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1. Introduction

In [4], we introduce interval preserving map approximation of a linear map 3z+1, to attack the well-known
and still unsolved 3x + 1 problem, which is firstly proposed by Lothar Collatz in 1930’s:

Conjecture 1.1. Consider a map f: N — N such that
3n+1, ifn is odd,
-]

n/2, if n is even.

Then for each natural number n, there exists a finite number t such that f'(n) = fo fo---o f(n) = 1.
—_—

t—times

In the investigations[3][4], we use the binary van der Corput embedding (B of natural numbers into unit
interval [0,1], which gives a low-discrepancy sequence over [0, 1], firstly introduced by van der Corput
in 1935(cf.[7] pp 129), and construct a right continuous bijection F over [0,1) conjugate to 3z + 1 by
way of 5. In this note, we investigate a right continuous bijection F' over [0,1) conjugate to the linear
function ax + b, its ‘finite bit approximations’ which bring dynamics of interval exchange maps on [0, 1), and
observe substitution dynamics and transducers associated with the approximations. As a result, we obtain

a necessary and sufficient condition for the minimality of the dynamics ([0,1), F') (Theorem 3.8).
2. The binary van der Corput embedding of natural numbers and a conjugacy of ax + b
We follow the notations in [4].

Definition 2.1. Let n = g - 2" + g1 - 2571 -+ 4 go (= (grgr—1 - 90)2 for short ) be a binary expansion
of a natural number n. Then we define 8 : N — [0,1), given by

9o | 41 9k
Bn) =5+ 5+ + g = (09091 gi)2.

As B: N = [0,1) is one-to-one and 8 embeds natural numbers densely into [0,1), we call § the binary van

der Corput embedding.

For a binary expression n = (g;gi—1 - - go)2, we put I = ord(n) := [logy n] where [z] stands for an integer
not greater than x, and n|¥ denotes an upper cut off of n at k-th order;
nl* = (gr-19k—2---g0)2 =n (mod 2").

To make free from ambiguity, we always take the finite binary expression S(n) = (0.gog1---¢g1)2 of any
natural number n. For a real number x € [0,1) and k € N, z|;, denotes a cut off of 2 at (—k — 1)-th order

in the binary expression;

k e9)

ei . e;
z|lp = (0.e1eg---ep)y = E 2—;, if = (0.e1eg--+)2= E —;
=1

We use the notation [z ), as a segment [z, x| + 2%), hence a natural decomposition of segments

(2.1) [ (0.6162 cee 6k)2 )k = [ (0.6162 cee 6k0)2 )k+1 ©® [ (0.6162 ce ekl)z )kJrl ,
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where [a,b) @ [b,c) stands for a division of an interval [a,c) at b. Then, the k-th refinement of the unit

interval [0, 1) is given as

2k—1
— (k)
(2:2) 0.1 = |804)) .
j=0
where {V§k) | j=0,...,28~1}={0,1,...,2F -1} w1thﬁ( ) B( )ifandonlyifi<j.
By definition, we easily to see the followings.
Lemma 2.2. For x,y € [0,1) and k,l,m,n € N,
(1) z €[z )
(2) [z),N[y), #0 holds if and only if x|, = y|i, and hence [z ), = [y );-
(3) if x # y, there exists | e N such that [z ), N[y ), = 0.
(4) [@ )41 & [@)g and ﬂ )i = {2}

(5) B(m)l = B(m|"), thus [ﬂ( ) )i = [B(n) )y, if and only if m|* = n|".
(6) If 1 > ord(m), then B(m +n-2) = B(m) + —=.
(1) ()] = nfmnh).

Let us consider a linear function f(n) = an+ b on natural numbers, where a,b € N and a > b. We are to
construct the conjugacy F : [0,1) — [0,1) of f: N — N, that is, F o 8(n) = o f(n) holds for any natural

number n.

Lemma 2.3. Suppose a is odd number. Then we have

(1) [Bo f(m) ), =[Bo f(n)), holds if and only if [ B(m) ), = [ B(n) ), for any m,n € N.
(2) {Bo f(n) | ne N} is dense in [0,1).

Proof. (1) By Lemma 2.2 (5), [ 3(m) ), = [ B(n) ), means m = n (mod 2¥), which equivalents to am + b =
an +b (mod 2¥) as a and 2* are coprime, hence [ S(am +b) ), = [ B(an +b) ),.

