The van der Corput Embedding of *ax* + *b* and its Interval Exchange Map Approximation

Yukihiro HASHIMOTO

Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Introduction

In [4], we introduce interval preserving map approximation of a linear map 3x+1, to attack the well-known and still unsolved 3x + 1 problem, which is firstly proposed by Lothar Collatz in 1930's:

Conjecture 1.1. Consider a map $f : \mathbf{N} \to \mathbf{N}$ such that

$$f(n) = \begin{cases} 3n+1, & \text{if } n \text{ is odd,} \\ n/2, & \text{if } n \text{ is even.} \end{cases}$$

Then for each natural number n, there exists a finite number t such that $f^t(n) = \underbrace{f \circ f \circ \cdots \circ f(n)}_{t-times} = 1.$

In the investigations [3][4], we use the binary van der Corput embedding β of natural numbers into unit interval [0, 1], which gives a low-discrepancy sequence over [0, 1], firstly introduced by van der Corput in 1935(cf.[7] pp 129), and construct a right continuous bijection F over [0, 1) conjugate to 3x + 1 by way of β . In this note, we investigate a right continuous bijection F over [0, 1) conjugate to the linear function ax + b, its 'finite bit approximations' which bring dynamics of interval exchange maps on [0, 1), and observe substitution dynamics and transducers associated with the approximations. As a result, we obtain a necessary and sufficient condition for the minimality of the dynamics ([0, 1), F) (Theorem 3.8).

2. The binary van der Corput embedding of natural numbers and a conjugacy of ax + b

We follow the notations in [4].

Definition 2.1. Let $n = g_k \cdot 2^k + g_{k-1} \cdot 2^{k-1} + \cdots + g_0$ (= $(g_k g_{k-1} \cdots g_0)_2$ for short) be a binary expansion of a natural number n. Then we define $\beta : \mathbf{N} \to [0, 1)$, given by

$$\beta(n) = \frac{g_0}{2} + \frac{g_1}{2^2} + \dots + \frac{g_k}{2^{k+1}} = (0.g_0g_1\cdots g_k)_2$$

As $\beta : \mathbf{N} \to [0,1)$ is one-to-one and β embeds natural numbers densely into [0,1), we call β the binary van der Corput embedding.

For a binary expression $n = (g_l g_{l-1} \cdots g_0)_2$, we put $l = \operatorname{ord}(n) := [\log_2 n]$ where [x] stands for an integer not greater than x, and $n|^k$ denotes an *upper cut off* of n at k-th order;

$$n|^k = (g_{k-1}g_{k-2}\cdots g_0)_2 \equiv n \pmod{2^k}.$$

To make free from ambiguity, we always take the finite binary expression $\beta(n) = (0.g_0g_1\cdots g_l)_2$ of any natural number n. For a real number $x \in [0, 1)$ and $k \in \mathbb{N}$, $x|_k$ denotes a cut off of x at (-k-1)-th order in the binary expression;

$$x|_k = (0.e_1e_2\cdots e_k)_2 = \sum_{j=1}^k \frac{e_j}{2^j}, \text{ if } x = (0.e_1e_2\cdots)_2 = \sum_{j=1}^\infty \frac{e_j}{2^j}.$$

We use the notation $[x]_k$ as a segment $[x|_k, x|_k + \frac{1}{2^k})$, hence a natural decomposition of segments

(2.1)
$$[(0.e_1e_2\cdots e_k)_2)_k = [(0.e_1e_2\cdots e_k0)_2)_{k+1} \oplus [(0.e_1e_2\cdots e_k1)_2)_{k+1} ,$$

where $[a, b] \oplus [b, c)$ stands for a division of an interval [a, c) at b. Then, the k-th refinement of the unit interval [0, 1) is given as

(2.2)
$$[0,1) = \bigoplus_{j=0}^{2^{k}-1} \left[\beta(\nu_{j}^{(k)}) \right]_{k},$$

where $\{\nu_j^{(k)} \mid j = 0, \dots, 2^k - 1\} = \{0, 1, \dots, 2^k - 1\}$ with $\beta(\nu_i^{(k)}) < \beta(\nu_j^{(k)})$ if and only if i < j. By definition, we easily to see the followings.

