, we define a sector S = S(d, β, ρ) by

(1.2) S(d, β, ρ) :=

{
t ∈ C; |d − arg t| <

β

2
, 0 < |t| < ρ

}
,

where d, β and ρ are called the direction, the opening angle and the radius of S, respectively.

We write S(d, β,∞) = S(d, β) for short.

Now, our result is stated as follows.
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Theorem 1 For a fixed d ∈ R, we define di = d+arg am+2πi
m

for i = 0, 1, . . . , m − 1. Let

κ =
1

m − 1

and for some ε > 0 and r > 0,

Ωx := ∪m−1
i=0 S(di, ε)

∪
B(r).

We assume that the Cauchy data can be analytically continued in the region Ωx and has the

exponential growth estimate of order at most m/(m − 1), that is

|ϕ(x)| ≤ C exp
(
δ|x|m/(m−1)

)
, x ∈ Ωx.

Then the formal solution Û(t, x) of the Cauchy problem (E) is κ-summable in d direction.

We remark that this theorem is not a new result. In fact, k-summability of formal

solutions for linear partial differential equations with constant coefficients was studied by

many mathematicians. The first result of the k-summability was given by Lutz-Miyake-

Schäfke [8] for the heat equation case. In Miyake [11], he treated the operator ∂p
t − ∂q

x

(p < q), which is a generalization of the heat operator. The results on more general operator

for the constant coefficients case were given by Balser-Miyake [5], Balser [3] and Michalik

[10]. The results for multisummability were given by Blaser [4], Michalik [9] (for moment

partial differential equations) and Ōuchi [12], [13] (for linear and nonlinear partial differential

equations). The t-variable coefficients case was treated by Ichinobe [6] and [7].

In this paper, we shall give the proof of Theorem 1 by employing the method of successive

approximation, which is a new approach. This paper consists of the following sections. We

shall give the review of k-summability in section 2. In section 3, we shall construct the formal

solution of the original Cauchy problem (E) by the method of successive approximation.

Moreover, we shall prepare some results for the series associated with the formal solution of

(E) in section 4. In section 5, we shall prove Theorem 1. We shall give the proof of lemma

6 which is needed for proof of Theorem 1 in the final section 6.

2 Review of summability

In this section, we give some notations and definitions (cf. W. Balser [1], [2]).

Let κ > 0, S = S(d, β) and B(r) := {x ∈ C; |x| ≤ r}. Let u(t, x) ∈ O(S × B(r)) which

means that u(t, x) is holomorphic in S × B(r). Then we define that u(t, x) ∈ Expt(κ, S ×
B(r)), if for any closed subsector S′ of S, there exist some positive constants C and δ such

that

(2.1) max
|x|≤r

|u(t, x)| ≤ Ceδ|t|κ , t ∈ S ′.
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For κ > 0, we define that û(t, x) =
∑∞

n=0 un(x)tn is the formal power series of Gevrey

order 1/κ, if un(x) are holomorphic on a common closed disk B(r) for some r > 0 and there

exist some positive constants C and K such that for any n,

(2.2) max
|x|≤r

|un(x)| ≤ CKnΓ
(
1 +

n

κ

)
.

In this case, we write û(t, x) ∈ Ox[[t]]1/κ.

Let κ > 0, û(t, x) =
∑∞

n=0 un(x)tn ∈ Ox[[t]]1/κ and u(t, x) be an analytic function on

S(d, β, ρ) × B(r). Then we define that

(2.3) u(t, x) ∼=κ û(t, x) in S = S (d, β, ρ),

if for any closed subsector S′ of S, there exist some positive constants C and K such that

for any N , we have

(2.4) max
|x|≤r

�����u(t, x) −
N−1∑
n=0

un(x)tn

����� ≤ CKN |t|NΓ

(
1 +

N

κ

)
, t ∈ S ′.

For κ > 0, d ∈ R and û(t, x) ∈ O[[t]]1/κ, we define that û(t, x) is κ-summable in d

direction if there exist a sector S = S(d, β, ρ) with β > π/κ and an analytic function u(t, x)

on S × B(r) such that u(t, x) ∼=κ û(t, x) in S.

In this case, we write û(t, x) ∈ O{t}κ,d.

We remark that the function u(t, x) above for a κ-summable û(t, x) is unique if it exists.

Therefore such a function u(t, x) is called the κ-sum of û(t, x) in d direction.

3 Construction of the formal solution

We construct the formal solution by using the successive approximation method.

