
1. Can mathematics tell about tonality?

Transformational approaches to music have been a large movement in the communities of music theorists,

analysts and composers, so, our set-theoretical approach examined in this paper may look old-fashioned.

However the maximal evenness ansatz seems to brings us a clue to create a purely mathematical model

for tonal music theory. In this research, we give an attempt to understand tonality established on diatonic

system, in terms of maximal evenness which has been firstly introduced into mathematical music theory

by Clough and Douthett[1]. The concept gives a systematic perception for tone system in diatonic system,

such as pentatonic or diatonic scales, triads, 7-th chords and so on. We focus our argument on tonal music,

of which pitches or chords are systematically arranged around a single central tone called the key of a piece.

Usual tonal music are constructed by chords stacking in thirds, which are described systematically under

the concept of ‘second-order maximally even sets’ introduced by Douthett[3]. These descriptions also brings

a sort of representation for several chord progressions, such as translations, substitutions, modulations

and cadences. In particular, cadences, progressions of several chords which create a sense of resolution,

indicate the central pitch of a passage strongly, and thus establish the tonality of a piece, typically the chord

progression from the dominant to the tonic (so called the authentic cadence). It is considerable feature of

tonal music that all these mechanisms are described by J-functions (Definition 2.1).

2. Maximal evenness ansatz in mathematical music theory

2.1. A short story on diatonic scales and maximal evenness. Classical European music (or Western

popular music even today) is established on 12-tone musical scale (so-called the chromatic scale). The scale

is obtained by stacking perfect fifth intervals, i.e., multiplying the frequency of successive tones by 3/2,

called the Pythagorean tuning. As the perception of octave equivalence, the tuning process is emulated

by a circle rotation R/Z ∋ x �→ x + log2(3/2) ∈ R/Z, hence the continued fractional approximation

log2(3/2) ≒ [1, 1, 2, 2] = 7/12 induces a cyclic sequence of 12 tones. Historically, by connecting a couple

of tetrachords, ancient Greek created a heptatonic scale, called the diatonic scale, which has been a basis

for classical European music and is popularly used even today. As is well known in mathematical music

community, the diatonic collection has significant features. Clough and Douthett[1] studied the diatonic

collection from the viewpoint of maximal evenness: the 7 points are selected maximally even way from 12

points equally distributed on a circle.

Definition 2.1. For c, d,m ∈ Z with d ̸= 0, the J-function on Z is defined as

Jm
c,d(k) =

⌊
ck +m

d

⌋
,

where ⌊x⌋ denotes the largest integer less than or equal to x.

Since c is expressed as c = Ad+ b, 0 ≤ b ≤ d− 1, A, b ∈ Z and ⌊x+ α⌋ − ⌊x⌋ ∈ {0, 1} holds for any x ∈ R

and 0 < α < 1, the J-function Jm
c,d generates bi-infinite sequence (Jm

c,d(k + 1) − Jm
c,d(k) − A)k∈Z ∈ {0, 1}Z,

called a mechanical word. It is shown that a periodic word with Myhill’s property 1), an embodiment of the

maximal evenness, is a mechanical word and vice versa. (See details and proofs, e.g., [7][5].)

1)If the word is aperiodic, this property is known as a balanced word in combinatorics on words.
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Definition 2.2 (Periodic Myhill’s property). Let v = (vk) ∈ {0, 1}Z be a periodic bi-infinite sequence of

0, 1 with period c. For a subword w in v, |w| and |w|1 denotes the length of the word and the number

of occurrences of the letter 1 in w respectively. We say v has Myhill’s property with period c whenever

||x|1 − |y|1| = 1 holds for any subwords x,y in v with |x| = |y| = k ̸≡ 0 (mod c). The set of periodic

sequence having Myhill’s property with period c is denoted by Mc.

Therefore the J-function for 0 < d ≤ c induces a ‘maximally even’ embedding

Jm
c,d : Z/dZ ↪→ Z/cZ.

We use notations Jm
c,d = (Jm

c,d(k))k=0,...,d−1 and |Jm
c,d| = {t ∈ Jm

c,d}. If we adopt a semitone encoding for the

chromatic scale as C = 0, C♯ = 1, . . . , B = 11, the diatonic scale CDEFGAB is expressed as a sequence

(0, 2, 4, 5, 7, 9, 11) = (J5
12,7(k))k=0,...,6 = J 5

12,7, hence the diatonic scale is embedded into the chromatic scale

maximally even way. We note that the diatonic collection is selected successively in the process of stacking

perfect fifth intervals. In [4] and [5], we have elucidated why the ‘successive’ 7 notes in Pythagorean tuning

become maximally even, in terms of rotation dynamics on R/Z.

