The van der Corput Embedding of $a x+b$ and its Interval Exchange Map Approximation

Yukihiro HASHIMOTO

Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Introduction

In [4], we introduce interval preserving map approximation of a linear map $3 x+1$, to attack the well-known and still unsolved $3 x+1$ problem, which is firstly proposed by Lothar Collatz in 1930's:

Conjecture 1.1. Consider a map $f: \mathbf{N} \rightarrow \mathbf{N}$ such that

$$
f(n)= \begin{cases}3 n+1, & \text { if } n \text { is odd } \\ n / 2, & \text { if } n \text { is even }\end{cases}
$$

Then for each natural number n, there exists a finite number t such that $f^{t}(n)=\underbrace{f \circ f \circ \cdots \circ f(n)}_{t-\text { times }}=1$.
In the investigations[3][4], we use the binary van der Corput embedding β of natural numbers into unit interval $[0,1]$, which gives a low-discrepancy sequence over $[0,1]$, firstly introduced by van der Corput in 1935 (cf.[7] pp 129), and construct a right continuous bijection F over $[0,1$) conjugate to $3 x+1$ by way of β. In this note, we investigate a right continuous bijection F over $[0,1$) conjugate to the linear function $a x+b$, its 'finite bit approximations' which bring dynamics of interval exchange maps on $[0,1$), and observe substitution dynamics and transducers associated with the approximations. As a result, we obtain a necessary and sufficient condition for the minimality of the dynamics $([0,1), F)$ (Theorem 3.8).

2. The binary van der Corput embedding of natural numbers and a conjugacy of $a x+b$

We follow the notations in [4].
Definition 2.1. Let $n=g_{k} \cdot 2^{k}+g_{k-1} \cdot 2^{k-1}+\cdots+g_{0}\left(=\left(g_{k} g_{k-1} \cdots g_{0}\right)_{2}\right.$ for short $)$ be a binary expansion of a natural number n. Then we define $\beta: \mathbf{N} \rightarrow[0,1)$, given by

$$
\beta(n)=\frac{g_{0}}{2}+\frac{g_{1}}{2^{2}}+\cdots+\frac{g_{k}}{2^{k+1}}=\left(0 . g_{0} g_{1} \cdots g_{k}\right)_{2}
$$

As $\beta: \mathbf{N} \rightarrow[0,1)$ is one-to-one and β embeds natural numbers densely into $[0,1)$, we call β the binary van der Corput embedding.

For a binary expression $n=\left(g_{l} g_{l-1} \cdots g_{0}\right)_{2}$, we put $l=\operatorname{ord}(n):=\left[\log _{2} n\right]$ where $[x]$ stands for an integer not greater than x, and $\left.n\right|^{k}$ denotes an upper cut off of n at k-th order;

$$
\left.n\right|^{k}=\left(g_{k-1} g_{k-2} \cdots g_{0}\right)_{2} \equiv n \quad\left(\bmod 2^{k}\right)
$$

To make free from ambiguity, we always take the finite binary expression $\beta(n)=\left(0 . g_{0} g_{1} \cdots g_{l}\right)_{2}$ of any natural number n. For a real number $x \in[0,1)$ and $k \in \mathbf{N},\left.x\right|_{k}$ denotes a cut off of x at $(-k-1)$-th order in the binary expression;

$$
\left.x\right|_{k}=\left(0 . e_{1} e_{2} \cdots e_{k}\right)_{2}=\sum_{j=1}^{k} \frac{e_{j}}{2^{j}}, \quad \text { if } x=\left(0 . e_{1} e_{2} \cdots\right)_{2}=\sum_{j=1}^{\infty} \frac{e_{j}}{2^{j}} .
$$

We use the notation $[x)_{k}$ as a segment $\left[\left.x\right|_{k},\left.x\right|_{k}+\frac{1}{2^{k}}\right.$), hence a natural decomposition of segments

$$
\begin{equation*}
\left[\left(0 . e_{1} e_{2} \cdots e_{k}\right)_{2}\right)_{k}=\left[\left(0 . e_{1} e_{2} \cdots e_{k} 0\right)_{2}\right)_{k+1} \oplus\left[\left(0 . e_{1} e_{2} \cdots e_{k} 1\right)_{2}\right)_{k+1}, \tag{2.1}
\end{equation*}
$$

where $[a, b) \oplus[b, c)$ stands for a division of an interval $[a, c)$ at b. Then, the k-th refinement of the unit interval $[0,1)$ is given as

$$
\begin{equation*}
[0,1)=\bigoplus_{j=0}^{2^{k}-1}\left[\beta\left(\nu_{j}^{(k)}\right)\right)_{k} \tag{2.2}
\end{equation*}
$$

where $\left\{\nu_{j}^{(k)} \mid j=0, \ldots, 2^{k}-1\right\}=\left\{0,1, \ldots, 2^{k}-1\right\}$ with $\beta\left(\nu_{i}^{(k)}\right)<\beta\left(\nu_{j}^{(k)}\right)$ if and only if $i<j$.
By definition, we easily to see the followings.
Lemma 2.2. For $x, y \in[0,1)$ and $k, l, m, n \in \mathbf{N}$,
(1) $x \in[x)_{k}$.
(2) $[x)_{k} \cap[y)_{k} \neq \emptyset$ holds if and only if $\left.x\right|_{k}=\left.y\right|_{k}$, and hence $[x)_{k}=[y)_{k}$.
(3) if $x \neq y$, there exists $l \in \mathbf{N}$ such that $[x)_{l} \cap[y)_{l}=\emptyset$.
(4) $[x)_{k+1} \subsetneq[x)_{k}$ and $\bigcap_{k=1}^{\infty}[x)_{k}=\{x\}$.
(5) $\left.\beta(m)\right|_{k}=\beta\left(\left.m\right|^{k}\right)$, thus $[\beta(m))_{k}=[\beta(n))_{k}$ if and only if $\left.m\right|^{k}=\left.n\right|^{k}$.
(6) If $l>\operatorname{ord}(m)$, then $\beta\left(m+n \cdot 2^{l}\right)=\beta(m)+\frac{\beta(n)}{2^{l}}$.
(7) $\left.\left(\left.n\right|^{k}\right)\right|^{l}=\left.n\right|^{\min \{k, l\}}$.