3.1 The sequence of Cauchy problems

First, we consider the sequence of the Cauchy problems.

(E0)

{
∂tu0(t, x) = a0∂

m
x u0(t, x),

u0(0, x) = ϕ(x).

For k ≥ 1,

(Ek)




∂tuk(t, x) =

min{m,k}∑
j=0

aj∂
m−j
x uk−j(t, x),

uk(0, x) = 0.
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For each k, the Cauchy problem (Ek) has a unique formal power series solution of the

form

(Solk) ûk(t, x) =
∑
n≥0

uk,n(x)
tn

n!
.

Then Û(t, x) =
∑

k≥0 ûk(t, x) is the formal power series solution of the original Cauchy

problem (E).

3.2 Construction of formal solutions ûk(t, x)

In this subsection, we give a construction of the formal solutions ûk(t, x) of the Cauchy

problem (Ek).

Lemma 2 Let k ≥ 0. For each k, the Cauchy problems (Ek) has a unique formal power

series solution ûk(t, x) which is given by

(3.1) ûk(t, x) =
∑
n≥0

uk,n(x)
tn

n!
=

∑
n≥0

Ak(n)ϕ(mn−k)(x)
tn

n!
,

where we take the sum of n for mn − k ≥ 0, and {Ak(n)} satisfy the following recurrence

formula:

When k = 0,

(3.2)

{
A0(n + 1) = a0A0(n) (n ≥ 0),

A0(0) = 1.

When k ≥ 1,

(3.3)




Ak(n + 1) =

min{m,k}∑
j=0

ajAk−j(n) (n ≥ 0),

Ak(0) = 0.

Proof.

We consider the case where k = 0. By substituting the formal solution (Sol0) into the

equation (E0), we obtain the recurrence formula of {u0,n(x)}

(3.4)

{
u0,n+1(x) = a0u

(m)
0,n (x) (n ≥ 0),

u0,0(x) = ϕ(x).

From the construction of the above recurrence formula (3.4), we can put

(3.5) u0,n(x) = A0(n)ϕ(mn)(x) (n ≥ 0),

where {A0(n)} satisfy the recurrence formula (3.2)
{

A0(n + 1) = a0A0(n) (n ≥ 0),

A0(0) = 1.
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Indeed, we get A0(n) = an
0 .

We consider the case where k ≥ 1. By substituting (Solk) into the equation (Ek), we

obtain the recurrence formula of {uk,n(x)}

(3.6)





uk,n+1(x) =

min{m,k}∑
j=0

aju
(m−j)
k−j,n (x) (n ≥ 0),

uk,0(x) ≡ 0.

From the construction of the above recurrence formula (3.6), we can put

(3.7) uk,n(x) = Ak(n)ϕ(mn−k)(x) (mn − k ≥ 0),

and uk,n(x) ≡ 0 for mn − k < 0, where {Ak(n)} satisfy the recurrence formula (3.3)





Ak(n + 1) =

min{m,k}∑
j=0

ajAk−j(n) (n ≥ 0),

Ak(0) = 0,

where Ak(n) = 0 for mn − k < 0.

Remark. We put k = m�−r(k) (� ≥ 0) and r(k) = 0, 1, . . . , m−1. When k ≡ 0 (mod m),

r(k) = 0. When k �≡ 0 (mod m), the number m−r(k) represents the remainder which divided

k by m.

In this case, the expression (3.7) holds for n ≥ �. Especially, it holds uk,n(x) ≡ 0 for

n < �, in other words, Ak(n) = 0 for n < �, which will be proved in next section (see Lemma

3).

4 Preliminaries for proof of Theorem 1

In this section, we shall give the property of generating functions of {Ak(n)} and the asso-

ciated moment series.

4.1 Generating functions of {Ak(n)}

We put

fk(t) =
∑
n≥0

Ak(n)tn.

When k = 0, we obtain from the recurrence formula (3.2)

(4.1) f0(t) =
1

1 − a0t
,

which has a singular point at t = 1/a0.
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Similarly, from the recurrence formula (3.3) we have

(4.2) fk(t) =
1

1 − a0t

min{m,k}∑
j=1

ajtfk−j(t),

which has a singular point at t = 1/a0.

From the expressions (4.1) and (4.2), we can get the following result.

Lemma 3 We write k = m� − r(k), 0 ≤ r(k) ≤ m − 1. Then the order of zeros of fk(t) at

t = 0 is at least �, that is, fk(t) = O(t�).