Definition 2.3. For any subset D ⊂ Z/cZ, we associate a periodic sequence v(D) = (vk) ∈ {0, 1}Z of

period c as

v(D)k = vk = 1 if and only if k ≡ l (mod c) for some l ∈ D.

A subset D is called a Myhill set of period c whenever v(D) ∈ Mc.

Theorem 2.4 (Dynamical characterization of Myhill set[5]). Consider a subset D ⊂ Z/cZ with the cardi-

nality #|D| = d prime to c, and take a translation

T : Z/cZ ∋ x �→ x+ d−1 ∈ Z/cZ,

where d−1 is the multiplicative inverse of d ∈ (Z/cZ)×. Then D is a Myhill set of the period c if and only

if D is a collection of successive d images of some element g ∈ Z/cZ by T , namely

D = {g, T (g), T 2(g), . . . , T d−1(g)} = {g, g + d−1, g + 2d−1, . . . , g + 1− d−1}.

A J-function Jm
c,d gives a Myhill set |Jm

c,d| describing a spatial feature how Z/dZ is embedded in Z/cZ,

while the theorem above states the Myhill set |Jm
c,d| has a temporal characterization in terms of a dynamics

on Z/cZ. An explicit relation between Jm
c,d and T is given as follows.

Proposition 2.5. Given integers c > d > 0 prime to each other and m,
take a pair (c−, d−) of integers satisfying

(2.1) c · c− + d · d− = 1.

Let T be a translation

T : Z/cZ ∋ x �→ x+ d− ∈ Z/cZ.

Then we have
Jm
c,d(−(k +m+ 1)c−) = T k(g)

for k = 0, . . . , d− 1, where g ≡ (m+ 1)d− − 1 (mod c).

Z/dZ � �
Jm
c,d ��

×(−c−)
��

Z/cZ

T
��

Z/dZ � �

Jm
c,d

�� Z/cZ

Proof. It comes from (2.1) that c− is the multiplicative inverse of c in Z/dZ, and d− is the multiplicative

inverse of d in Z/cZ. Then we have

Jm
c,d(−(k +m+ 1)c−) =

⌊
−(k +m+ 1)cc− +m

d

⌋
= (k +m+ 1)d− +

⌊
−k + 1

d

⌋
= kd− + (m+ 1)d− − 1

for k = 0, . . . , d− 1, hence the assertion. □
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The following shows a relation among ‘adjacent’ scales (known as related keys) in terms of J-functions.

Proposition 2.6. Given integers c > d > 0 prime to each other and m, take a pair (c−, d−) satisfying

(2.1). Then for ν ∈ Z we have

(2.2) Jm+ν
c,d (−νc−) = Jm

c,d + νd−,

where Jm
c,d(l) stands for the l-shift (Jm

c,d(k + l))k=0,...,d−1 of Jm
c,d.

Proof. Indeed, (2.1) drives

Jm+ν
c,d (k − νc−) =

⌊
c(k − νc−) +m+ ν

d

⌋
=

⌊
ck +m+ νdd−

d

⌋
= Jm

c,d(k) + νd−

holds for any k ∈ Z. □

Let us apply above propositions to our case c = 12, d = 7. As 7 · 7 + 12 · (−4) = 1, we put c− = −4 and

d− = 7. The temporal translation T works as stacking d− = 7 semitones in chromatic scale, corresponding

to the adjacent −c− = 4 (whole) tones move in diatonic scale, and both mean the diatonic scale is generated

by stacking in perfect fifth. It is noticeable that by Proposition 2.6, changing the ‘mode’ m by +1 means a

translation of the diatonic scale by d− = 7 semitones, i.e., perfect fifth. In music theory, Jm+1
12,7 and Jm−1

12,7

are called the dominant key, and the subdominant key of Jm
12,7 respectively. The relations between the mode

m and diatonic scales are shown by Table 1. The sequence D♭ A♭ E♭ B♭ F · · · is also known as the circle of

fifth in music theory.

m 0 1 2 3 4 5 6 7 8 9 10 11

Diatonic in major Jm
12,7 D♭ A♭ E♭ B♭ F C G D A E B F ♯

Table 1. Representation of major scales by J-functions.