Let us consider a linear function $f(n)=a n+b$ on natural numbers, where $a, b \in \mathbf{N}$ and $a>b$. We are to construct the conjugacy $F:[0,1) \rightarrow[0,1)$ of $f: \mathbf{N} \rightarrow \mathbf{N}$, that is, $F \circ \beta(n)=\beta \circ f(n)$ holds for any natural number n.

Lemma 2.3. Suppose a is odd number. Then we have
(1) $[\beta \circ f(m))_{k}=[\beta \circ f(n))_{k}$ holds if and only if $[\beta(m))_{k}=[\beta(n))_{k}$ for any $m, n \in \mathbf{N}$.
(2) $\{\beta \circ f(n) \mid n \in \mathbf{N}\}$ is dense in $[0,1)$.

Proof. (1) By Lemma $2.2(5),[\beta(m))_{k}=[\beta(n))_{k}$ means $m \equiv n\left(\bmod 2^{k}\right)$, which equivalents to $a m+b \equiv$ $a n+b\left(\bmod 2^{k}\right)$ as a and 2^{k} are coprime, hence $[\beta(a m+b))_{k}=[\beta(a n+b))_{k}$.
(2) Given $x \in[0,1)$ and $k \in \mathbf{N}$, consider $m_{k}=\beta^{-1}\left(\left.x\right|_{k}\right)$, and take $b^{\prime} \in \mathbf{N}$ with $b^{\prime} \equiv b-m_{k}(\bmod a)$. As a and 2^{k} is coprime, we have $2^{k \varphi(a)}=\left(2^{k}\right)^{\varphi(a)} \equiv 1(\bmod a)$, hence $m_{k}+b^{\prime} \cdot 2^{k \varphi(a)} \equiv m_{k}+b^{\prime} \equiv b(\bmod a)$, where φ stands for Euler's totient function. Thus there exists $n \in \mathbf{N}$ with $m_{k}+b^{\prime} \cdot 2^{k \varphi(a)}=a n+b$, and hence

$$
\beta(a n+b)=\beta\left(m_{k}+b^{\prime} \cdot 2^{k \varphi(a)}\right)=\left.x\right|_{k}+\frac{\beta\left(b^{\prime}\right)}{2^{k \varphi(a)}} \in[x)_{k}
$$

As a result, for any $x \in[0,1)$ and $k \in \mathbf{N}$, there exists $n \in \mathbf{N}$ with $|x-\beta(a n+b)|<2^{-k}$.
Now we suppose a is odd. Then the conjugacy F is defined on the $\operatorname{dense} \operatorname{set} \beta(\mathbf{N})$ by $F(\beta(n)):=\beta(f(n))$, and its extension to $[0,1)$ is given as follows. For any $x \in[0,1)$, consider a sequence $n_{k}=\beta^{-1}\left(\left.x\right|_{k}\right)$, $k=1,2, \ldots$ Obviously we see $n_{k+1} \equiv n_{k}\left(\bmod 2^{k}\right)$, hence $a n_{k+1}+b \equiv a n_{k}+b\left(\bmod 2^{k}\right)$. It follows from Lemma 2.2 (4) that

$$
\left[\beta\left(a n_{k+1}+b\right)\right)_{k+1} \subsetneq\left[\beta\left(a n_{k+1}+b\right)\right)_{k}=\left[\beta\left(a n_{k}+b\right)\right)_{k}
$$

holds, and then $\bigcap_{k=1}^{\infty}\left[\beta\left(a n_{k}+b\right)\right)_{k}$ consists of a unique point, denoted by $\lim _{k \rightarrow \infty} \beta\left(a n_{k}+b\right)$. Thus we define the conjugacy $F:[0,1) \rightarrow[0,1)$ of the linear function f :

$$
\begin{equation*}
F(x)=\lim _{k \rightarrow \infty} \beta\left(a \beta^{-1}\left(\left.x\right|_{k}\right)+b\right) \tag{2.3}
\end{equation*}
$$

Lemma 2.4. For $x, y \in[0,1)$, we have
(1) $\left[F\left(\left.x\right|_{k}\right)\right)_{k}=[F(x))_{k}$, hence $\left.F(x)\right|_{k}=\left.F\left(\left.x\right|_{k}\right)\right|_{k}$.
(2) $F\left([x)_{k}\right) \subset[F(x))_{k}$, hence F is right continuous.
(3) $[F(x))_{k}=[F(y))_{k}$ if and only if $[x)_{k}=[y)_{k}$, hence F is injective.

Proof. (1) By definition, we have

$$
\{F(x)\}=\bigcap_{k=1}^{\infty}\left[\beta\left(a \beta^{-1}\left(\left.x\right|_{k}\right)+b\right)\right)_{k} \subset\left[\beta\left(a \beta^{-1}\left(\left.x\right|_{k}\right)+b\right)\right)_{k}=\left[F\left(\left.x\right|_{k}\right)\right)_{k}
$$

that is, $F(x) \in\left[F\left(\left.x\right|_{k}\right)\right)_{k}$, while $F(x) \in[F(x))_{k}$ by Lemma $2.2(1)$. Thus we see $\left[F\left(\left.x\right|_{k}\right)\right)_{k} \cap[F(x))_{k} \neq \emptyset$, which means $\left[F\left(\left.x\right|_{k}\right)\right)_{k}=[F(x))_{k}$ by Lemma 2.2 (2).
(2) $y \in[x)_{k}$ means $\left.y\right|_{k}=\left.x\right|_{k}$. It follows from (1) that

$$
F(y) \in[F(y))_{k}=\left[F\left(\left.y\right|_{k}\right)\right)_{k}=\left[F\left(\left.x\right|_{k}\right)\right)_{k}=[F(x))_{k}
$$