Proof. The proof is done by the induction. We assume that it holds until k − 1.

i) The case where 0 ≤ r(k) ≤ m − 2. Since 1 ≤ j ≤ min{m, k} ≤ m, we have

1 ≤ r(k) + j ≤ 2m − 2.

i-1) The case where 0 ≤ r(k) + j ≤ m − 1. In this case, we can represent

k − j = m� − r(k − j), r(k − j) = r(k) + j.

Therefore from the assumption of induction, we have fk−j(t) = O(t�).

i-2) The case where m ≤ r(k) + j ≤ 2m − 2. In this case, we can represent

k − j = m(� − 1) − r(k − j), r(k − j) = r(k) + j − m.

Therefore we have fk−j(t) = O(t�−1).

Hence in case i), we have fk(t) = O(t�) from the recurrence formula (4.2).

ii) The case where r(k) = m − 1.

Since m ≤ r(k) + j ≤ 2m − 1, we can represent

k − j = m(� − 1) − r(k − j), r(k − j) = r(k) + j − m.

Therefore we have fk−j(t) = O(t�−1) for all j with 1 ≤ j ≤ min{m, k}.
Hence in case ii), we have fk(t) = O(t�) from the recurrence formula (4.2).

Moreover, from the expressions (4.1) and (4.2), we see that |fk(t)| ≤ C�|t|� (|t| → ∞)

with C� ≤ CK� by some positive constants C and K.

We put

Fk(t) :=
∑
n≥0

Ak(n + �)tn = fk(t)/t
�.

Then we see that Fk(t) has the same singular point as the one of fk(t).
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4.2 Moment series of Fk(t)

For p ∈ N and k = m� − r(k), we define the moment series Gk,p(t) of Fk(t) as follows.

(4.3) Gk,p(t) := (MwFk)(t) =
∑
n≥0

Ak(n + �)wk,p(n)tn, wk,p(n) =
(αk1)n · · · (αkp)n

(γk1)n · · · (γkp)n

,

where γki > αki > 0 for all k and i. Here the symbol (α)n denotes the Pochhammer symbol

which is given by

(α)n =

{
α(α + 1) · · · (α + n − 1), n ≥ 1,

1, n = 0.

The function Gk,p(t) has the same singular point as the one of Fk(t) and fk(t).

Lemma 4 Gk,p(t) is analytic in C \ {1/a0}. Moreover, Gk,p(t) is bounded as |t| → ∞.

Proof. We remark that when Reγ > Reα > 0,

(α)n

(γ)n

=
Γ(γ)

Γ(α)Γ(γ − α)
B(α + n, γ − α)

=
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

xα−1+n(1 − x)γ−α−1dx.

By using the above formula, we have

Gk,p(t) =

p∏
i=1

Cki

∫

[0,1]p
xαi−1

i (1 − xi)
γi−αi−1Fk(xt)dx,

where Cki = Γ(γki)/Γ(αki)Γ(γki − αki), x =
∏p

i=1 xi and dx = dx1dx2 · · · dxp. Therefore

Gk,p(t) has the same singular point as the one of Fk(t).

Moreover, we see that since Fk(t) is bounded as |t| → ∞, from the above integral repre-

sentation, Gk,p(t) is also bounded as |t| → ∞. Exactly, we have |Gk,p(t)| ≤ C�.

5 Proof of Theorem 1

First, we give the important lemma for the summability theory (cf. Balser [1] and Lutz-

Miyake-Schäfke [8]).

Lemma 5 Let κ > 0, d ∈ R and û(t, x) =
∑

n≥0 un(x)tn ∈ Ox[[t]]1/κ. Then the following

statements are equivalent:

i) û(t, x) ∈ Ox{t}κ,d.

ii) We put

(5.1) uB(s, x) = (B̂κû)(s, x) :=
∑
n≥0

un(x)

Γ(1 + n/κ)
sn,

which is a formal κ-Borel transformation of û(t, x), which is convergent in a neighborhood

of the origin (s, x) = (0, 0). Then uB(s, x) ∈ Exps(κ, S(d, ε) × B(σ)) for some ε > 0 and

σ > 0.
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Under the assumptions for the Cauchy data, we shall prove Theorem 1. By using Lemmas

4 and 5, we obtain the following results, which will be proved in next section.