2.2. Douthett’s ‘beacon-filter’ construction and second-order maximal evenness. The discovery

of the diatonic collection developed our new perception for music, the ‘tonality’, which was reinforced by

progress of triadic harmony. Usually, a triad consists of three notes stacked in thirds. CEG, so-called the

tonic chord in C major, consists of the frequencies with the 4 : 5 : 6 ratio, and has been perceptually

preferable for human beings because of its simple ratio. Cook and Fujisawa[2] proposed a mathematical

model for perceptual stability/non-stability of triads. Contrast to such psychoacoustic understandings of

triadic harmony, Douthett[3] proposed a new viewpoint for triads under the concept of maximal evenness.

In fact, any triad stacked in thirds (in C major) are maximal evenly embedded into Z/7Z, so its realization

in the chromatic scale is expressed2) as

(2.3) Z/3Z
Jm
7,3
↪→ Z/7Z

J5
12,7
↪→ Z/12Z.

Here we fix the second J-function to J5
12,7 so as to obtain triads in C major scale, while we take the first Jm

7,3

with a continuous parameter m. Varying m continuously from 0 to 6, we obtain 7 triads staked in thirds,

as CEG,CEA,CFA,DFA,DFB,DGB,EGB. In this sense, such triads are embedded in the chromatic

scale ‘second-order maximally even’ way. Similarly, we obtain 7-th chords in the diatonic scale replacing

2)In [3], Douthett compared (2.3) to a beacon and filters. A beacon with three lamps evenly arranged on a circle stands for
Z/3Z. Z/7Z corresponds to the first filter, a circle of larger radius than that of beacon with equally distributed 7 holes, and
concentric to it, and Z/12Z corresponds to the second filter, a circle of larger radius than that of the first filter with equally
distributed 12 holes, and concentric to the beacon. Then the J-functions controls the route of beams of the lamps how each
beam travel through the holes. Varying m corresponds to the rotation of the beacon.
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Jm
7,3 by Jm

7,4, as CDFA ≡ DFAC,CEFA ≡ FACE,CEGA ≡ ACEG,CEGB,DEGB ≡ EGBD,DFGB ≡
GBDF,DFAB ≡ BDFA, where ≡ means the identification by octave equivalence. See Figure 1 and 2.
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Figure 1. Triads as the second-
order maximally even sets.
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Figure 2. 7-th chords as the
second-order maximally even sets.

In the sequence of triads CEG,CEA, . . . or 7-th chords CDFA,CEFA, . . . , one sees that the difference

of adjacent triads or 7-th chords occurs only one entry, like CEG → CEA,CEA → CFA, . . . , giving a

smooth code progression in the diatonic collection. Indeed this fact is shown as follows.

Proposition 2.7. Let c, d be non-zero integers prime to each other. Then for any x ∈ R,

(2.4)
∑

k∈Z/dZ

|Jx+1
c,d (k)− Jx

c,d(k)| = 1

holds.

Proof. For x ∈ R, one sees ⌊x
d

⌋
−

⌊
x− 1

d

⌋
= 1

holds if and only if ⌊x⌋ ≡ 0 (mod d). As c is prime to d, c is invertible in Z/dZ, and then there exists a

unique k ∈ Z/dZ fulfilling ck +m ≡ 0 (mod d) for each m ∈ Z, while for any x ∈ R, ⌊x⌋ is expressed by

⌊x⌋ = ck +m, 0 ≤ m ≤ c − 1. Then any x ∈ R has a unique k ∈ Z/dZ satisfying |Jx+1
c,d (k) − Jx

c,d(k)| = 1,

hence the assertion. □

3. J-functions and some characterizations of diatonic system

In this section we use the abbreviation J p,q
c,d,e = Jp

c,d(J
q
d,e) = (Jp

c,d ◦ J
q
d,e(k))k=0,...,e−1.

3.1. Triads, 7-th, augmented, diminished and half diminished chords. We have already seen that

triads or 7-th chords staked in thirds are obtained as second-order maximally even subsets in the chromatic

scale Z/12Z, like J 5,0
12,7,3 = CEG or J 5,3

12,7,4 = CEGB. To describe relations among chords, we require the

followings.

Proposition 3.1. For c, d, l,m ∈ Z with d ̸= 0, we have a translation

(3.1) Jm+ld
c,d = Jm

c,d + l = (Jm
c,d(k) + l)k=0,...,d−1
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and a transposition

(3.2) Jm+lc
c,d = Jm

c,d(l) = (Jm
c,d(k + l))k=0,...,d−1.

Proof. (3.1) comes from

Jm+ld
c,d (k) =

⌊
ck +m+ ld

d

⌋
=

⌊
ck +m

d

⌋
+ l = Jm

c,d(k) + l,

and (3.2) from

Jm+lc
c,d (k) =

⌊
ck +m+ lc

d

⌋
=

⌊
c(k + l) +m

d

⌋
= Jm

c,d(k + l).

