
1 Introduction

Slinky is a spring toy. If it hangs down, it extends under its own weight. In this paper, we consider the form of
Slinky which extends under its own weight. The following is our result.

Theorem. Consider a spring which extends under the following conditions:

(i) The spring is uniform along the axis, hanging down as the axis to be vertical.

(ii) The gravity acts each point P of the spring vertically down, and its magnitude is proportional to the mass
locating blow P .

(iii) The spring extends under the local Hooke’s law, given in Subsection 2.1.

(iv) When no forces act on the spring, its form is a helix of winding number at least one.

(v) Though the spring extends, it preserves its curvature.

Under the above conditions, the spring lies on a one-sheeted hyperboloid of revolution.

Though the above theorem says so, a hanging Slinky seems not to be a hyperboloid but a cylinder. This is because
its eccentricity is very large. See Subsection 3.2. The most important idea of this paper is the assumption (v). We
will see the validity of it in Subsection 2.3. The author got the idea from the textbook of Frank Morgan [1].

Figure 1: Slinky
Figure 2: One-Sheeted

Hyperboloid of Revolution

2 Preparation

2.1 Extention of Spring under Its Own Weight

Throughout this paper, we denote by g be the acceleration of gravity, and by m, k and L respectively the mass,
the spring constant and the natural length of the spring. We also denote by A and B the endpoints of the spring.
In this subsection, we prove the following well-known lemma. The author does not know who got this result first.
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Lemma. Consider a spring under the conditions (i), (ii) and (iii). Take any point P on the spring AB. We denote

by h the natural length between P and A. After hanging down from A, the length comes to h +
mg

kL2

(
Lh − 1

2
h2

)
.

Especially, the length of the spring comes to L+
mg

2k
.

Before proving the lemma, we explain local Hooke’s Law. Consider a spring with no other forces acting. We
assume that the spring pulled with a force F extends its length by ∆L. By Hooke’s Law, we have that F = k∆L.
The spring constant k is inversely proportional to the length L. For example, if we arrange two same springs in
series, then the coupled spring pulled with the force F extends its length by 2∆L. That is, the spring constant of
the coupled spring is considered as F/(2∆L) = k/2.

Put the spring horizontally, fix an endpoint A, and take two points P , Q on the spring. We denote by h, h+ δh
respectively the distances of P , Q from A. We assume that after pulling another endpoint B by the force F in the
axial direction, the distances h, h + δh change to z, z + δz respectively. See Figure 3. Since the spring constant
is inversely proportional to the length, the spring constant of the sub-spring PQ comes to k(L/δh). Therefore, by

Hooke’s Law, we have that F = k
L

δh

(
δz − δh

)
. By letting δh → 0, we obtain that

F = kL
(dz

dh
− 1

)
. (2.1)

We call it the local Hooke’s Law.

←−−−−− h −−−−−→←− δh −→

←−−−−−−−−− z −−−−−−−−−→←−−− δz −−−→

Figure 3: Derivation of Local Hooke’s Law

Proof of Lemma. Since the spring is uniform, the mass of sub-spring PB comes to m(L − h)/L. By the local
Hooke’s Law (2.1), we have that

kL
(dz

dh
− 1

)
= m

L− h

L
g , that is,

dz

dh
= 1 +

mg

kL2
(L− h) . (2.2)

By integrating both sides, we have that

z = h+
mg

kL2

(
Lh− 1

2
h2

)
. (2.3)

Especially, by putting h = L, we obtain that the total length of the spring L+
mg

2k
.

2.2 Helical Springs

Consider a helix represented by a position vector

x⃗(s) =
(
a cos

s√
a2 + b2

, a sin
s√

a2 + b2
,

bs√
a2 + b2

)
, 0 ≦ s ≦ l , (2.4)

where a and b are positive constants. By Eq. (2.4), we have that

�� x⃗ ′(s)
�� = 1 ,

�� x⃗ ′′(s)
�� = a

a2 + b2
. (2.5)
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The former identity indicates that s is an arc-length parameter, and the latter indicates that λ = a/(a2 + b2) is the
curvature of the helix (2.4). We assume that the points A, B, P respectively correspond to the parametric values
0, l, s. Then we have that

h =
bs√

a2 + b2
, L =

bl√
a2 + b2

. (2.6)

Notice that l is the “arc-length” though L is the “length”. They are different notions. By putting Eq. (2.6) into
Eq. (2.2), we have that

z′(s) = µ+ λε(l − s) , where µ =
b√

a2 + b2
, ε =

mg

kl2λ
. (2.7)

By integrating both sides of Eq. (2.7), we have that

z(s) = µs+ λε
(
ls− 1

2
s2
)
. (2.8)

2.3 Preservation of Curvatures

Frank Morgan [1] introduces an interesting story on curvatures of space curves.