For any $\varepsilon>0$, take $k \in \mathbf{N}$ with $2^{-k}<\varepsilon$. Then for any y with $x \leq y \leq x+2^{-(k+1)}$, we see $y \in[x)_{k}$ and

$$
F(y) \in F\left([x)_{k}\right) \subset[F(x))_{k}
$$

that is, $|F(y)-F(x)|<2^{-k}<\varepsilon$, showing the right continuity of F.
(3) Put $m_{k}=\beta^{-1}\left(\left.x\right|_{k}\right)$ and $n_{k}=\beta^{-1}\left(\left.y\right|_{k}\right)$, then we see $[F(x))_{k}=\left[F\left(\left.x\right|_{k}\right)\right)_{k}=\left[\beta \circ f\left(m_{k}\right)\right)_{k}$ and $[F(y))_{k}=\left[F\left(\left.y\right|_{k}\right)\right)_{k}=\left[\beta \circ f\left(n_{k}\right)\right)_{k}$ by (1). It follows from Lemma $2.3(1)$ that $[F(x))_{k}=[F(y))_{k}$ if and only if $[x)_{k}=\left[\beta\left(m_{k}\right)\right)_{k}=\left[\beta\left(n_{k}\right)\right)_{k}=[y)_{k}$. Suppose that $x \neq y$, then $[x)_{k} \cap[y)_{k}=\emptyset$ holds for some k. Then we have $[F(x))_{k} \cap[F(y))_{k}=\emptyset$, hence $F(x) \neq F(y)$.

Lemma 2.4 (1) is an extension of a natural property

$$
\begin{equation*}
\left.f\left(\left.n\right|^{k}\right)\right|^{k}=\left.f(n)\right|^{k} \tag{2.4}
\end{equation*}
$$

of the linear function $f(n)=a n+b$ with $a, b \in \mathbf{N}$, while (2)(3) implies that F brings segment-wise exchange over the refinement (2.2) of the unit interval in any order k. Indeed we have the following.

Proposition 2.5. For any $k \in \mathbf{N}$ and $x \in[0,1)$, the conjugacy F gives a right continuous bijection

$$
F:[x)_{k} \rightarrow[F(x))_{k} .
$$

Particularly, F preserves the Lebesgue measure μ on $[0,1)$.
Proof. All we have to show is surjectivity of F. For any $y \in[0,1)$ and $l \in \mathbf{N}$, there exists $n_{l} \in \mathbf{N}$ with $F \circ \beta\left(n_{l}\right)=\beta \circ f\left(n_{l}\right) \in[y)_{l}$ by Lemma 2.3 (2). By Lemma 2.4, we see

$$
F\left(\left[\beta\left(n_{l}\right)\right)_{l}\right) \subset\left[F\left(\beta\left(n_{l}\right)\right)\right)_{l}=[y)_{l}
$$

Let x be the unique accumulation point $\{x\}=\bigcap_{l}^{\infty}\left[\beta\left(n_{l}\right)\right)_{l}$. Then $F(x) \in\left[F\left(\beta\left(n_{l}\right)\right)\right)_{l} \subset[y)_{l}$ holds for any l, meaning that

$$
F(x) \in \bigcap_{l}^{\infty}[y)_{l}=\{y\}
$$

hence $y=F(x)$ and F is a surjection $[0,1) \rightarrow[0,1)$. Combining Lemma 2.4 (2),(3) and surjectivity of F, we see $F\left([x)_{k}\right)=[F(x))_{k}$ for any $k \in \mathbf{N}$. Note that $\mu\left([x)_{k}\right)=\mu\left([F(x))_{k}\right)=2^{-k}$. It is shown that the σ-field generated by the segments $[x)_{k}, k \in \mathbf{N}, x \in[0,1)$ coincides with the Lebesgue measurable sets. Hence the assertion.

Note that for any natural number $n,[\beta(n))_{k}=\left[\beta(n), \beta(n)+2^{-k}\right)$ if $k>\operatorname{ord}(n)$, thus $w \in[\beta(n))_{k}$ means $w \geq \beta(n)$. Therefore we state the right continuity of F only. Indeed, for $f(n)=n+1$, we see

$$
\lim _{\substack{w \rightarrow(0.11)_{2} \\ w<(0.11)_{2}}} F(w)=(0.1)_{2} \neq(0.001)_{2}=F\left((0.11)_{2}\right) .
$$

3. Segment-wise linear approximation of the conjugacy F

In view of Proposition 2.5, we construct a sequence of segment-wise linear functions F_{k} 's approximating the conjugacy F.

Definition 3.1. For each $k \in \mathbf{N}$, we define the k-th approximant F_{k} as

$$
F_{k}(x)=x-\left.x\right|_{k}+\left.F(x)\right|_{k}
$$

If $x \in[\beta(n))_{k}$, we see

$$
F_{k}(x)=x-\left.\beta(n)\right|_{k}+\left.F(\beta(n))\right|_{k},
$$

thus $F_{k}\left([\beta(n))_{k}\right)=[F \circ \beta(n))_{k}$, compatible with Proposition 2.5. Moreover, the fact $F(x), F_{k}(x) \in$ $[F \circ \beta(n))_{k}$ for any $x \in[\beta(n))_{k}$ means

$$
\left|F(x)-F_{k}(x)\right|<2^{-k}
$$

for any $x \in[\beta(n))_{k}$, and then for any $x \in[0,1)$. Therefore the sequence $F_{k}, k=1,2, \ldots$ approximates F uniformly on $[0,1)$, so F_{k} simulates the behavior of F that exchange the segments $[\beta(n))_{k}$'s. We also note that (2.3) is expressed as $F(x)=\lim _{k \rightarrow \infty} F_{k}(x)$.