(2) Given x € [0,1) and k € N, consider mj;, = 37!(x|;), and take ¥ € N with ' = b —my, (mod a). As
a and 2* is coprime, we have 25¢(%) = (2k)¢(@) = 1 (mod a), hence my, + V' - 2¥9(2) = my + ¥ = b (mod a),

where ¢ stands for Euler’s totient function. Thus there exists n € N with my, + ' - 2#9(@) = an + b, and

hence B
- /. okp(a)y —
Blan +b) = B(my, + b 2¢a)—$|k+2k@(a)€[fﬁ)k-
As a result, for any z € [0,1) and k € N, there exists n € N with |z — B(an + b)| < 27F. O

Now we suppose a is odd. Then the conjugacy F' is defined on the dense set S(IN) by F(8(n)) := 8(f(n)),
and its extension to [0,1) is given as follows. For any z € [0,1), consider a sequence ny = B~ (z|x),
k=1,2,.... Obviously we see ng+1 = ny (mod 2’“)7 hence angiq1 + b = ang + b (mod 2’“). It follows from
Lemma 2.2 (4) that

[ Blangs1 +0) )y S [ Blanger +0) )y, = [ Blang +0) ),

holds, and then ﬂ [ B(ang + b) ), consists of a unique point, denoted by klim Blang + b). Thus we define
—00
k=1
the conjugacy F : [0,1) — [0, 1) of the linear function f:
(2.3) F(z) = lim B (aB ' (z|y) + ).

k—o0

Lemma 2.4. For z,y € [0,1), we have
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F(x) ), hence F(x)|, = F(x|x) }k
x) ), hence F is right continuous.

Y) )i if and only if [x ), = [y ), hence F is injective.

Proof. (1) By definition, we have

o

{F(@)} = () [ BaB™" (@) +b) ), C [ BB (@lk) +0) ), = [ Flal) ),

k=1
that is, F((z) € [ F'(z|) )g, while F(z) € [ F(z) ), by Lemma 2.2 (1). Thus we see [ F(z|x) ),N[ F(z) ), # 0,
which means [ F(z|;) ), = [ F(x) ), by Lemma 2.2 (2).
(2) y € [z ), means y|, = z|. It follows from (1) that

Fly) € [F(y) )y = [Fylt) Jp = [ F(zlr) ) = [ F(z) )y -
For any € > 0, take k € N with 27% < &. Then for any y with <y < 24+ 2-* 1) we see y € [z ), and
F(y) e F([z)) C[F() )y,

that is, |F(y) — F(x)| < 27% < ¢, showing the right continuity of F'.

(3) Put my, = B~ Hx|k) and ny = B~ (ylx), then we see [ F(z) ), = [ F(z|x) ), = Bof(mk)) and

[
[F(y) ) =[FWlx) ) =180 f(ng) ), by (1). It follows from Lemma 2.3 (1) that [ F'(z) ), = [ F(y) ) if
and only if [2 ), = [ B(mg) ), = [ B(nk) ), = [ Y )i Suppose that z # y, then [z ), N[y ), = 0 holds for
some k. Then we have [ F(z) ), N[ F(y) ), = 0, hence F(z) # F(y). O

Lemma 2.4 (1) is an extension of a natural property

(2.4) F@lM)[* = f(n)F

of the linear function f(n) = an+b with a,b € N, while (2)(3) implies that F' brings segment-wise exchange

over the refinement (2.2) of the unit interval in any order k. Indeed we have the following.

Proposition 2.5. For any k € N and x € [0,1), the conjugacy F gives a right continuous bijection
Fila),—=[F(z)).
Particularly, F preserves the Lebesgue measure p on [0,1).

Proof. All we have to show is surjectivity of F. For any y € [0,1) and [ € N, there exists n; € N with
Fop(n)=pof(n)ey) by Lemma 2.3 (2). By Lemma 2.4, we see

F([B(m))) CLEBm)) )y =1y );-

o

Let = be the unique accumulation point {z} = ﬂ 1) );- Then F(x) € [ F(B(ny)) ), C [y ), holds for any

l
[, meaning that

(@) € () [y) = {u}
!