□

For instance, we have translations of triads

J 5,0
12,7,3 = CEG → J 5,3

12,7,3 = DFA → J 5,6
12,7,3 = EGB → · · · ,

and the transpositions

J 5,0
12,7,3 = CEG → J5

12,7(J 0
7,3(1)) = J 5,7

12,7,3 = EGC → J5
12,7(J 0

7,3(2)) = J 5,14
12,7,3 = GCE → · · · .

Thus, one sees correspondences among the J-representations above and the roman numeral analysis in music

theory. In any diatonic scale Jm
12,7 in mode m (the key of the scale), the triad Jm

12,7

(
J 0
7,3

)
is called the tonic

denoted by roman numeral I, and its translations are denoted as (omitting Jm
12,7)

J 0
7,3 = I, J 3

7,3 = ii, J 6
7,3 = iii, J 9

7,3 = IV, J 12
7,3 = V, J 15

7,3 = vi, J 18
7,3 = vii◦.

Also transpositions of any triad, say J 0
7,3 are denoted as

J 0
7,3 = I, J 0

7,3(1) = J 7
7,3 = I6, J 0

7,3(2) = J 14
7,3 = I64.

Contrast to triads or 7-th chords, diminished and augmented chords are described as maximally even sets

in the chromatic scale, because they consist of evenly distributed four or three pitches. Up to transposition,

there are three diminished chords

J 0
12,4 = CE♭F ♯A, J 4

12,4 = C♯EGB♭, J 8
12,4 = DFA♭B,

and four augmented chords

J 0
12,3 = CEG♯, J 3

12,3 = C♯FA, J 6
12,3 = DF ♯A♯, J 9

12,3 = D♯GB.

Note that we have already obtained the half diminished chord as a second-order maximally even set,

J5
12,7(J 6

7,4(−1)) = J 5,(6−7)
12,7,4 = J 5,−1

12,7,4 = BDFA.

One sees a triad stacked in thirds is a subset of a 7-th chord, like CEG in CEGB, however this kind of

inclusion relation is also described by J-functions. Indeed, as J 0
4,3 = (0, 1, 2), we see

CEG = J 5,0
12,7,3 = (J5

12,7 ◦ J0
7,3(k))k=0,1,2

= (J5
12,7 ◦ J3

7,4 ◦ J0
4,3(k))k=0,1,2 = (J5

12,7 ◦ J3
7,4(k))k=0,1,2 ⊏ J 5,3

12,7,4 = CEGB,

where X ⊏ Y means X is a subword of Y . This inclusion can be written as

CEG = J 5,0
12,7,3 = J 5,3,0

12,7,4,3 ⊏ J 5,3
12,7,4 = CEGB.

Such a special inclusion occurs under some restricted conditions.

Lemma 3.2. For 0 ≤ m ≤ d, we have Jm
d+1,d = (k)k=0,...,d;k ̸=d−m.
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Proof. The assertion comes from
⌊
(d+ 1)k +m

d

⌋
= k +

⌊
k +m

d

⌋
=

{
k, for k = 0, . . . , d− 1−m,

k + 1, for k = d−m, . . . , d− 1.

□

Proposition 3.3. For c = 2d+ 1 and m ∈ Z, we have

Jm
c,d(−r) ⊏ J l

c,d+1(−r),

where l = c
⌊m
d

⌋
+ d−m− 1 or c

⌊m
d

⌋
+ d−m, and r ≡ m (mod d), 0 ≤ r ≤ d− 1.

Proof. By Lemma 3.2, we have J 0
d+1,d = (0, . . . , d− 1). Putting A = ⌊m/d⌋, thus m = Ad+ r, it holds for

k = −r, . . . , d− 1− r that

Jm
c,d(k) =

⌊
ck +m

d

⌋
= 2k +A+

⌊
k + r

d

⌋
= 2k +A,

and

J l
c,d+1(k) =

⌊
ck + l

d+ 1

⌋
= 2k +A+

⌊
−k + d− 1− r

d+ 1

⌋
or 2k +A+

⌊
−k + d− r

d+ 1

⌋

= 2k +A.

Then applying Proposition 3.1, we have Jm−rc
c,d (k) = J l−rc

c,d+1(k) for k = 0, . . . , d− 1. Therefore

Jm
c,d(−r) =

(
J l−rc
c,d+1(k)

)
k=0,...,d−1

⊏ J l
c,d+1(−r).