In the following subsections, we investigate the approximants F_{k} 's to extract dynamical characteristics of the map $f(n)=a n+b$.
3.1. Behavior of carries and exchange of segments. For each $k \in \mathbf{N}$, we define an integer valued function

$$
\tau_{k}(n)=\left[\frac{f\left(\left.n\right|^{k}\right)}{2^{k}}\right]=\left[\frac{\left.a n\right|^{k}+b}{2^{k}}\right],
$$

then we see

$$
\begin{equation*}
f\left(\left.n\right|^{k}\right)=\tau_{k}(n) \cdot 2^{k}+\left.f(n)\right|^{k} \tag{3.1}
\end{equation*}
$$

Namely, the function τ_{k} describes the amount of the carry from the lower k bits in the calculation $n \mapsto a n+b$.
Theorem 3.2. Suppose that a is odd and $0 \leq b<a$. Then, for $n, k \in \mathbf{N}$, we have
(1) $\tau_{k}(n) \in\{0,1, \ldots, a-1\}$.
(2) For binary expressions $n=\left(g_{p} \cdots g_{0}\right)_{2}$ and $f(n)=\left(h_{q} \cdots h_{0}\right)_{2}$, we have

$$
h_{k}=\left.\left(g_{k}+\tau_{k}(n)\right)\right|^{1}, k=1, \ldots, q
$$

and

$$
\tau_{k+1}(n)=\left[\frac{a g_{k}+\tau_{k}(n)}{2}\right]
$$

where $g_{k}=0$ for $k>p$.
(3) Let $\left(0 . g_{0} g_{1} \cdots g_{p}\right)_{2}$ be the binary expression of $\beta(n)$. Then, the image of the segment

$$
[\beta(n))_{k}=\left[\left(0 . g_{0} \cdots g_{k-1}\right)_{2}\right)_{k}=\left[\left(0 . g_{0} \cdots g_{k-1} 0\right)_{2}\right)_{k+1} \oplus\left[\left(0 . g_{0} \cdots g_{k-1} 1\right)_{2}\right)_{k+1}
$$

by F is given as
$F\left([\beta(n))_{k}\right)= \begin{cases}{\left[F\left(\left(0 . g_{0} \cdots g_{k-1} 0\right)_{2}\right)\right)_{k+1} \oplus\left[F\left(\left(0 . g_{0} \cdots g_{k-1} 1\right)_{2}\right)\right)_{k+1},} & \text { if } \tau_{k}(n) \text { is even, } \\ {\left[F\left(\left(0 . g_{0} \cdots g_{k-1} 1\right)_{2}\right)\right)_{k+1} \oplus\left[F\left(\left(0 . g_{0} \cdots g_{k-1} 0\right)_{2}\right)\right)_{k+1},} & \text { if } \tau_{k}(n) \text { is odd } .\end{cases}$

Proof. (1) As $\left.n\right|^{k} \leq 2^{k}-1$ and $a>b$, we have

$$
0 \leq\left[\frac{\left.a n\right|^{k}+b}{2^{k}}\right] \leq\left[\frac{a \cdot 2^{k}+b-a}{2^{k}}\right]=\left[a-\frac{a-b}{2^{k}}\right] \leq a-1
$$

(2) By definition, we see $\left.n\right|^{k+1}=\left(g_{k} g_{k-1} \cdots g_{0}\right)_{2}=g_{k} \cdot 2^{k}+\left.n\right|^{k}$. We also see $\left.f(n)\right|^{k+1}=h_{k} \cdot 2^{k}+\left.f(n)\right|^{k}$, while, by (3.1), we have

$$
\begin{align*}
\left.f(n)\right|^{k+1} & =\left.f\left(\left.n\right|^{k+1}\right)\right|^{k+1}=\left.\left(a\left(g_{k} \cdot 2^{k}+\left.n\right|^{k}\right)+b\right)\right|^{k+1}=\left.\left(a g_{k} \cdot 2^{k}+f\left(\left.n\right|^{k}\right)\right)\right|^{k+1} \tag{3.2}\\
& =\left.\left(\left(a g_{k}+\tau_{k}(n)\right) \cdot 2^{k}+\left.f(n)\right|^{k}\right)\right|^{k+1}=\left.\left(a g_{k}+\tau_{k}(n)\right)\right|^{1} \cdot 2^{k}+\left.f(n)\right|^{k}
\end{align*}
$$

As a is odd, we obtain the equation $h_{k}=\left.\left(a g_{k}+\tau_{k}(n)\right)\right|^{1}=\left.\left(g_{k}+\tau_{k}(n)\right)\right|^{1}$.
Again by (3.1) and $\left.f(n)\right|^{k+1}=h_{k} \cdot 2^{k}+\left.f(n)\right|^{k}$, we see

$$
f\left(\left.n\right|^{k+1}\right)=\tau_{k+1}(n) \cdot 2^{k+1}+\left.f(n)\right|^{k+1}=\left(2 \tau_{k+1}(n)+h_{k}\right) 2^{k}+\left.f(n)\right|^{k}
$$

while, as $\left.n\right|^{k+1}=g_{k} \cdot 2^{k}+\left.n\right|^{k}$, we have

$$
f\left(g_{k} \cdot 2^{k}+\left.n\right|^{k}\right)=a g_{k} \cdot 2^{k}+f\left(\left.n\right|^{k}\right)=\left(a g_{k}+\tau_{k}(n)\right) \cdot 2^{k}+\left.f(n)\right|^{k}
$$

hence $2 \tau_{k+1}(n)+h_{k}=a g_{k}+\tau_{k}(n)$. Since $0 \leq h_{k} / 2<1$ and $\tau_{k+1}(n)$ is an integer, we come to

$$
\tau_{k+1}(n)=\left[\tau_{k+1}(n)+\frac{h_{k}}{2}\right]=\left[\frac{a g_{k}+\tau_{k}(n)}{2}\right]
$$