hence y = F(z) and F is a surjection [0,1) — [0,1). Combining Lemma 2.4 (2),(3) and surjectivity of F,
we see F([z),) = [ F(z)), for any k € N. Note that u([z),) = p([ F(z)),) = 27%. It is shown that
the o-field generated by the segments [z ), ,k € N,z € [0,1) coincides with the Lebesgue measurable sets.
Hence the assertion. O
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Note that for any natural number n, [ 8(n) ), = [8(n), B(n) +27%) if k > ord(n), thus w € [ B(n) ),
means w > B(n). Therefore we state the right continuity of F' only. Indeed, for f(n) =n + 1, we see

lim F(w) = (0.1)2 # (0.001) = F((0.11)3).
71)*)(0.11)2
w<(0.11)2
3. Segment-wise linear approximation of the conjugacy F'
In view of Proposition 2.5, we construct a sequence of segment-wise linear functions Fj’s approximating

the conjugacy F'.
Definition 3.1. For each k € N, we define the k-th approximant Fj as
Fi(z) = @ — 2l + F(2)],.
If x € [B(n) ), we see
Fy(z) =z — B(n)|, + F(B(n))],,

thus Fi([B(n)),) = [ FopB(n)),, compatible with Proposition 2.5. Moreover, the fact F(z), Fi(xz) €
[ Fof(n)), for any z € [ B(n) ), means

|F(z) — Fy(z)| < 27"

for any x € [ B(n) ), and then for any x € [0,1). Therefore the sequence Fj, k = 1,2,... approximates F'
uniformly on [0, 1), so F}, simulates the behavior of F' that exchange the segments [ 3(n) ),’s. We also note
that (2.3) is expressed as F'(z) = limg_, o0 F ().

In the following subsections, we investigate the approximants FJ’s to extract dynamical characteristics of
the map f(n) = an + b.

3.1. Behavior of carries and exchange of segments. For each k£ € N, we define an integer valued

k k
Tr(n) = [f(;k )} = [Cm2k+ b} )
then we see

(3.1) F(n*) = mi(n) - 2% + f(n)|".

Namely, the function 75 describes the amount of the carry from the lower k bits in the calculation n — an+b.

function

Theorem 3.2. Suppose that a is odd and 0 < b < a. Then, for n,k € N, we have
(1) x(n) €{0,1,...,a —1}.

(2) For binary expressions n = (gp---go)2 and f(n) =

(hg -+ ho)2, we have
hy = (gk+7k(n)) 1, k=1,...,q

and
Th1(n) = [agk +2Tk(n)} ,
where g, = 0 for k > p.
(3) Let (0.gog1 -~ gp)2 be the binary expression of B(n). Then, the image of the segment
[B(n) ), =1[0.90"grk-1)2 )y = [(0.90- - 9k-10)2 )y 1 © [ (0.90 - gr—11)2 )jp1
by F s given as

[F((0.90 " gk-10)2) )1 ® [ F((0.90 - gk-11)2) )py1»>  if Tk(n) is even,

F([B(n))y) =
( k) [F((0.90 - gr—11)2) )jy1 ® [ F((0.90 - 9k-10)2) )pyq» if T(n) is odd.
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Proof. (1) As n|F < 2% —1 and a > b, we have
an|k+b] {a-2k+b—a} { a—b]
—_— é _— = a —

<a-—1.

0= { oF 2k 2k
(2) By definition, we see n|**! = (grgx_1--- go)2 = gk - 2F + n|F. We also see f(n)vngl = hy, - 2F + f(n)|k,

while, by (3.1), we have

(3:2) P = f0F ) = (a2 +0)| = (g2 4 )|

= ((age + )2+ $) [ = (ag+ )| 25+ )

k+1

As a is odd, we obtain the equation h; = (agk + Tk(n)) |1 = (g/rC + Tk(n))|1
Again by (3.1) and f(n)|k+1 = hi - 28 + f(n) F

, We see
FOIFY) = T (n) - 2 4 £ )T = @ (n) + hi) 28+ f(n)]F

while, as n|Ft! = g;. - 28 + n|*, we have
k
flgr 2" +nf*) = agr - 2 + f(n]*) = (agr + 7r(n)) - 2° + f(n)|",

hence 27441 (n) + by, = agy, + 7, (n). Since 0 < hy/2 < 1 and 7,11(n) is an integer, we come to

hk] _ [a9k+77c(n)] '

Tey1(n) = {Tk-&-l(n) + 5 5

(3) It comes from (3.2) that

B = BEE], + g Blon + m()],

Then we have (g +7¢(n))|' = g whenever 74(n) is even, and (gx + 7¢(n))|' = 1 — g, whenever 73 (n) is odd.