Lemma 2.2. For $x, y \in [0, 1)$ and $k, l, m, n \in \mathbf{N}$,

- (1) $x \in [x]_k$. (2) $[x]_k \cap [y]_k \neq \emptyset$ holds if and only if $x|_k = y|_k$, and hence $[x]_k = [y]_k$. (3) if $x \neq y$, there exists $l \in \mathbf{N}$ such that $[x]_l \cap [y]_l = \emptyset$. (4) $[x]_{k+1} \subsetneq [x]_k$ and $\bigcap_{k=1}^{\infty} [x]_k = \{x\}.$ (5) $\beta(m)|_k = \beta(m|^k)$, thus $[\beta(m)]_k = [\beta(n)]_k$ if and only if $m|^k = n|^k$. (6) If l > ord(m), then $\beta(m+n \cdot 2^l) = \beta(m) + \frac{\beta(n)}{2^l}$.
- (7) $(n|^k)|^l = n|^{\min\{k,l\}}.$

Let us consider a linear function f(n) = an + b on natural numbers, where $a, b \in \mathbf{N}$ and a > b. We are to construct the conjugacy $F: [0,1) \to [0,1)$ of $f: \mathbf{N} \to \mathbf{N}$, that is, $F \circ \beta(n) = \beta \circ f(n)$ holds for any natural number n.

Lemma 2.3. Suppose a is odd number. Then we have

- (1) $[\beta \circ f(m)]_k = [\beta \circ f(n)]_k$ holds if and only if $[\beta(m)]_k = [\beta(n)]_k$ for any $m, n \in \mathbb{N}$.
- (2) $\{\beta \circ f(n) \mid n \in \mathbf{N}\}$ is dense in [0, 1).

Proof. (1) By Lemma 2.2 (5), $[\beta(m)]_k = [\beta(n)]_k$ means $m \equiv n \pmod{2^k}$, which equivalents to $am + b \equiv b$ $an + b \pmod{2^k}$ as a and 2^k are coprime, hence $[\beta(am + b)]_k = [\beta(an + b)]_k$.

(2) Given $x \in [0,1)$ and $k \in \mathbf{N}$, consider $m_k = \beta^{-1}(x|_k)$, and take $b' \in \mathbf{N}$ with $b' \equiv b - m_k \pmod{a}$. As a and 2^k is coprime, we have $2^{k\varphi(a)} = (2^k)^{\varphi(a)} \equiv 1 \pmod{a}$, hence $m_k + b' \cdot 2^{k\varphi(a)} \equiv m_k + b' \equiv b \pmod{a}$, where φ stands for Euler's totient function. Thus there exists $n \in \mathbf{N}$ with $m_k + b' \cdot 2^{k\varphi(a)} = an + b$, and hence

$$\beta(an+b) = \beta(m_k + b' \cdot 2^{k\varphi(a)}) = x|_k + \frac{\beta(b')}{2^{k\varphi(a)}} \in [x]_k.$$

[0,1) and $k \in \mathbf{N}$, there exists $n \in \mathbf{N}$ with $|x - \beta(an+b)| < 2^{-k}$.

As a result, for any $x \in [0,1)$ and $k \in \mathbf{N}$, there exists $n \in \mathbf{N}$ with $|x - \beta(an + b)| < 2^{-k}$.

Now we suppose a is odd. Then the conjugacy F is defined on the dense set $\beta(\mathbf{N})$ by $F(\beta(n)) := \beta(f(n))$, and its extension to [0,1) is given as follows. For any $x \in [0,1)$, consider a sequence $n_k = \beta^{-1}(x|_k)$, $k = 1, 2, \ldots$ Obviously we see $n_{k+1} \equiv n_k \pmod{2^k}$, hence $an_{k+1} + b \equiv an_k + b \pmod{2^k}$. It follows from Lemma 2.2 (4) that

$$\left[\beta(an_{k+1}+b)\right]_{k+1} \subsetneq \left[\beta(an_{k+1}+b)\right]_{k} = \left[\beta(an_{k}+b)\right]_{k},$$

holds, and then $\bigcap_{k \to \infty}^{\infty} [\beta(an_k + b))_k$ consists of a unique point, denoted by $\lim_{k \to \infty} \beta(an_k + b)$. Thus we define the conjugacy $F: [0,1) \to [0,1)$ of the linear function f:

(2.3)
$$F(x) = \lim_{k \to \infty} \beta \left(a\beta^{-1}(x|_k) + b \right)$$

Lemma 2.4. For $x, y \in [0, 1)$, we have

-8-

- (1) $[F(x|_k)]_k = [F(x)]_k$, hence $F(x)|_k = F(x|_k)|_k$.
- (2) $F([x]_k) \subset [F(x)]_k$, hence F is right continuous.
- (3) $[F(x)]_k = [F(y)]_k$ if and only if $[x]_k = [y]_k$, hence F is injective.

Proof. (1) By definition, we have

$$\{F(x)\} = \bigcap_{k=1}^{\infty} \left[\beta(a\beta^{-1}(x|_k) + b) \right]_k \subset \left[\beta(a\beta^{-1}(x|_k) + b) \right]_k = \left[F(x|_k) \right]_k,$$

that is, $F(x) \in [F(x|_k))_k$, while $F(x) \in [F(x))_k$ by Lemma 2.2 (1). Thus we see $[F(x|_k))_k \cap [F(x))_k \neq \emptyset$, which means $[F(x|_k))_k = [F(x))_k$ by Lemma 2.2 (2).