□

Let us apply Proposition 3.3 for CEG, i.e., c = 7, d = 3,m = 0, which shows two possibilities l = 2

and 3, corresponding to CEG = J 5,0
12,7,3 ⊏ J 5,2

12,7,4 = CEGA and CEG = J 5,0
12,7,3 ⊏ J 5,3

12,7,4 = CEGB

respectively. It comes from Lemma 3.2 that we have CEB = J 5,3,1
12,7,4,3(omit G), CGB = J 5,3,2

12,7,4,3(omit E)

and EGB = J 5,3,3
12,7,4,3(omit C), however only CEG = J 5,0

12,7,3 and EGB = J 5,6
12,7,3 are second-order maximally

even, since associated mechanical words of CEB and CGB in the diatonic scale are C − E −B − C = 241

and C −G−B −C = 421 respectively, which are not Myhill. Thus hereafter, X ⊏ Y stands for the special

inclusion whenever X is a maximally even subword of Y .

3.2. Expansion of scales and chords over several octaves. As 3 is prime to 7, 7 times repetition of

stacking thirds in C major scale generate again the C major scale but rearranged; CEGBḊḞ Ȧ. Here Ẋ

denotes the pitch an octave higher than original X. It is noticeable that this sequence is also obtained as

J 5
24,7, that is, as maximal evenly embedded 7 notes into two octaves. Generally we see the following.

Proposition 3.4. Take natural numbers c, d, h,m where h is
prime to d and c > d. Then it holds for any k ∈ Z/dZ that

π ◦ Jm
hc,d(k) = Jm

c,d(hk),

where π denotes the natural projection, hence the natural projec-
tion of maximal evenly embedded d elements in Z/hcZ is maximal
evenly embedded in Z/cZ.

Z/dZ

⟳

� �
Jm
hc,d ��

×h ≈
��

Z/hcZ

π
����

Z/dZ � �

Jm
c,d

�� Z/cZ

Proof. Indeed, multiplying by h is bijective as h ∈ (Z/dZ)×, and for any k ∈ Z/dZ, we have

π ◦ Jm
hc,d(k) = π

(⌊
hck +m

d

⌋
(mod hc)

)
=

⌊
c(hk) +m

d

⌋
(mod c) = Jm

c,d(hk).

□
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Taking h = 2, 3, 4 we obtain heptatonic scales J 5
24,7 = CEGBḊḞ Ȧ, J 5

36,7 = CFBĖȦD̈G̈ and J 5
48,7 =

CGḊȦËB̈
...
F by stacking thirds, fourth and fifth, embedded in two, three and four octaves respectively. So

we can take these scales for expansions of C major diatonic scale over several octaves.

The pentatonic scales are directory obtained by J-functions, e.g., J 0
12,5 = CDEGA, while they are also

second-order maximally even, that is, J 0
12,5 = J 5,0

12,7,5. We note J 0
12,5 is a subset of three major scales, that

is, C major J 5
12,7 = CDEFGAB, G major J 6

12,7 = GABCDEF ♯ and F major J 4
12,7 = FGAB♭CDE. This

fact is explained by

J 0
12,5 = J 4,0

12,7,5 = J 5,0
12,7,5 = J 6,0

12,7,5.

Table 2 shows the possible pentatonic scales Jm
12,5 contained by C major scale. Also we note that expansions

of pentatonic scales over two octaves drive stacked perfect fourth chords, like BEAḊĠ.3)

Jm
12,5 pentatonic Jm

24,5 expansion over 2 octaves possible diatonic scale

J −1
12,5 = J 5,−1

12,7,5 BDEGA ≡ GABDE J −1
24,5 BEAḊĠ C,G,D

J 0
12,5 = J 5,0

12,7,5 CDEGA J 0
24,5 CEAḊĠ ≡ EADĠĊ C,G, F

J 1
12,5 = J 5,1

12,7,5 CDFGA ≡ FGACD J 1
24,5 CFAḊĠ ≡ ADGĊḞ C, F,B♭

Table 2. Pentatonic scales and possible scales. The expansions of them over two octaves
form stacked fourth chords.

3.3. Cadences and chord progressions. A cadence indicates the central pitch of a passage strongly, and

thus establish the tonality of a musical piece. The typical one is the dominant to tonic chord progression

(authentic cadence4)), e.g., J 5,−2
12,7,3 = BDG → J 5,0

12,7,3 = CEG in C major, or if one emphasizes the roots

of chords, J 5,−9
12,7,3 = GBD → J 5,0

12,7,3 = CEG. Of course the reason why such chord progressions have been

widely accepted may be explained by psychoacoustic, which is out of our purpose, although we describe the

progressions in terms of J-functions. Actually, the relation

GBD = J5
12,7

(
J 0
7,3 + 4

)
= J5

12,7

(
J 0
7,3

)
+ 7 = CEG+ 7,

shows that the essence of the authentic cadence (or fifth down chord progression) can be expressed as

(3.3) Jm
12,7

(
J n
7,3 + 4

)
→ Jm

12,7

(
J n
7,3

)
.