Thus we see )
(F o ﬂ(n)) ‘k + Shr if 7,(n) is even,

- 1
ki (F o ﬁ(n)) ‘k — g if mu(n) is odd,

hence the assertion. O

(Fomlt+2)]

3.2. Substitution dynamics induced by the conjugacy F'.

Definition 3.3. For each approximation order k, we label the segment [ 3(n) ), as
Li(n) :=1(n)m1(n) - - 7(n).
We say the segment [ f(n) ), is painted in color 7 (n).

By Theorem 3.2 (1), the label Li(n) is a string over the alphabet A = {0,1,...,a — 1} with length &+ 1.
Note that 79(n) = b by definition, thus the original unit interval [0, 1) is labeled as b. As the approximation
order k increases, each segment is divided into two segments:

(33) 18n) ) = [ B )~ [6)),

and [ B(n|*F +27))

@ [ﬂ(n\k + 2k )

k+1

Accordingly, the refinements [ 3(n|*) ) are labeled respectively as

k+1 k+1

Lip1(n|®) = 19(n) - - - m0(n) {Tké”)}

(34) a+ Tk(n)}

L1 (n]* +2%) = 79(n) - - 7¢(n) { 9

by Theorem 3.2 (2).
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Consider a free monoid A* = (JrZ, AF over A, with the concatenation @ as a multiplication operation,
and the empty string € as a unit, where A¥ = {z1 29 @ --- @ 2y, | 7; € A} and A = {e}. In view of (3.3)
and (3.4), we define a substitution ¢ : A* — A* as

o e [147].

which simulates the way to repaint the segments that the refinement (3.3) causes:

(1) o () & e+ 2) = |20 [ 200],

Consequently, the refinement of the unit interval
0,1) ~ [(0.0)2 ); ®[(0.1)2 ); ~ [(0.00)2 ), ® [ (0.01)2 )5 ® [ (0.10)2 )o & [ (0.11)2 )g ~> -+

induces an orbit of ¢ with initial state b:

b C(b) = m @ [‘”b} s C2(b) = [Wz]} o {H [5/2]} o [H [(@+b)/2]] - [a+ [(a+b)/2]] .

2 2 2 2 2 2

Summing up, we have the following.
Proposition 3.4. The k-th refinement (2.2) of the unit interval is painted in the pattern CF(b).

3.3. A finite state transducer which represents ax + b. Theorem 3.2 (2) is also expressed in terms
of a finite state automaton. Let T,;, = (A4, 1,0, {b},{0},0) be a deterministic finite state transducer, with
states A, an input alphabet I = {0, 1}, an output alphabet O = {0,1}, an initial state b, a final state 0 and

a transition function 6 : A x I — A x O. According to Theorem 3.2 (2), we define the transition rule as

agt e 9, if x is even,
2

({ag;—x} ,1—g)7 if z is odd.

Corollary 3.5. Given the binary expressions (gp - - - go)2 of a natural number n, define a sequence in A x O,

(3.5) 6(z,9) =

(Tit1, Cip1) = 0(2i, 9i), 1 =0,...,¢—1,
where xg = b, g = p+ord(a) +1 and g; =0 if i > p. Then we have
f(n) = (cqCq-1---co)2,
and the label of the segment [ (n) ), is given as
Li(n) = xoxy - - )

for each k=0,1,....

Proof. Let (hg---ho)2 be the binary expression of f(n). By definition, we see z;11 = [(az; + ¢;)/2]. Recall
that 79(n) = b for any n € N. It comes from Theorem 3.2 (2) that

Yi if ; is even,
(n)=xz; and h; = (¢; +z;)|' =
7i(n) ! i = (9 i) {1 —gi, if x; is odd

hold, hence ¢; = h;. [l
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3.4. Minimality of the dynamical system ([0,1), F)). As we have seen, for each approximation order
k

k, the approximant F} exchanges the segments [ I} (VJ(

)) )k’s in the refinement (2.2), and hence induces a
permutation 7 over {0,1,...,2F — 1}, satisfying
k k
B Bw9) ) )= 804 )

or, equivalently,
k
) )= (al/](»k) + b) ‘ .