There was a company constructing a huge smokestack, which requires the attachment of spiraling strip for
structural support. An engineer aimed to cut an annulus out of a flat metal, and to attach it to the smokestack
along a helix. See Figures 4 and 5. A problem was what choice of inner radius r of the annulus would make it fit
on the smokestack best? The size of the helix were: a = 3.75 feet, 2πb = 31.5 feet.

After some trial and error, the engineer found that annulus cut with r ≈ 10.5 feet fit well. However, we can
compute the inner radius r mathematically. The way to compute r is to make the circle and the helix to have the
same curvature. That is,

r =
1

λ
=

a2 + b2

a
≈ 10.45 feet. (2.9)

It is close to the engineer’s experiment.

r

Figure 4: Annulus Cut
out of a Flat Metal

Figure 5: A Smokestack
Attached with an Annulus

3 Form of Spring Extending under Its Own Weight

3.1 Finding the Equation of the Curve

Consider a spring extending under its own weight. We represent the curve by a position vector

x⃗(s) =
(
x(s), y(s), z(s)

)
, (3.1)

where z(s) is a function obtained in Eq. (2.8). Since s is an arc-length parameter, we have that

�� x⃗ ′(s)
��2 =

(
x′ )2 + (

y′
)2

+ φ2 = 1 , (3.2)
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where φ(s) = µ+ λε(l − s). Since the curvature λ is invariant, we have that

�� x⃗ ′′(s)
��2 =

(
x′′ )2 + (

y′′
)2

+ (−λε)2 = λ2 . (3.3)

So the spring satisfies the differential equations (3.2) and (3.3).

By Eq. (3.2), the spring must satisfy φ(s) ≦ 1. The restriction comes from the fact that the length must be
smaller than the arc-length. By Eq. (3.2), we can put x′ and y′ as follows:

x′ =
√
1− φ2 cosα(s) , y′ =

√
1− φ2 sinα(s) . (3.4)

By differentiating both sides of Eq. (3.4), we have that

x′′ =
λεφ√
1− φ2

cosα−
√
1− φ2 α′ sinα , y′′ =

λεφ√
1− φ2

sinα+
√
1− φ2 α′ cosα . (3.5)

By putting them into Eq. (3.3), we have that

λ2ε2φ2

1− φ2
+ (1− φ2)

(
α′)2 + λ2ε2 = λ2 , and so

(
α′)2 = λ2 1− ε2 − φ2

(1− φ2)2
. (3.6)

By Eq. (3.6), the spring must satisfy 1− ε2 − φ2 ≧ 0. The restriction comes from the assumption that the spring
preserves its curvature.

We assume that the spring winds counter-clockwise, that is, α′ ≧ 0. By taking square root of Eq. (3.6), and by
integrating both sides, we have that

α(s) = λ

∫ √
1− ε2 − φ2

1− φ2
ds . (3.7)

To find this integral, we introduce a new variable u as follows:

φ(s) =
√

1− ε2 cosu , and so
ds

du
=

√
1− ε2

λε
sinu . (3.8)

Then Eq. (3.7) comes to

α(s) =
1

ε

∫
(1− ε2) sin2 u

1− (1− ε2) cos2 u
du =

1

ε

∫ {
1− ε2

1− (1− ε2) cos2 u

}
du

=
u

ε
− ε

∫
1

ε2 + tan2 u
· 1

cos2 u
du . (3.9)

To find this integral, we introduce a new variable v by tanu = ε tan v. Then we have that

cos v =
1√

1 + tan2 v
=

ε cosu√
ε2 cos2 u+ sin2 u

=
ε cosu√
1− φ2

,

sin v =
√
1− cos2 v =

√
ε2 cos2 u+ sin2 u− ε2 cos2 u

1− φ2
=

sinu√
1− φ2

.

(3.10)

Then Eq. (3.9) comes to

α(s) =
u

ε
− ε

∫
1

ε2(1 + tan2 v)
· ε

cos2 v
dv =

u

ε
− v + c , (3.11)

where c is an integrating constant. By putting Eq. (3.11) into Eq. (3.4), and by using Eq. (3.10), we have that

x′(s) =
√
1− φ2 cos

(u
ε
+ c− v

)
=

√
1− φ2

{
cos

(u
ε
+ c

)
cos v + sin

(u
ε
+ c

)
sin v

}

= ε cos
(u
ε
+ c

)
cosu+ sin

(u
ε
+ c

)
sinu . (3.12)
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Similarly, we have that

y′(s) = ε sin
(u
ε
+ c

)
cosu− cos

(u
ε
+ c

)
sinu. (3.13)

By Eq. (3.12), we have that

x′(s) ds =
{
ε cos

(u
ε
+ c

)
cosu+ sin

(u
ε
+ c

)
sinu

}
·
√
1− ε2

λε
sinu du

=

√
1− ε2

2λε

{
ε cos

(u
ε
+ c

)
sin 2u+ sin

(u
ε
+ c

)
(1− cos 2u)