The progression GBDF → CEG also creates a sense of resolution strongly, because GBDF contains two

leading tones B and F towards the tonic CEG. With the help of Proposition 3.3, this progression can be

expressed as

GBDF = J5
12,7

(
J 5
7,4(2)

)
= J5

12,7

(
J 19
7,4

)
= J5

12,7

(
J 3
7,4 + 4

)
→ J5

12,7

(
J 3
7,4

)
= CEGB ⊐ J5

12,7

(
J 0
7,3

)
= CEG.

The diminished chords are useful for chord progressions, which work as a hub in chord progressions. The

diminished chord BDFA♭ and 7-th chord GBDF contain BDF commonly, of which elements B,D, F are

3)‘So What’ – one of the masterpiece of Miles Davis – starts from the chord progression EADĠḂ → DGCḞ Ȧ, which are
equivalent to stacked fourth chords BEAḊĠ and ADGĊḞ modulo two octaves.

4)It is said that Guillaume Dufay first introduced the authentic cadence in the festive motet Nuper rosarum flores in 1436.
The epoch-making discovery of the dominant-tonic resolution had been influenced for the next almost 500 years, until the
emergence of Erik Satie’s Gymnopédie, which brought a quiet end to tonal music.
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overtones of G modulo octave equivalence, thus BDFA♭ has a similar function as GBDF . Therefore the

fifth down chord progression from the diminished chord can be adopted. This process is described as

BDFA♭ = J −4
12,4 ⊐ J−4

12,4

(
J 0
4,3

)
= BDF = J5

12,7

(
J 19,3
7,4,3

)
⊏ J5

12,7

(
J 19
7,4

)
= GBDF = J5

12,7

(
J 3
7,4 + 4

)

→ J5
12,7

(
J 3
7,4

)
= CEGB ⊐ J5

12,7

(
J 0
7,3

)
= CEG.

Note that BDF is also a maximally even subword of BDFA♭ obviously, thus we denote BDF ⊏ BDFA♭.

As the diminished BDFA♭ chord is evenly distributed in Z/12Z, the fifth down chord progressions can occur

from DFA♭, FA♭B and A♭BD, e.g.,

DFA♭B ⊐ DFA♭ ⊏ B♭DFA♭ = J2
12,7

(
J 11
7,4 + 4

)
→ J2

12,7

(
J 11
7,4

)
= E♭GB♭D.

One will see that diminished chords approximate 7-th chords. Particularly, the following ‘root-invariant’

progressions

CEGB = C
(
J 3
7,4

)
= C

(
J 0

7,4

)
→ CE♭F ♯A = J 0

12,4,

GBDF = C
(
J −9
7,4

)
= C

(
J 2

7,4(2)
)
→ GB♭C♯E = J 4

12,4(2),

DFAC = C
(
J 7
7,4

)
= C

(
J 4

7,4

)
→ DFA♭B = J 8

12,4

(3.4)

are often used, where Jm
c,d denotes (⌈(ck +m)/d)⌉)k=0,...,d−1. These progressions are described as

C
(
J ν

7,4

)
→ J 4n

12,4,

where ν = ⌊7n/3⌋. To obtain such 7-th to diminished progressions systematically, we adopt the following

continuous approximation. The deformation of a diminished chord

J 4n
12,4 =

(⌊
12k + 4n

4

⌋)

k=0,1,2,3

= (3k + n)k=0,1,2,3 =

(
12

7

(
7k + 7n−m

3

4

)
+

m

7

)

k=0,1,2,3

implies that the term
(
7k+(7n−m)/3

4

)
k=0,1,2,3

corresponds to a 7-th chord. Thus taking α(m,n) ∈ Z for

an approximation of (7n − m)/3, we get an approximate 7-th chord Jm,α(m,n)
12,7,4 . For instance, if we put

α(m,n) = ⌈(7n−m)/3⌉, in the case of C major (m = 5), we obtain approximations

ACEG = C
(
J 2
7,4(−1)

)
= C

(
J −1

7,4(−1)
)
∼ ACE♭F ♯ = J 0

12,4(−1),

EGBD = C
(
J 4
7,4(1)