e (J
Note that, as the approximation order k increases, we see
(3.6) 1/5?4_1) = uj(-k) and Véfip = Vj(k) + 2ok
by definition of the refinement (2.2). Combining Theorem 3.2 (3) and (3.6), we have
(k+1) (k) _  (k+1) (k+1) _ (k) k_ o (k+1)
o1 (2) = V)~ Vem) A Vo i) T Vm) T2 T Vem)
whenever Tk(uj(.k)) is even, and
(k+1)  _ (k) k _  (k+1) (k+1) _ k) _(k+1)
Ve @) = Vm) T2 = Vemeyt 80 Vo 541) T V() = Vami()

whenever Tk(VJ(-k)> is odd. As a result, we obtain relations between the permutation 7 and 7.

Lemma 3.6. If the color Tk(l/](-k)) of the segment {ﬂ(uj(k)) )k is even, we have

Ter1(24) = 27k (j) and wr1(25 4+ 1) = 2mp(f) + 1,
and if Tk(I/](»k)) is odd,
Ter1(24) =27 (j) + 1 and  7wp1(25 + 1) = 2w, (4).-

Let m, = T 17k 2 - Tk,m be a cycle decomposition, determined uniquely up to the order of my;’s. For

each cyclic permutation 7y, ; = (p1p2 - - - p1), consider the maximum subset @ C {p1,...,p;} such that Tk(l/q(k))

is odd if and only if ¢ € Q. For a cycle m; = (pip2---pi1), let 7r;€+“ be the permutation defined as Lemma
3.6, that is,

1 1
Thani(25 + 1) = 2mi(py) + () +0) | = 2pi0 + () +0) | me (0,1},

where [ + 1 is understood as 1.

Proposition 3.7. 7T;€+17i is a cyclic permutation whenever #Q is odd, and 7r§€+1’i consists of two cyclic

permutations whenever #Q is even.

Proof. Put Py = {2p1,2ps,...,2p} and P, = {2p1 + 1,2pa + 1,...,2p; + 1}. Consider an orbit x; =
2p1, w2 = mpyq (21), 23 = Ty ;(2), ..., and a map ¢(z;) = n if z; € P,;. Notice that vy ; € {2p;, 2p; +1}
for j = 1,...,l and s € N by definition. Then we see ¢(zg1j+1) = ¢(Tq+;) whenever p; ¢ Q, and

A(Zsi+j41) = 1 — p(xg45) whenever p; € @, hence
Tsijr1 = Tho1i(Tairg) = 2pj41 + O(Taajr1)

for each j =1,...,]l and s € N.
Suppose that #Q is even. It is seen that ¢(z;11) = ¢(x1) = 0, hence

Ty = 2p1 + d(a41) = 2p1 = 11

namely, the cycle (z122, - - - x7) is a factor of m;__, ;. Considering another orbit y1 = 2p1+1,92 = 7 ;(y1), - - -,
a similar argument shows the cycle (yiy2 - --y;) is also a factor of ), 41,4+ Consequently, we obtain a decom-

position 77;@+1,i = (z1@2- - @) (yry2 - )
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Suppose that #@Q is odd, then we see ¢(x;11) =1 — ¢(x1) = 1, hence

Tip1 = 2p1 + d(w41) = 2p1 + 1 =y,

showing that W;H_U is a cycle of the length 2I:

!
Thy1i = (T122 - Ty1y2 - - - Y1)

O

We are to find a condition that the permutation 7, induced by the approximant Fj becomes a cycle in
any approximation order k. For a string w = wy G wa & --- & w; € A*, we put S(w) = 22:1 w;. Note that
the parity of S(w) equals that of the number of entries w;’s which are odd.

In view of Proposition 3.7, the original unit interval [0, 1) must be painted an odd color at least, namely,
b=10([0,1)) is odd. Then, S({(b)) also should be odd. We have assumed that a is odd. Putting a = 2m+1,

o S(C(b)) = m 4 [“;b} 4142 m

as [(b+1)/2] = [b/2] + 1, hence m should be even; a = 1 (mod 4). Conversely, we have the following.

Theorem 3.8. The permutation m, associated with the approximant Fy is a cyclic permutation in any
approzimation order k, hence the dynamical system ([0,1), F) is minimal, if and only if a =1 (mod 4) and
b is odd.