(3) It comes from (3.2) that

$$
\left.\beta(f(n))\right|_{k+1}=\left.\beta(f(n))\right|_{k}+\left.\frac{1}{2^{k+1}} \beta\left(g_{k}+\tau_{k}(n)\right)\right|_{1}
$$

Then we have $\left.\left(g_{k}+\tau_{k}(n)\right)\right|^{1}=g_{k}$ whenever $\tau_{k}(n)$ is even, and $\left.\left(g_{k}+\tau_{k}(n)\right)\right|^{1}=1-g_{k}$ whenever $\tau_{k}(n)$ is odd. Thus we see

$$
\left.\left(F \circ \beta\left(\left.n\right|^{k}+2^{k}\right)\right)\right|_{k+1}= \begin{cases}\left.(F \circ \beta(n))\right|_{k}+\frac{1}{2^{k+1}}, & \text { if } \tau_{k}(n) \text { is even } \\ \left.(F \circ \beta(n))\right|_{k}-\frac{1}{2^{k+1}}, & \text { if } \tau_{k}(n) \text { is odd }\end{cases}
$$

hence the assertion.

3.2. Substitution dynamics induced by the conjugacy F.

Definition 3.3. For each approximation order k, we label the segment $[\beta(n))_{k}$ as

$$
L_{k}(n):=\tau_{0}(n) \tau_{1}(n) \cdots \tau_{k}(n)
$$

We say the segment $[\beta(n))_{k}$ is painted in color $\tau_{k}(n)$.
By Theorem $3.2(1)$, the label $L_{k}(n)$ is a string over the alphabet $A=\{0,1, \ldots, a-1\}$ with length $k+1$. Note that $\tau_{0}(n)=b$ by definition, thus the original unit interval $[0,1)$ is labeled as b. As the approximation order k increases, each segment is divided into two segments:

$$
\begin{equation*}
[\beta(n))_{k}=\left[\beta\left(\left.n\right|^{k}\right)\right)_{k} \rightsquigarrow\left[\beta\left(\left.n\right|^{k}\right)\right)_{k+1} \oplus\left[\beta\left(\left.n\right|^{k}+2^{k}\right)\right)_{k+1} \tag{3.3}
\end{equation*}
$$

Accordingly, the refinements $\left[\beta\left(\left.n\right|^{k}\right)\right)_{k+1}$ and $\left[\beta\left(\left.n\right|^{k}+2^{k}\right)\right)_{k+1}$ are labeled respectively as

$$
\begin{align*}
L_{k+1}\left(\left.n\right|^{k}\right) & =\tau_{0}(n) \cdots \tau_{k}(n)\left[\frac{\tau_{k}(n)}{2}\right] \tag{3.4}\\
L_{k+1}\left(\left.n\right|^{k}+2^{k}\right) & =\tau_{0}(n) \cdots \tau_{k}(n)\left[\frac{a+\tau_{k}(n)}{2}\right]
\end{align*}
$$

by Theorem 3.2 (2).

Consider a free monoid $A^{*}=\bigcup_{k=0}^{\infty} A^{k}$ over A, with the concatenation \oplus as a multiplication operation, and the empty string ε as a unit, where $A^{k}=\left\{x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k} \mid x_{i} \in A\right\}$ and $A^{0}=\{\varepsilon\}$. In view of (3.3) and (3.4), we define a substitution $\zeta: A^{*} \rightarrow A^{*}$ as

$$
\zeta: x \mapsto\left[\frac{x}{2}\right] \oplus\left[\frac{a+x}{2}\right]
$$

which simulates the way to repaint the segments that the refinement (3.3) causes:

$$
\tau_{k}(n) \mapsto \tau_{k+1}\left(\left.n\right|^{k}\right) \oplus \tau_{k+1}\left(\left.n\right|^{k}+2^{k}\right)=\left[\frac{\tau_{k}(n)}{2}\right] \oplus\left[\frac{a+\tau_{k}(n)}{2}\right]
$$

Consequently, the refinement of the unit interval

$$
[0,1) \rightsquigarrow\left[(0.0)_{2}\right)_{1} \oplus\left[(0.1)_{2}\right)_{1} \rightsquigarrow\left[(0.00)_{2}\right)_{2} \oplus\left[(0.01)_{2}\right)_{2} \oplus\left[(0.10)_{2}\right)_{2} \oplus\left[(0.11)_{2}\right)_{2} \rightsquigarrow \cdots
$$

induces an orbit of ζ with initial state b :
$b \mapsto \zeta(b)=\left[\frac{b}{2}\right] \oplus\left[\frac{a+b}{2}\right] \mapsto \zeta^{2}(b)=\left[\frac{[b / 2]}{2}\right] \oplus\left[\frac{a+[b / 2]}{2}\right] \oplus\left[\frac{a+[(a+b) / 2]}{2}\right] \oplus\left[\frac{a+[(a+b) / 2]}{2}\right] \mapsto \cdots$.
Summing up, we have the following.
Proposition 3.4. The k-th refinement (2.2) of the unit interval is painted in the pattern $\zeta^{k}(b)$.
3.3. A finite state transducer which represents $a x+b$. Theorem $3.2(2)$ is also expressed in terms of a finite state automaton. Let $T_{a, b}=(A, I, O,\{b\},\{0\}, \delta)$ be a deterministic finite state transducer, with states A, an input alphabet $I=\{0,1\}$, an output alphabet $O=\{0,1\}$, an initial state b, a final state 0 and a transition function $\delta: A \times I \rightarrow A \times O$. According to Theorem 3.2 (2), we define the transition rule as

$$
\delta(x, g)= \begin{cases}\left(\left[\frac{a g+x}{2}\right], g\right), & \text { if } x \text { is even } \tag{3.5}\\ \left(\left[\frac{a g+x}{2}\right], 1-g\right), & \text { if } x \text { is odd }\end{cases}
$$