)
= C

(
J 1

7,4(1)
)
∼ EGB♭C♯ = J 4

12,4(1),

BDFA = C
(
J 6
7,4(−1)

)
= C

(
J 3

7,4(−1)
)
∼ BDFA♭ = J 8

12,4(−1),

(3.5)

which are unified as

C
(
J ν

7,4

)
∼ J 4n

12,4

with ν = ⌈(7n− 5)/3⌉. If we put α(m,n) = ⌈(7n−m)/4⌉+ 1, we again obtain (3.4) for C major m = 5. If

we put α(m,n) = ⌊(7n−m)/3⌋, in the case of C major (m = 5), we obtain approximations

FACE = C
(
J 1
7,4(2)

)
= C

(
J −2

7,4(2)
)
∼ F ♯ACE♭ = J 0

12,4(2),

CEGB = C
(
J 3
7,4

)
= C

(
J 0

7,4

)
∼ C♯EGB♭ = J 4

12,4,

BDFA = C
(
J 6
7,4(−1)

)
= C

(
J 3

7,4(−1)
)
∼ BDFA♭ = J 8

12,4(−1).

(3.6)

By varying the mode m, one will obtain more approximations.
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3.4. J-function analysis for J. S. Bach’s Prelude. Here we apply the J-function representation to the

famous work, Prelude No.1 in C major, BWV 846 from ‘the Well-tempered Clavier’ by J. S. Bach. In this

work, each measure consists of 8 notes which form the similar passage, except the last three measures. The

analysis for measures from 1 to 25 is shown in Table 3: the first 5 notes of the original passages at the second

column, their standard forms as chords at the third, their J-representations at the fourth, and the chord

progressions towards the next measure at the last. Here we adopt new notations for diatonic embeddings

J4
12,7(·) = F (·) , J5

12,7(·) = C (·) , J6
12,7(·) = G (·) and so on, taking account of Table 1.

One sees several kinds of chord progressions. A translation by whole tone X → X ± 1 occurs at measures

1 → 2 and 22 → 23. There are a lot of fifth down chord progressions X + 4 → X . Smooth progressions

X ∗ → X ∗±1 occur at 4 → 5, 8 → 9 and 15 → 16 → 17. Modulations (change of key) P(X ) = Q(X ) occur at

5 and 19. The progression from a triad or 7-th to a diminished P (X ) → J ∗
12,4 occur at 11 → 12, 13 → 14

and 21 → 22. Substitutions X ⊏ Y, X ⊐ Y or X ⊐ Y ⊏ Z are seen almost everywhere. We note that at

measures 12− 13, we may have to write

C♯EGB♭ ⊐ C♯EG ⊏ AC♯EG = D
(
J 7
7,4 + 4

)
→ D

(
J 7
7,4

)
→ F

(
J 7
7,4

)
= C

(
J 7
7,4

)
= DFAC ⊐ DFA,

where we substitute the F major F for the D minor5), that is, the progression

DF ♯AC = D
(
J 7
7,4

)
→ F

(
J 7
7,4

)
= DFAC

implies a major-minor transformation in D-key. At measure 23, we omit C which works as a passing tone.

We stop this analysis at measure 26 because there appears the suspended chord GCDF . As the original

passage is GDĠĊḞ , we can consider it as a maximal subword of J 1
24,5 = ADGĊḞ (thus DGCḞ is embedded

into two octaves as a second-order maximally even set), however we yet have no reasonable description for

the progression at measures 25 → 26 → 27 under the maximal evenness ansatz.

3.5. Concluding remarks. We have been exploring tonal music from the angle of maximal evenness.

Through the J-function analysis of Bach’s Prelude, we see that the maximal evenness ansatz works well

to describe the basic feature of tonal music, while several derivative musical phenomena are explained

insufficiently. Our expression does not distinguish between major and minor, or more general Gregorian

mode. We may need more flexible usage of maximal evenness ansatz, since music is a kind of language,

indicated by the theory of Lerdahl and Jackendoff[6].
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meas. original standard f. J-representation progression

1 CEGĊĖ CEG C
(
J 0
7,3

)
→ C

(
J 0
7,3 + 1

)
⊏ C

(
J 0
7,4

)
= CDFA

2 CDAḊḞ DFAC C
(
J 0
7,4(1)

)
= C

(
J −9
7,4 + 4

)
→ C

(
J −9
7,4

)

3 BDGḊḞ GBDF C
(
J −9
7,4

)
≡ C

(
J 3
7,4 + 4

)
→ C

(
J 3
7,4

)
⊐ C

(
J 0
7,3

)