Proof. The necessity for b being odd and a =1 (mod 4) is shown above. Suppose a = 4m + 1 and b being
odd. It comes from Theorem 3.2 (2) that S({(x)) = 2m+2[z/2] if = is even, and S({(z)) = 2m + 1+ 2[x/2]
if x is odd. Then, S(¢(w)) is odd if and only if S(w) is odd for any w € A*. As a result, we see that
S(¢*(b)) is odd for any k, hence 7y, is a cyclic permutation by Proposition 3.7, which means for any segment
[2 ), the orbit [z ), Fy ([2)), FZ([2)),- .. ,F,?kil ([x)) covers [0,1):

(3.7) T Fi (2 ) = [0.1).
=0

Take any x € [0,1). (3.7) shows that, for any y € [0, 1), there exists 0 < ¢ < 2¥ —1 with y € F' ([ x),), while
Fi(z) e [ Fi(z) ), = F'([#),). Thus we have |y — F'(z)| < 27%. Consequently, the orbit {F*(z) | s € N}
is dense in [0, 1) for any x € [0, 1), namely the dynamical system ([0, 1), F') is minimal. O

This result is contrast to Keane condition[6][16]: no left endpoint of any segment is mapped to another
ones, which brings the minimality of the dynamics of interval exchange maps. In our case, the left endpoint
x|, of any segment [ x ), is always mapped to another ones by Fj,.

Example 3.4.1 (The case 3xz+1). This is the original k|
case of Collatz. The substitution ¢ and the transducer 01(0)
T3 are illustrated in FIGURE 1 and 2 respectively. As L (0)(1)
3 # 1 (mod 4), the dynamics ([0, 1), F)) is not mini- 21 (02)(3)
. , 31(0415)(2736)
mal. Indeed, TABLE 1 shows that permutations m;’s 4 (0821119310)(4146125 157 13)
associated with F}’s are decomposed in two cycles. A
typical orbit of Fy, the approximation order k = 5, is TABLE 1. Permutations 7 associated
illustrated in FIGURE 5 with 3z 4+ 1
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1/4 1/2 3/4 1

FiGURE 1. The color pattern of
refinement induced by substitu-
tion ¢

Example 3.4.2 (The case 5z + 1). The substitution
¢ and the transducer T5; are illustrated in FIGURE
3 and 4 respectively. As 5 = 1 (mod 4), the conju-
gacy F of f(z) = 5z + 1 induces a minimal dynamical
system on [0,1). Actually, TABLE 2 shows that per-
mutations 7;’s associated with F}’s are always cyclic.
A typical orbit of F5, the approximation order k = 5,
is illustrated in FIGURE 6.

1/4 1/2 3/4 1

F1GURE 3. The color pattern of refine-
ment induced by substitution ¢

0/0 1/1

1/1 1/0
0/1 0/0

FIGURE 2. Transitive diagram of T3 1

k Tk

0 (0)

11(01)

21(0213)

31(04371526)
41(08615311413197142105 12)

TABLE 2. Permutations 7, associated
with 5z + 1

FIGURE 4. Transitive diagram of 75

FIGURE 5. Approximant Fj for
3z + 1 and a typical orbit

FIGURE 6. Approximant Fj for
5z + 1 and a typical orbit
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4. Remarks

Notice that F preserves the Lebesgue measure p on [0,1) by Proposition 2.5, therefore, it will be a
worthwhile question whether the minimality implies the ergodicity in our case. However, I have no statement
about the ergodicity of I’ at this moment.

In [3] and [4], we have discussed the van der Corput embedding of the Collatz procedure

21’, YIS [07 1/2)7
F(z) = lim B(BA™Hxlx) + 1), z€[1/2,1).

Then, to solve the original Collatz conjecture 1.1, we are to prove the statement: ‘for each n € N, there

G(z) =

exists a finite number ¢ with G*(8(n)) = 1/2.” Note that G does not preserve intervals, and so the Lebesgue
measure. The finite bit approximation

x+ x|, forxel0,1/2),

Gi(x) = Fi(), for z € [1/2,1)

leads us to a mild version of the Collatz conjecture, a finite combinatorial problem proposed in [4], of which

research is in progress.
Problem 4.1 (3xz 4+ 1 problem on Gy). Show that for any x € [0,1), there exists t € N such that
Gl(x) €[0),U1B(1) )y = [0, 1728 YU [ 172, 1724172 ).
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