Corollary 3.5. Given the binary expressions $\left(g_{p} \cdots g_{0}\right)_{2}$ of a natural number n, define a sequence in $A \times O$,

$$
\left(x_{i+1}, c_{i+1}\right)=\delta\left(x_{i}, g_{i}\right), i=0, \ldots, q-1
$$

where $x_{0}=b, q=p+\operatorname{ord}(a)+1$ and $g_{i}=0$ if $i>p$. Then we have

$$
f(n)=\left(c_{q} c_{q-1} \cdots c_{0}\right)_{2}
$$

and the label of the segment $[\beta(n))_{k}$ is given as

$$
L_{k}(n)=x_{0} x_{1} \cdots x_{k}
$$

for each $k=0,1, \ldots$.
Proof. Let $\left(h_{q} \cdots h_{0}\right)_{2}$ be the binary expression of $f(n)$. By definition, we see $x_{i+1}=\left[\left(a x_{i}+g_{i}\right) / 2\right]$. Recall that $\tau_{0}(n)=b$ for any $n \in \mathbf{N}$. It comes from Theorem 3.2 (2) that

$$
\tau_{i}(n)=x_{i} \text { and } h_{i}=\left.\left(g_{i}+x_{i}\right)\right|^{1}= \begin{cases}g_{i}, & \text { if } x_{i} \text { is even } \\ 1-g_{i}, & \text { if } x_{i} \text { is odd }\end{cases}
$$

hold, hence $c_{i}=h_{i}$.
3.4. Minimality of the dynamical system $([0,1), F)$. As we have seen, for each approximation order k, the approximant F_{k} exchanges the segments $\left[\beta\left(\nu_{j}^{(k)}\right)\right)_{k}$'s in the refinement (2.2), and hence induces a permutation π_{k} over $\left\{0,1, \ldots, 2^{k}-1\right\}$, satisfying

$$
F_{k}\left(\left[\beta\left(\nu_{j}^{(k)}\right)\right)_{k}\right)=\left[\beta\left(\nu_{\pi_{k}(j)}^{(k)}\right)\right)_{k}
$$

or, equivalently,

$$
\nu_{\pi_{k}(j)}^{(k)}=\left.\left(a \nu_{j}^{(k)}+b\right)\right|^{k}
$$

Note that, as the approximation order k increases, we see

$$
\begin{equation*}
\nu_{2 j}^{(k+1)}=\nu_{j}^{(k)} \text { and } \nu_{2 j+1}^{(k+1)}=\nu_{j}^{(k)}+2^{k} \tag{3.6}
\end{equation*}
$$

by definition of the refinement (2.2). Combining Theorem 3.2 (3) and (3.6), we have

$$
\nu_{\pi_{k+1}(2 j)}^{(k+1)}=\nu_{\pi_{k}(j)}^{(k)}=\nu_{2 \pi_{k}(j)}^{(k+1)} \quad \text { and } \quad \nu_{\pi_{k+1}(2 j+1)}^{(k+1)}=\nu_{\pi_{k}(j)}^{(k)}+2^{k}=\nu_{2 \pi_{k}(j)+1}^{(k+1)}
$$

whenever $\tau_{k}\left(\nu_{j}^{(k)}\right)$ is even, and

$$
\nu_{\pi_{k+1}(2 j)}^{(k+1)}=\nu_{\pi_{k}(j)}^{(k)}+2^{k}=\nu_{2 \pi_{k}(j)+1}^{(k+1)} \quad \text { and } \quad \nu_{\pi_{k+1}(2 j+1)}^{(k+1)}=\nu_{\pi_{k}(j)}^{(k)}=\nu_{2 \pi_{k}(j)}^{(k+1)}
$$

whenever $\tau_{k}\left(\nu_{j}^{(k)}\right)$ is odd. As a result, we obtain relations between the permutation π_{k} and π_{k+1}.
Lemma 3.6. If the color $\tau_{k}\left(\nu_{j}^{(k)}\right)$ of the segment $\left[\beta\left(\nu_{j}^{(k)}\right)\right)_{k}$ is even, we have

$$
\pi_{k+1}(2 j)=2 \pi_{k}(j) \quad \text { and } \quad \pi_{k+1}(2 j+1)=2 \pi_{k}(j)+1
$$

and if $\tau_{k}\left(\nu_{j}^{(k)}\right)$ is odd,

$$
\pi_{k+1}(2 j)=2 \pi_{k}(j)+1 \quad \text { and } \quad \pi_{k+1}(2 j+1)=2 \pi_{k}(j)
$$

Let $\pi_{k}=\pi_{k, 1} \pi_{k, 2} \cdots \pi_{k, m}$ be a cycle decomposition, determined uniquely up to the order of $\pi_{k, i}$'s. For each cyclic permutation $\pi_{k, i}=\left(p_{1} p_{2} \cdots p_{l}\right)$, consider the maximum subset $Q \subset\left\{p_{1}, \ldots, p_{l}\right\}$ such that $\tau_{k}\left(\nu_{q}^{(k)}\right)$ is odd if and only if $q \in Q$. For a cycle $\pi_{k, i}=\left(p_{1} p_{2} \cdots p_{l}\right)$, let $\pi_{k+1, i}^{\prime}$ be the permutation defined as Lemma 3.6 , that is,

$$
\pi_{k+1, i}^{\prime}\left(2 p_{j}+\eta\right)=2 \pi_{k, i}\left(p_{j}\right)+\left.\left(\tau_{k}\left(\nu_{p_{j}}^{(k)}\right)+\eta\right)\right|^{1}=2 p_{j+1}+\left.\left(\tau_{k}\left(\nu_{p_{j}}^{(k)}\right)+\eta\right)\right|^{1}, \quad \eta \in\{0,1\}
$$

where $l+1$ is understood as 1 .
Proposition 3.7. $\pi_{k+1, i}^{\prime}$ is a cyclic permutation whenever $\# Q$ is odd, and $\pi_{k+1, i}^{\prime}$ consists of two cyclic permutations whenever $\# Q$ is even.