4 CEGĊĖ CEG C
(
J 0
7,3

)
→ C

(
J 1
7,3

)
= CEA = C

(
J −6
7,3 (1)

)

5 CEAĊȦ ACE C
(
J −6
7,3

)
= G

(
J −6
7,3

)
≡ G

(
J 3
7,3 + 4

)
→ G

(
J 3
7,3

)
⊏ G

(
J 7
7,4

)

6 CDF ♯AḊ DF ♯AC G
(
J 7
7,4

)
≡ G

(
J −9
7,4 + 4

)
→ G

(
J −9
7,4

)
⊐ G

(
J 12
7,3

)

7 BDGḊĠ GBD G
(
J 12
7,3

)
= G

(
J 0
7,3 + 4

)
→ G

(
J 0
7,3

)
⊏ G

(
J 3
7,4

)

8 BCEGĊ CEGB G
(
J 3
7,4

)
→ G

(
J 2
7,4

)
= CEGA

9 ACEGĊ ACEG G
(
J 2
7,4(−1)

)
≡ G

(
J 7
7,4 + 4

)
→ G

(
J 7
7,4

)

10 DAḊḞ ♯Ċ DF ♯AC G
(
J 7
7,4

)
= G

(
J −9
7,4 + 4

)
→ G

(
J −9
7,4

)
⊐ G

(
J 12
7,3

)

11 GBDĠḂ GBD G
(
J 12
7,3

)
⊏ EGBD = G

(
J 1

7,4(1)
)
→ J 4

12,4(1) = EGB♭C♯

12 GB♭EĠĊ♯ C♯EGB♭ J 4
12,4 ⊐ C♯EG = D

(
J 0
7,3

)
⊏ D

(
J −5
7,4

)
= AC♯EG

≡ D
(
J 7
7,4 + 4

)
→ C

(
J 7
7,4

)
⊐ C

(
J 3
7,3

)

13 FADȦḊ DFA C
(
J 3
7,3

)
⊏ BDFA = C

(
J 3

7,4(−1)
)
→ J 8

12,4(−1)

14 FA♭DḞḂ BDFA♭ J −4
12,4 ⊐ BDF = C

(
J −3
7,3

)
⊏ C

(
J −9
7,4

)
= GBDF

≡ C
(
J 3
7,4 + 4

)
→ C

(
J 3
7,4

)
⊐ C

(
J 0
7,3

)

15 EGCĠĊ CEG C
(
J 0
7,3

)
→ C

(
J 1
7,3

)
= C

(
J −6
7,3 (1)

)
= CEA,

C
(
J −6
7,3

)
⊏ C

(
J 1
7,4(−1)

)
= ACEF

16 EFAĊḞ FACE C
(
J 1
7,4(2)

)
→ C

(
J 0
7,4(2)

)

17 DFAĊḞ DFAC C
(
J 0
7,4(1)

)
= C

(
J −9
7,4 + 4

)
→ C

(
J −9
7,4

)

18 GDĠḂḞ GBDF C
(
J −9
7,4

)
≡ C

(
J 3
7,4 + 4

)
→ C

(
J 3
7,4

)
⊐ C

(
J 0
7,3

)

19 CEGĊĖ CEG C
(
J 0
7,3

)
= F

(
J 0
7,3

)
⊏ F

(
J 3
7,4

)

20 CGB♭ĊĖ CEGB♭ F
(
J 3
7,4

)
≡ F

(
J 1
7,4(2) + 4

)
→ F

(
J 1
7,4(2)

)

21 FḞ ȦĊĖ FACE F
(
J 1
7,4(2)

)
= F

(
J −2

7,4(2)
)
→ J 0

12,4(2)

22 F ♯CAĊĖ♭ F ♯ACE♭ J 0
12,4(2) → J 0

12,4(2)− 1 = J 8
12,4(1) = FA♭BD

23 A♭FḂĊḊ A♭BDF J 8
12,4(2) ⊐ BDF = C

(
J −3
7,3

)
⊏ C

(
J 5
7,4(2)

)
= GBDF

24 GFĠḂḊ GBDF C
(
J 5
7,4(2)

)
= C

(
J 3
7,4 + 4

)
→ C

(
J 3
7,4

)
⊐ C

(
J 0
7,3

)

25 GCĠĊĖ CEG C
(
J 0
7,3

)
· · · to be continued · · ·

Table 3. J-function analysis for J. S. Bach’s Prelude, BWV 846, measure 1–25. ≡ means
the octave equivalence.
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