}
du

= −
√
1− ε2

4λε

{
(1− ε) sin

(u
ε
+ 2u+ c

)
+ (1 + ε) sin

(u
ε
− 2u+ c

)
− 2 sin

(u
ε
+ c

)}
du . (3.14)

Similarly, we have that

y′(s) ds =

√
1− ε2

4λε

{
(1− ε) cos

(u
ε
+ 2u+ c

)
+ (1 + ε) cos

(u
ε
− 2u+ c

)
− 2 cos

(u
ε
+ c

)}
du . (3.15)

By integrating both sides of Eqs. (3.14), (3.15), we have that

x(s) =

√
1− ε2

4λ

{ 1− ε

1 + 2ε
cos

(u
ε
+ 2u+ c

)
+

1 + ε

1− 2ε
cos

(u
ε
− 2u+ c

)
− 2 cos

(u
ε
+ c

)}
+ x0 ,

y(s) =

√
1− ε2

4λ

{ 1− ε

1 + 2ε
sin

(u
ε
+ 2u+ c

)
+

1 + ε

1− 2ε
sin

(u
ε
− 2u+ c

)
− 2 sin

(u
ε
+ c

)}
+ y0 ,

(3.16)

where x0 and y0 are integrating constants. Eq. (3.16) represents the form of the spring which is extending under
its own weight.

3.2 The Restriction to the Value of ε

The denominator of Eq. (3.16) vanishes when ε = 1/2. However, it is not problem. In this subsection, we prove
that the spring must satisfy ε < 1/2. Since we have that 1− ε2 − φ2 ≧ 0, we have that

1− ε2 −
(
φ(0)

)2
= 1− ε2 − (µ+ λεl)2 ≧ 0 . (3.17)

By solving the quadratic inequality (3.17) for ε, we have that

ε ≦ 1− µ2

µλl +
√

(λl)2 + (1− µ2)
. (3.18)

The curvature and the winding number of the helix are respectively given by

λ =
a

a2 + b2
, n =

l

2π
√
a2 + b2

. (3.19)

By combining them, we have that

λl = 2πn
a√

a2 + b2
= 2πn

√
1− µ2 . (3.20)

By substituting it into Eq. (3.18), we have that

ε ≦
√
1− µ2

2πnµ+
√
(2πn)2 + 1

<
1

2πn
. (3.21)

Therefore, a spring of winding number n ≧ 1 must satisfy ε < 1/(2π) ≑ 0.16. (It is a mathematical restriction.
Physical conditions may require the value of ε much smaller.)
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3.3 Extending Spring Lies on a Hyperboloid

By Eq. (3.16), we have that

(x− x0)
2 + (y − y0)

2

=
1− ε2

16λ2

{( 1− ε

1 + 2ε

)2

+
( 1 + ε

1− 2ε

)2

+ 4 +
1− ε2

1− 4ε2
cos 4u− 2

1− ε

1 + 2ε
cos 2u− 2

1 + ε

1− 2ε
cos 2u

}

=
1− ε2

λ2

{ 1− ε2

1− 4ε2
cos4 u− 2 + ε2

1− 4ε2
cos2 u+

(1− ε2)2

(1− 4ε2)2

}

=
1

λ2(1− 4ε2)

{
(1− ε2) cos2 u− 1− ε2

2

}2

+
27ε4

λ2(1− 4ε2)2
. (3.22)

We can arrange Eq. (2.8) into

z(s) = − 1

2λε

{
φ(s)2 − (µ+ λεl)2

}
. (3.23)

By combining Eqs. (3.8) and (3.23), we have that

(1− ε2) cos2 u = φ(s)2 = −2λεz(s) + (µ+ λεl)2 . (3.24)

By substituting it into Eq. (3.22), we have that

(x− x0)
2 + (y − y0)

2 =
4ε2

1− 4ε2
(z − z0)

2 +
27ε4

λ2(1− 4ε2)2
, (3.25)

where

z0 =
(µ+ λεl)2 − 1− ε2/2

2λε
. (3.26)

By the result of Subsection 3.2, the constant ε < 1/2. So Eq. (3.25) represents a one-sheeted hyperboloid of
revolution. Hence a spring extending under its own weight lies on a one-sheeted hyperboloid of revolution.

The eccentricity of the hyperbola is given by

√
1 +

1− 4ε2

4ε2
=

1

2ε
. (3.27)

Since the constant ε is very small, the eccentricity (3.27) is very large. So the hyperboloid seems like a cylinder.
Moreover, by applying Eq. (3.17) to Eq. (3.26), we have that

z0 =
(µ+ λεl)2 − 1− ε2/2

2λε
≦ − 3ε

4λ
< 0. (3.28)

Therefore the center of symmetry of the hyperboloid is located above the spring. That is, the upper part of the
extending spring is thin though the lower part is thick.
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