(2) $y \in [x]_k$ means $y|_k = x|_k$. It follows from (1) that

$$F(y) \in \left[\begin{array}{c} F(y) \end{array} \right]_k = \left[\begin{array}{c} F(y|_k) \end{array} \right]_k = \left[\begin{array}{c} F(x|_k) \end{array} \right]_k = \left[\begin{array}{c} F(x) \end{array} \right]_k$$

For any $\varepsilon > 0$, take $k \in \mathbf{N}$ with $2^{-k} < \varepsilon$. Then for any y with $x \le y \le x + 2^{-(k+1)}$, we see $y \in [x]_k$ and

$$F(y) \in F([x]_k) \subset [F(x)]_k,$$

that is, $|F(y) - F(x)| < 2^{-k} < \varepsilon$, showing the right continuity of F.

(3) Put $m_k = \beta^{-1}(x|_k)$ and $n_k = \beta^{-1}(y|_k)$, then we see $[F(x)]_k = [F(x|_k)]_k = [\beta \circ f(m_k)]_k$ and $[F(y)]_k = [F(y|_k)]_k = [\beta \circ f(n_k)]_k$ by (1). It follows from Lemma 2.3 (1) that $[F(x)]_k = [F(y)]_k$ if and only if $[x]_k = [\beta(m_k)]_k = [\beta(n_k)]_k = [y]_k$. Suppose that $x \neq y$, then $[x]_k \cap [y]_k = \emptyset$ holds for some k. Then we have $[F(x)]_k \cap [F(y)]_k = \emptyset$, hence $F(x) \neq F(y)$.

Lemma 2.4 (1) is an extension of a natural property

(2.4)
$$f(n|^k)|^k = f(n)|^k$$

of the linear function f(n) = an + b with $a, b \in \mathbf{N}$, while (2)(3) implies that F brings segment-wise exchange over the refinement (2.2) of the unit interval in any order k. Indeed we have the following.

Proposition 2.5. For any $k \in \mathbf{N}$ and $x \in [0,1)$, the conjugacy F gives a right continuous bijection

$$F:[x]_k \to [F(x)]_k.$$

Particularly, F preserves the Lebesgue measure μ on [0,1).

Proof. All we have to show is surjectivity of F. For any $y \in [0,1)$ and $l \in \mathbf{N}$, there exists $n_l \in \mathbf{N}$ with $F \circ \beta(n_l) = \beta \circ f(n_l) \in [y]_l$ by Lemma 2.3 (2). By Lemma 2.4, we see

$$F([\beta(n_l))_l) \subset [F(\beta(n_l)))_l = [y]_l.$$

Let x be the unique accumulation point $\{x\} = \bigcap_{l=1}^{\infty} [\beta(n_l)]_l$. Then $F(x) \in [F(\beta(n_l))]_l \subset [y]_l$ holds for any l meaning that

l, meaning that

$$F(x)\in \bigcap_l^\infty [\ y\)_l=\{y\},$$

hence y = F(x) and F is a surjection $[0,1) \to [0,1)$. Combining Lemma 2.4 (2),(3) and surjectivity of F, we see $F([x]_k) = [F(x)]_k$ for any $k \in \mathbf{N}$. Note that $\mu([x]_k) = \mu([F(x)]_k) = 2^{-k}$. It is shown that the σ -field generated by the segments $[x]_k, k \in \mathbf{N}, x \in [0,1)$ coincides with the Lebesgue measurable sets. Hence the assertion.

Note that for any natural number n, $[\beta(n)]_k = [\beta(n), \beta(n) + 2^{-k})$ if $k > \operatorname{ord}(n)$, thus $w \in [\beta(n)]_k$ means $w \ge \beta(n)$. Therefore we state the right continuity of F only. Indeed, for f(n) = n + 1, we see

$$\lim_{\substack{w \to (0.11)_2 \\ w < (0.11)_2}} F(w) = (0.1)_2 \neq (0.001)_2 = F((0.11)_2).$$

3. Segment-wise linear approximation of the conjugacy F

In view of Proposition 2.5, we construct a sequence of segment-wise linear functions F_k 's approximating the conjugacy F.