Lemma 6 Let k = m� − r(k) and ûk(t, x) be the formal solutions for the Cauchy problem

(Ek). Then for a fixed d ∈ R, we have (uk)B(s, x) ∈ Exps(κ, S(d, ε)×B(σ)) for some positive

ε and σ. Exactly, we have

(5.2) max
|x|≤σ

|(uk)B(s, x)| ≤ C
K�|s|�

�!((m − 1)�)!
exp (δ|s|κ) ,

(
κ =

1

m − 1

)

where C, K and δ are independent of k (therefore �).

Lemma 6 implies the following result.

Corollary 7 For all k, we have ûk(t, x) ∈ Ox{t}κ,d.

Proof of Theorem 1. By Lemmas 5 and 6, we have the following desired exponential

growth estimate for UB(s, x) =
∑

k≥0(uk)B(s, x), which means that the proof of Theorem 1

is completed.

max
|x|≤σ

|UB(s, x)| ≤
∑
k≥0

max
|x|≤σ

|(uk)B(s, x)|

=
∑
�≥0

m−1∑
r(k)=0

max
|x|≤σ

|(um�−r(k))B(s, x)|

≤ C exp (δ|s|κ)
m−1∑

r(k)=0

∑
�≥0

K�|s|�

�!((m − 1)�)!

(
κ =

1

m − 1

)

≤ �C exp
(
δ|s|1/(m−1)

)
exp((K|s|)1/m) (C < �C)

≤ �C exp
(
δ̃|s|1/(m−1)

)
(δ̃ > δ).

6 Proof of Lemma 6

We give the proof of Lemma 6 in the final section.

We put k = m� − r(k), r(k) = 0, 1, · · · ,m − 1. We have

(uk)B(s, x) = (B̂κuk)(s, x) =
∑
n≥0

Ak(n)ϕ(mn−k)(x)
sn

n!((m − 1)n)!

(
κ =

1

m − 1

)
.

Since the order of zeros of (uk)B(s, x) at s = 0 is at least �, we have

(uk)B(s, x) =
∑
n≥�

Ak(n)ϕ(mn−k)(x)
sn

n!((m − 1)n)!

=
∑
n≥0

Ak(n + �)ϕ(mn+r(k))(x)
sn+�

(n + �)!((m − 1)(n + �))!

=
s�

2πi

�
ϕ(x + ζ)

ζr(k)+1

∑
n≥0

Ak(n + �)
(mn + r(k))!

(n + �)!((m − 1)(n + �))!

(
s

ζm

)n

dζ.
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By using the relation

(pn + q)! = q!ppn

(
q + 1

p

)

n

·
(

q + 2

p

)

n

· · ·
(

q + p

p

)

n

,

we have

(uk)B(s, x) =
s�

2πi

r(k)!

�!((m − 1)�)!

�
ϕ(x + ζ)

ζr(k)+1

×
∑
n≥0

Ak(n + �)
mmn

(
r(k)+1

m

)
n
· · ·

(
r(k)+m

m

)
n

(� + 1)n(m − 1)(m−1)n
(

(m−1)�+1
m−1

)
n
· · ·

(
(m−1)(�+1)

m−1

)
n

(
s

ζm

)n

dζ

=
s�

2πi

r(k)!

�!((m − 1)�)!

�
ϕ(x + ζ)

ζr(k)+1
Gk,m

(
mm

(m − 1)m−1

s

ζm

)
dζ,

where we put

Gk,m(X) =
∑
n≥0

Ak(n + �)

(
r(k)+1

m

)
n
· · ·

(
r(k)+m

m

)
n

(� + 1)n

(
(m−1)�+1

m−1

)
n
· · ·

(
(m−1)(�+1)

m−1

)
n

Xn.

Here we remark that Gk,m(X) has a singular point at X = 1/a0. Therefore Gk,m(cs/ζm)

has m singular points in ζ complex plane, which are given by ζ = (ca0s)
1/mωi

m (i =

0, 1, . . . ,m − 1), where ωm = e2πi/m.

From the assumption of Cauchy data and Lemma 4, we obtain

max
|x|≤σ

|(uk)B(s, x)| ≤ C
K�|s|�

�!((m − 1)�)!
exp

(
δ|s|1/(m−1)

)
,

where C,K and δ are independent of k (therefore �). We omit the detail (cf. Balser [3],

Balser and Miyake [5], Ichinobe [6], Lutz, Miyake and Schäfke [8], Michalik [9], [10] and

Miyake [11]).
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