Proof. Put $P_{0}=\left\{2 p_{1}, 2 p_{2}, \ldots, 2 p_{l}\right\}$ and $P_{1}=\left\{2 p_{1}+1,2 p_{2}+1, \ldots, 2 p_{l}+1\right\}$. Consider an orbit $x_{1}=$ $2 p_{1}, x_{2}=\pi_{k+1, i}^{\prime}\left(x_{1}\right), x_{3}=\pi_{k+1, i}^{\prime}\left(x_{2}\right), \ldots$, and a map $\phi\left(x_{j}\right)=\eta$ if $x_{j} \in P_{\eta}$. Notice that $x_{s l+j} \in\left\{2 p_{j}, 2 p_{j}+1\right\}$ for $j=1, \ldots, l$ and $s \in \mathbf{N}$ by definition. Then we see $\phi\left(x_{s l+j+1}\right)=\phi\left(x_{s l+j}\right)$ whenever $p_{j} \notin Q$, and $\phi\left(x_{s l+j+1}\right)=1-\phi\left(x_{s l+j}\right)$ whenever $p_{j} \in Q$, hence

$$
x_{s l+j+1}=\pi_{k+1, i}^{\prime}\left(x_{s l+j}\right)=2 p_{j+1}+\phi\left(x_{s l+j+1}\right)
$$

for each $j=1, \ldots, l$ and $s \in \mathbf{N}$.
Suppose that $\# Q$ is even. It is seen that $\phi\left(x_{l+1}\right)=\phi\left(x_{1}\right)=0$, hence

$$
x_{l+1}=2 p_{1}+\phi\left(x_{l+1}\right)=2 p_{1}=x_{1}
$$

namely, the cycle $\left(x_{1} x_{2}, \cdots x_{l}\right)$ is a factor of $\pi_{k+1, i}^{\prime}$. Considering another orbit $y_{1}=2 p_{1}+1, y_{2}=\pi_{k+1, i}^{\prime}\left(y_{1}\right), \ldots$, a similar argument shows the cycle $\left(y_{1} y_{2} \cdots y_{l}\right)$ is also a factor of $\pi_{k+1, i}^{\prime}$. Consequently, we obtain a decomposition $\pi_{k+1, i}^{\prime}=\left(x_{1} x_{2} \cdots x_{l}\right)\left(y_{1} y_{2} \cdots y_{l}\right)$.

Suppose that $\# Q$ is odd, then we see $\phi\left(x_{l+1}\right)=1-\phi\left(x_{1}\right)=1$, hence

$$
x_{l+1}=2 p_{1}+\phi\left(x_{l+1}\right)=2 p_{1}+1=y_{1}
$$

showing that $\pi_{k+1, i}^{\prime}$ is a cycle of the length $2 l$:

$$
\pi_{k+1, i}^{\prime}=\left(x_{1} x_{2} \cdots x_{l} y_{1} y_{2} \cdots y_{l}\right)
$$

We are to find a condition that the permutation π_{k} induced by the approximant F_{k} becomes a cycle in any approximation order k. For a string $\boldsymbol{w}=w_{1} \oplus w_{2} \oplus \cdots \oplus w_{l} \in A^{*}$, we put $S(\boldsymbol{w})=\sum_{i=1}^{l} w_{i}$. Note that the parity of $S(\boldsymbol{w})$ equals that of the number of entries w_{i} 's which are odd.

In view of Proposition 3.7, the original unit interval [0,1) must be painted an odd color at least, namely, $b=\tau_{0}([0,1))$ is odd. Then, $S(\zeta(b))$ also should be odd. We have assumed that a is odd. Putting $a=2 m+1$, we have

$$
S(\zeta(b))=\left[\frac{b}{2}\right]+\left[\frac{a+b}{2}\right]=m+1+2\left[\frac{b}{2}\right]
$$

as $[(b+1) / 2]=[b / 2]+1$, hence m should be even; $a \equiv 1(\bmod 4)$. Conversely, we have the following.
Theorem 3.8. The permutation π_{k} associated with the approximant F_{k} is a cyclic permutation in any approximation order k, hence the dynamical system $([0,1), F)$ is minimal, if and only if $a \equiv 1(\bmod 4)$ and b is odd.

Proof. The necessity for b being odd and $a \equiv 1(\bmod 4)$ is shown above. Suppose $a=4 m+1$ and b being odd. It comes from Theorem $3.2(2)$ that $S(\zeta(x))=2 m+2[x / 2]$ if x is even, and $S(\zeta(x))=2 m+1+2[x / 2]$ if x is odd. Then, $S(\zeta(\boldsymbol{w}))$ is odd if and only if $S(\boldsymbol{w})$ is odd for any $\boldsymbol{w} \in A^{*}$. As a result, we see that $S\left(\zeta^{k}(b)\right)$ is odd for any k, hence π_{k} is a cyclic permutation by Proposition 3.7, which means for any segment $[x)_{k}$, the orbit $[x)_{k}, F_{k}\left([x)_{k}\right), F_{k}^{2}\left([x)_{k}\right), \ldots, F_{k}^{2^{k}-1}\left([x)_{k}\right)$ covers $[0,1)$:

$$
\begin{equation*}
\coprod_{i=0}^{2^{k}-1} F_{k}^{i}\left([x)_{k}\right)=[0,1) \tag{3.7}
\end{equation*}
$$

Take any $x \in[0,1)$. (3.7) shows that, for any $y \in[0,1)$, there exists $0 \leq t \leq 2^{k}-1$ with $y \in F^{t}\left([x)_{k}\right)$, while $F^{t}(x) \in\left[F^{t}(x)\right)_{k}=F^{t}\left([x)_{k}\right)$. Thus we have $\left|y-F^{t}(x)\right|<2^{-k}$. Consequently, the orbit $\left\{F^{s}(x) \mid s \in \mathbf{N}\right\}$ is dense in $[0,1)$ for any $x \in[0,1)$, namely the dynamical system $([0,1), F)$ is minimal.