Definition 3.1. For each $k \in \mathbf{N}$, we define the k-th approximant F_k as

$$F_k(x) = x - x|_k + F(x)|_k.$$

If $x \in [\beta(n)]_k$, we see

$$F_k(x) = x - \beta(n)\big|_k + F(\beta(n))\big|_k,$$

thus $F_k([\beta(n))_k) = [F \circ \beta(n))_k$, compatible with Proposition 2.5. Moreover, the fact $F(x), F_k(x) \in [F \circ \beta(n))_k$ for any $x \in [\beta(n))_k$ means

$$|F(x) - F_k(x)| < 2^{-k}$$

for any $x \in [\beta(n)]_k$, and then for any $x \in [0,1)$. Therefore the sequence F_k , k = 1, 2, ... approximates F uniformly on [0,1), so F_k simulates the behavior of F that exchange the segments $[\beta(n)]_k$'s. We also note that (2.3) is expressed as $F(x) = \lim_{k \to \infty} F_k(x)$.

In the following subsections, we investigate the approximants F_k 's to extract dynamical characteristics of the map f(n) = an + b.

3.1. Behavior of carries and exchange of segments. For each $k \in \mathbf{N}$, we define an integer valued function

$$au_k(n) = \left[\frac{f(n)^k}{2^k}\right] = \left[\frac{an^{k+b}}{2^k}\right],$$

then we see

(3.1)
$$f(n)^{k} = \tau_{k}(n) \cdot 2^{k} + f(n)^{k}.$$

Namely, the function τ_k describes the amount of the carry from the lower k bits in the calculation $n \mapsto an+b$.

Theorem 3.2. Suppose that a is odd and $0 \le b < a$. Then, for $n, k \in \mathbf{N}$, we have

(1) $\tau_k(n) \in \{0, 1, \dots, a-1\}.$

(2) For binary expressions $n = (g_p \cdots g_0)_2$ and $f(n) = (h_q \cdots h_0)_2$, we have

$$h_k = (g_k + \tau_k(n)) |^1, \ k = 1, \dots, q$$

and

$$\tau_{k+1}(n) = \left[\frac{ag_k + \tau_k(n)}{2}\right],$$

where $g_k = 0$ for k > p.

(3) Let $(0.g_0g_1\cdots g_p)_2$ be the binary expression of $\beta(n)$. Then, the image of the segment

$$\beta(n) \rangle_{k} = [(0.g_{0} \cdots g_{k-1})_{2} \rangle_{k} = [(0.g_{0} \cdots g_{k-1})_{2} \rangle_{k+1} \oplus [(0.g_{0} \cdots g_{k-1})_{2} \rangle_{k+1}$$

 $by \ F \ is \ given \ as$

ſ

$$F\left(\left[\beta(n)\right]_{k}\right) = \begin{cases} \left[F((0.g_{0}\cdots g_{k-1}0)_{2})\right]_{k+1} \oplus \left[F((0.g_{0}\cdots g_{k-1}1)_{2})\right]_{k+1}, & \text{if } \tau_{k}(n) \text{ is even,} \\ \left[F((0.g_{0}\cdots g_{k-1}1)_{2})\right]_{k+1} \oplus \left[F((0.g_{0}\cdots g_{k-1}0)_{2})\right]_{k+1}, & \text{if } \tau_{k}(n) \text{ is odd.} \end{cases}$$

Proof. (1) As $n|^k \leq 2^k - 1$ and a > b, we have

$$0 \le \left[\frac{an|^k + b}{2^k}\right] \le \left[\frac{a \cdot 2^k + b - a}{2^k}\right] = \left[a - \frac{a - b}{2^k}\right] \le a - 1.$$

(2) By definition, we see $n|^{k+1} = (g_k g_{k-1} \cdots g_0)_2 = g_k \cdot 2^k + n|^k$. We also see $f(n)|^{k+1} = h_k \cdot 2^k + f(n)|^k$, while, by (3.1), we have

(3.2)
$$f(n)\Big|^{k+1} = f(n|^{k+1})\Big|^{k+1} = \left(a(g_k \cdot 2^k + n|^k) + b\right)\Big|^{k+1} = \left(ag_k \cdot 2^k + f(n|^k)\right)\Big|^{k+1} \\ = \left(\left(ag_k + \tau_k(n)\right) \cdot 2^k + f(n)\Big|^k\right)\Big|^{k+1} = \left(ag_k + \tau_k(n)\right)\Big|^1 \cdot 2^k + f(n)\Big|^k.$$

As a is odd, we obtain the equation $h_k = (ag_k + \tau_k(n))|^1 = (g_k + \tau_k(n))|^1$. Again by (3.1) and $f(n)|^{k+1} = h_k \cdot 2^k + f(n)|^k$, we see

$$f(n|^{k+1}) = \tau_{k+1}(n) \cdot 2^{k+1} + f(n)|^{k+1} = (2\tau_{k+1}(n) + h_k)2^k + f(n)|^k$$

while, as $n|^{k+1} = g_k \cdot 2^k + n|^k$, we have

$$f(g_k \cdot 2^k + n|^k) = ag_k \cdot 2^k + f(n|^k) = (ag_k + \tau_k(n)) \cdot 2^k + f(n)|^k,$$

hence $2\tau_{k+1}(n) + h_k = ag_k + \tau_k(n)$. Since $0 \le h_k/2 < 1$ and $\tau_{k+1}(n)$ is an integer, we come to

$$\tau_{k+1}(n) = \left[\tau_{k+1}(n) + \frac{h_k}{2}\right] = \left[\frac{ag_k + \tau_k(n)}{2}\right].$$

(3) It comes from (3.2) that

$$\beta(f(n))\big|_{k+1} = \beta(f(n))\big|_k + \frac{1}{2^{k+1}}\beta(g_k + \tau_k(n))\big|_1.$$

Then we have $(g_k + \tau_k(n))|^1 = g_k$ whenever $\tau_k(n)$ is even, and $(g_k + \tau_k(n))|^1 = 1 - g_k$ whenever $\tau_k(n)$ is odd. Thus we see

$$\left(F \circ \beta(n|^{k} + 2^{k})\right)\Big|_{k+1} = \begin{cases} \left(F \circ \beta(n)\right)\Big|_{k} + \frac{1}{2^{k+1}}, & \text{if } \tau_{k}(n) \text{ is even,} \\ \left(F \circ \beta(n)\right)\Big|_{k} - \frac{1}{2^{k+1}}, & \text{if } \tau_{k}(n) \text{ is odd,} \end{cases}$$

hence the assertion.

3.2. Substitution dynamics induced by the conjugacy F.

Definition 3.3. For each approximation order k, we label the segment $[\beta(n)]_k$ as

$$L_k(n) := \tau_0(n)\tau_1(n)\cdots\tau_k(n).$$

We say the segment $[\beta(n)]_k$ is painted in color $\tau_k(n)$.

By Theorem 3.2 (1), the label $L_k(n)$ is a string over the alphabet $A = \{0, 1, \dots, a-1\}$ with length k+1. Note that $\tau_0(n) = b$ by definition, thus the original unit interval [0, 1) is labeled as b. As the approximation order k increases, each segment is divided into two segments:

(3.3)
$$[\beta(n)]_k = \left[\beta(n|^k)\right]_k \rightsquigarrow \left[\beta(n|^k)\right]_{k+1} \oplus \left[\beta(n|^k+2^k)\right]_{k+1}.$$

Accordingly, the refinements $\left[\beta(n^k)\right]_{k+1}$ and $\left[\beta(n^k+2^k)\right]_{k+1}$ are labeled respectively as

(3.4)
$$L_{k+1}(n|^{k}) = \tau_{0}(n) \cdots \tau_{k}(n) \left[\frac{\tau_{k}(n)}{2}\right]$$
$$L_{k+1}(n|^{k} + 2^{k}) = \tau_{0}(n) \cdots \tau_{k}(n) \left[\frac{a + \tau_{k}(n)}{2}\right]$$

by Theorem 3.2(2).

Consider a free monoid $A^* = \bigcup_{k=0}^{\infty} A^k$ over A, with the concatenation \oplus as a multiplication operation, and the empty string ε as a unit, where $A^k = \{x_1 \oplus x_2 \oplus \cdots \oplus x_k \mid x_i \in A\}$ and $A^0 = \{\varepsilon\}$. In view of (3.3) and (3.4), we define a substitution $\zeta : A^* \to A^*$ as

$$\zeta: x \mapsto \left[\frac{x}{2}\right] \oplus \left[\frac{a+x}{2}\right],$$

which simulates the way to repain the segments that the refinement (3.3) causes:

$$\tau_k(n) \mapsto \tau_{k+1}(n|^k) \oplus \tau_{k+1}(n|^k + 2^k) = \left[\frac{\tau_k(n)}{2}\right] \oplus \left[\frac{a + \tau_k(n)}{2}\right].$$

Consequently, the refinement of the unit interval

 $[0,1) \rightsquigarrow [(0.0)_2)_1 \oplus [(0.1)_2)_1 \rightsquigarrow [(0.00)_2)_2 \oplus [(0.01)_2)_2 \oplus [(0.10)_2)_2 \oplus [(0.11)_2)_2 \rightsquigarrow \cdots$

induces an orbit of ζ with initial state b:

$$b \mapsto \zeta(b) = \begin{bmatrix} \frac{b}{2} \end{bmatrix} \oplus \begin{bmatrix} \frac{a+b}{2} \end{bmatrix} \mapsto \zeta^2(b) = \begin{bmatrix} \frac{[b/2]}{2} \end{bmatrix} \oplus \begin{bmatrix} \frac{a+[b/2]}{2} \end{bmatrix} \oplus \begin{bmatrix} \frac{a+[(a+b)/2]}{2} \end{bmatrix} \oplus \begin{bmatrix} \frac{a+[(a+b)/2]}{2} \end{bmatrix} \mapsto \cdots$$

Summing up, we have the following.