This result is contrast to Keane condition[6][16]: no left endpoint of any segment is mapped to another ones, which brings the minimality of the dynamics of interval exchange maps. In our case, the left endpoint $\left.x\right|_{k}$ of any segment $[x)_{k}$ is always mapped to another ones by F_{k}.

Example 3.4.1 (The case $3 x+1$). This is the original case of Collatz. The substitution ζ and the transducer $T_{3,1}$ are illustrated in Figure 1 and 2 respectively. As $3 \not \equiv 1(\bmod 4)$, the dynamics $([0,1), F)$ is not minimal. Indeed, Table 1 shows that permutations π_{k} 's associated with F_{k} 's are decomposed in two cycles. A typical orbit of F_{5}, the approximation order $k=5$, is illustrated in Figure 5

k	π_{k}
0	(0)
1	(0)(1)
2	(0 2)(13)
3	$(0415)(2736)$
4	$(0821119310)(414612515713)$

Table 1. Permutations π_{k} associated with $3 x+1$

Figure 1. The color pattern of refinement induced by substitution ζ

Example 3.4.2 (The case $5 x+1$). The substitution ζ and the transducer $T_{5,1}$ are illustrated in Figure 3 and 4 respectively. As $5 \equiv 1(\bmod 4)$, the conjugacy F of $f(x)=5 x+1$ induces a minimal dynamical system on $[0,1)$. Actually, Table 2 shows that permutations π_{k} 's associated with F_{k} 's are always cyclic. A typical orbit of F_{5}, the approximation order $k=5$, is illustrated in Figure 6.

Figure 3. The color pattern of refinement induced by substitution ζ

Figure 5. Approximant F_{5} for $3 x+1$ and a typical orbit

Figure 2. Transitive diagram of $T_{3,1}$

k	π_{k}
0	(0)
1	(0 1)
2	(0213)
3	(04371526)
4	(0861531141319714210512)

Table 2. Permutations π_{k} associated with $5 x+1$

Figure 4. Transitive diagram of $T_{5,1}$

Figure 6. Approximant F_{5} for $5 x+1$ and a typical orbit

4. Remarks

Notice that F preserves the Lebesgue measure μ on $[0,1)$ by Proposition 2.5 , therefore, it will be a worthwhile question whether the minimality implies the ergodicity in our case. However, I have no statement about the ergodicity of F at this moment.

In [3] and [4], we have discussed the van der Corput embedding of the Collatz procedure

$$
G(x)= \begin{cases}2 x, & x \in[0,1 / 2) \\ F(x)=\lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), & x \in[1 / 2,1)\end{cases}
$$

Then, to solve the original Collatz conjecture 1.1, we are to prove the statement: 'for each $n \in \mathbf{N}$, there exists a finite number t with $G^{t}(\beta(n))=1 / 2$.' Note that G does not preserve intervals, and so the Lebesgue measure. The finite bit approximation

$$
G_{k}(x)= \begin{cases}x+\left.x\right|_{k}, & \text { for } x \in[0,1 / 2) \\ F_{k}(x), & \text { for } x \in[1 / 2,1)\end{cases}
$$

leads us to a mild version of the Collatz conjecture, a finite combinatorial problem proposed in [4], of which research is in progress.

Problem $4.1\left(3 x+1\right.$ problem on $\left.G_{k}\right)$. Show that for any $x \in[0,1)$, there exists $t \in \mathbf{N}$ such that

$$
G_{k}^{t}(x) \in[0)_{k} \cup[\beta(1))_{k}=\left[0,1 / 2^{k}\right) \cup\left[1 / 2,1 / 2+1 / 2^{k}\right)
$$

References

[1] K. Dajani and C. Kraaikamp, Ergodic theory of numbers, Carus Mathematical Monographs 29, Mathematical Association of America, 2002.
[2] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd ed. Wiley, 2003.
[3] Y. Hashimoto, A fractal set associated with the Collatz problem, Bull. of Aichi Univ. of Education, Natural Science 56, pp 1-6, 2007.
[4] Y. Hashimoto, Interval preserving map approximation of $3 x+1$ problem, Bull. of Aichi Univ. of Education, Natural Science 61, pp 5-14, 2012.
[5] J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages and Computations, 2nd Ed. AddisonWesley, 2001.
[6] M. Keane, Interval Exchange Transformations, Math. Z. 141, pp 25-31, 1975.
[7] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Dover Publications, 2005.
[8] J. Lagarias, The Ultimate Challenge: The $3 x+1$ Problem, AMS, 2011.
[9] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of mathematics and its applications 90, Cambridge University Press, 2002.
[10] F. Oliveira and F. L. C. da Rocha, Minimal non-ergodic C^{1}-diffeomorphisms of the circle, Ergod. Th. \& Dynam. Sys. 21 no. 6, pp 1843-1854, 2001.
[11] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lect. Notes in Math. 1294, 2nd Ed., Springer, 2010.
[12] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8, pp 477-493, 1957.
[13] M. Shirvani and T. D. Rogers, On Ergodic One-Dimensional Cellular Automata, Commun. Math. Phys. 136, pp 599-605, 1991.
[14] G. Wirsching, The Dynamical System Generated by the $3 x+1$ Function, Lect. Notes in Math. 1681, Springer, 1998.
[15] H. Xie, Grammatical complexity and one-dimensional dynamical systems, Directions in chaos 6, World Scientific, 1997.
[16] J. C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction, in 'Frontiers in Number Theory, Physics, and Geometry I', pp 403-438, 2005.