Proposition 3.4. The k-th refinement (2.2) of the unit interval is painted in the pattern $\zeta^k(b)$.

3.3. A finite state transducer which represents ax + b. Theorem 3.2 (2) is also expressed in terms of a finite state automaton. Let $T_{a,b} = (A, I, O, \{b\}, \{0\}, \delta)$ be a deterministic finite state transducer, with states A, an input alphabet $I = \{0, 1\}$, an output alphabet $O = \{0, 1\}$, an initial state b, a final state 0 and a transition function $\delta : A \times I \to A \times O$. According to Theorem 3.2 (2), we define the transition rule as

(3.5)
$$\delta(x,g) = \begin{cases} \left(\left[\frac{ag+x}{2} \right], g \right), & \text{if } x \text{ is even} \\ \left(\left[\frac{ag+x}{2} \right], 1-g \right), & \text{if } x \text{ is odd.} \end{cases}$$

Corollary 3.5. Given the binary expressions $(g_p \cdots g_0)_2$ of a natural number n, define a sequence in $A \times O$,

$$(x_{i+1}, c_{i+1}) = \delta(x_i, g_i), \ i = 0, \dots, q-1,$$

where $x_0 = b$, $q = p + \operatorname{ord}(a) + 1$ and $g_i = 0$ if i > p. Then we have

$$f(n) = (c_q c_{q-1} \cdots c_0)_2,$$

and the label of the segment [$\beta(n)$)_k is given as

$$L_k(n) = x_0 x_1 \cdots x_k$$

for each k = 0, 1, ...

Proof. Let $(h_q \cdots h_0)_2$ be the binary expression of f(n). By definition, we see $x_{i+1} = [(ax_i + g_i)/2]$. Recall that $\tau_0(n) = b$ for any $n \in \mathbb{N}$. It comes from Theorem 3.2 (2) that

$$\tau_i(n) = x_i$$
 and $h_i = (g_i + x_i)|^1 = \begin{cases} g_i, & \text{if } x_i \text{ is even,} \\ 1 - g_i, & \text{if } x_i \text{ is odd} \end{cases}$

hold, hence $c_i = h_i$.

-12-

3.4. Minimality of the dynamical system ([0,1), F). As we have seen, for each approximation order k, the approximant F_k exchanges the segments $\left[\beta(\nu_j^{(k)})\right]_k$'s in the refinement (2.2), and hence induces a permutation π_k over $\{0, 1, \ldots, 2^k - 1\}$, satisfying

$$F_k(\left[\beta(\nu_j^{(k)}) \right)_k) = \left[\beta(\nu_{\pi_k(j)}^{(k)}) \right)_k,$$

or, equivalently,

$$\nu_{\pi_k(j)}^{(k)} = \left(a\nu_j^{(k)} + b\right)\Big|^k.$$

Note that, as the approximation order k increases, we see

(3.6)
$$\nu_{2j}^{(k+1)} = \nu_j^{(k)} \text{ and } \nu_{2j+1}^{(k+1)} = \nu_j^{(k)} + 2^k$$

by definition of the refinement (2.2). Combining Theorem 3.2 (3) and (3.6), we have

$$\nu_{\pi_{k+1}(2j)}^{(k+1)} = \nu_{\pi_k(j)}^{(k)} = \nu_{2\pi_k(j)}^{(k+1)} \text{ and } \nu_{\pi_{k+1}(2j+1)}^{(k+1)} = \nu_{\pi_k(j)}^{(k)} + 2^k = \nu_{2\pi_k(j)+1}^{(k+1)}$$

whenever $\tau_k(\nu_i^{(k)})$ is even, and

$$\nu_{\pi_{k+1}(2j)}^{(k+1)} = \nu_{\pi_k(j)}^{(k)} + 2^k = \nu_{2\pi_k(j)+1}^{(k+1)} \text{ and } \nu_{\pi_{k+1}(2j+1)}^{(k+1)} = \nu_{\pi_k(j)}^{(k)} = \nu_{2\pi_k(j)}^{(k+1)}$$

whenever $\tau_k(\nu_i^{(k)})$ is odd. As a result, we obtain relations between the permutation π_k and π_{k+1} .

Lemma 3.6. If the color
$$\tau_k(\nu_j^{(k)})$$
 of the segment $\left[\beta(\nu_j^{(k)})\right]_k$ is even, we have $\pi_{k+1}(2j) = 2\pi_k(j)$ and $\pi_{k+1}(2j+1) = 2\pi_k(j) + 1$

and if $\tau_k(\nu_j^{(k)})$ is odd,

$$\pi_{k+1}(2j) = 2\pi_k(j) + 1$$
 and $\pi_{k+1}(2j+1) = 2\pi_k(j).$

Let $\pi_k = \pi_{k,1}\pi_{k,2}\cdots\pi_{k,m}$ be a cycle decomposition, determined uniquely up to the order of $\pi_{k,i}$'s. For each cyclic permutation $\pi_{k,i} = (p_1p_2\cdots p_l)$, consider the maximum subset $Q \subset \{p_1,\ldots,p_l\}$ such that $\tau_k(\nu_q^{(k)})$ is odd if and only if $q \in Q$. For a cycle $\pi_{k,i} = (p_1p_2\cdots p_l)$, let $\pi'_{k+1,i}$ be the permutation defined as Lemma 3.6, that is,

$$\pi'_{k+1,i}(2p_j+\eta) = 2\pi_{k,i}(p_j) + \left(\tau_k(\nu_{p_j}^{(k)}) + \eta\right)\Big|^1 = 2p_{j+1} + \left(\tau_k(\nu_{p_j}^{(k)}) + \eta\right)\Big|^1, \quad \eta \in \{0,1\},$$

where l + 1 is understood as 1.

Proposition 3.7. $\pi'_{k+1,i}$ is a cyclic permutation whenever #Q is odd, and $\pi'_{k+1,i}$ consists of two cyclic permutations whenever #Q is even.

Proof. Put $P_0 = \{2p_1, 2p_2, ..., 2p_l\}$ and $P_1 = \{2p_1 + 1, 2p_2 + 1, ..., 2p_l + 1\}$. Consider an orbit $x_1 = 2p_1, x_2 = \pi'_{k+1,i}(x_1), x_3 = \pi'_{k+1,i}(x_2), ...,$ and a map $\phi(x_j) = \eta$ if $x_j \in P_{\eta}$. Notice that $x_{sl+j} \in \{2p_j, 2p_j + 1\}$ for j = 1, ..., l and $s \in \mathbf{N}$ by definition. Then we see $\phi(x_{sl+j+1}) = \phi(x_{sl+j})$ whenever $p_j \notin Q$, and $\phi(x_{sl+j+1}) = 1 - \phi(x_{sl+j})$ whenever $p_j \in Q$, hence

$$x_{sl+j+1} = \pi'_{k+1,i}(x_{sl+j}) = 2p_{j+1} + \phi(x_{sl+j+1})$$

for each $j = 1, \ldots, l$ and $s \in \mathbf{N}$.

Suppose that #Q is even. It is seen that $\phi(x_{l+1}) = \phi(x_1) = 0$, hence

$$x_{l+1} = 2p_1 + \phi(x_{l+1}) = 2p_1 = x_1$$

namely, the cycle $(x_1x_2, \cdots x_l)$ is a factor of $\pi'_{k+1,i}$. Considering another orbit $y_1 = 2p_1 + 1, y_2 = \pi'_{k+1,i}(y_1), \ldots$, a similar argument shows the cycle $(y_1y_2\cdots y_l)$ is also a factor of $\pi'_{k+1,i}$. Consequently, we obtain a decomposition $\pi'_{k+1,i} = (x_1x_2\cdots x_l)(y_1y_2\cdots y_l)$.

Suppose that #Q is odd, then we see $\phi(x_{l+1}) = 1 - \phi(x_1) = 1$, hence

$$x_{l+1} = 2p_1 + \phi(x_{l+1}) = 2p_1 + 1 = y_1,$$

showing that $\pi'_{k+1,i}$ is a cycle of the length 2*l*:

$$\pi'_{k+1,i} = (x_1 x_2 \cdots x_l y_1 y_2 \cdots y_l).$$

We are to find a condition that the permutation π_k induced by the approximant F_k becomes a cycle in any approximation order k. For a string $\boldsymbol{w} = w_1 \oplus w_2 \oplus \cdots \oplus w_l \in A^*$, we put $S(\boldsymbol{w}) = \sum_{i=1}^l w_i$. Note that the parity of $S(\boldsymbol{w})$ equals that of the number of entries w_i 's which are odd.

In view of Proposition 3.7, the original unit interval [0, 1) must be painted an odd color at least, namely, $b = \tau_0([0, 1))$ is odd. Then, $S(\zeta(b))$ also should be odd. We have assumed that a is odd. Putting a = 2m + 1, we have

$$S(\zeta(b)) = \left[\frac{b}{2}\right] + \left[\frac{a+b}{2}\right] = m+1+2\left[\frac{b}{2}\right]$$

as [(b+1)/2] = [b/2] + 1, hence m should be even; $a \equiv 1 \pmod{4}$. Conversely, we have the following.

Theorem 3.8. The permutation π_k associated with the approximant F_k is a cyclic permutation in any approximation order k, hence the dynamical system ([0,1), F) is minimal, if and only if $a \equiv 1 \pmod{4}$ and b is odd.

Proof. The necessity for b being odd and $a \equiv 1 \pmod{4}$ is shown above. Suppose a = 4m + 1 and b being odd. It comes from Theorem 3.2 (2) that $S(\zeta(x)) = 2m + 2[x/2]$ if x is even, and $S(\zeta(x)) = 2m + 1 + 2[x/2]$ if x is odd. Then, $S(\zeta(\boldsymbol{w}))$ is odd if and only if $S(\boldsymbol{w})$ is odd for any $\boldsymbol{w} \in A^*$. As a result, we see that $S(\zeta^k(b))$ is odd for any k, hence π_k is a cyclic permutation by Proposition 3.7, which means for any segment $[x]_k$, the orbit $[x]_k$, $F_k([x]_k)$, $F_k^2([x]_k)$, ..., $F_k^{2^k-1}([x]_k)$ covers [0, 1):

(3.7)
$$\prod_{i=0}^{2^{k}-1} F_{k}^{i}\left([x]_{k}\right) = [0,1)$$

Take any $x \in [0, 1)$. (3.7) shows that, for any $y \in [0, 1)$, there exists $0 \le t \le 2^k - 1$ with $y \in F^t([x]_k)$, while $F^t(x) \in [F^t(x)]_k = F^t([x]_k)$. Thus we have $|y - F^t(x)| < 2^{-k}$. Consequently, the orbit $\{F^s(x) \mid s \in \mathbf{N}\}$ is dense in [0, 1) for any $x \in [0, 1)$, namely the dynamical system ([0, 1), F) is minimal.

This result is contrast to Keane condition[6][16]: no left endpoint of any segment is mapped to another ones, which brings the minimality of the dynamics of interval exchange maps. In our case, the left endpoint $x|_k$ of any segment $[x]_k$ is always mapped to another ones by F_k .

Example 3.4.1 (The case 3x+1). This is the original case of Collatz. The substitution ζ and the transducer $T_{3,1}$ are illustrated in FIGURE 1 and 2 respectively. As $3 \not\equiv 1 \pmod{4}$, the dynamics ([0,1), F) is not minimal. Indeed, TABLE 1 shows that permutations π_k 's associated with F_k 's are decomposed in two cycles. A typical orbit of F_5 , the approximation order k = 5, is illustrated in FIGURE 5

k	$\mid \pi_k$
0	(0)
1	(0)(1)
2	$(0\ 2)(1\ 3)$
3	$(0\ 4\ 1\ 5)(2\ 7\ 3\ 6)$
4	$(0 \ 8 \ 2 \ 11 \ 1 \ 9 \ 3 \ 10)(4 \ 14 \ 6 \ 12 \ 5 \ 15 \ 7 \ 13)$
	TABLE 1. Permutations π_k associated

TABLE 1. Permutations π_k associate with 3x + 1

FIGURE 1. The color pattern of refinement induced by substitution ζ

Example 3.4.2 (The case 5x + 1). The substitution ζ and the transducer $T_{5,1}$ are illustrated in FIGURE 3 and 4 respectively. As $5 \equiv 1 \pmod{4}$, the conjugacy F of f(x) = 5x + 1 induces a minimal dynamical system on [0, 1). Actually, TABLE 2 shows that permutations π_k 's associated with F_k 's are always cyclic. A typical orbit of F_5 , the approximation order k = 5, is illustrated in FIGURE 6.

FIGURE 3. The color pattern of refinement induced by substitution ζ

FIGURE 5. Approximant F_5 for 3x + 1 and a typical orbit

FIGURE 2. Transitive diagram of $T_{3,1}$

k	π_k
0	(0)
1	$(0\ 1)$
2	$(0\ 2\ 1\ 3)$
3	$(0\ 4\ 3\ 7\ 1\ 5\ 2\ 6)$
4	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 2. Permutations π_k associated with 5x + 1

FIGURE 4. Transitive diagram of $T_{5,1}$

FIGURE 6. Approximant F_5 for 5x + 1 and a typical orbit

4. Remarks

Notice that F preserves the Lebesgue measure μ on [0,1) by Proposition 2.5, therefore, it will be a worthwhile question whether the minimality implies the ergodicity in our case. However, I have no statement about the ergodicity of F at this moment.

In [3] and [4], we have discussed the van der Corput embedding of the Collatz procedure

$$G(x) = \begin{cases} 2x, & x \in [0, 1/2), \\ F(x) = \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), & x \in [1/2, 1). \end{cases}$$

Then, to solve the original Collatz conjecture 1.1, we are to prove the statement: 'for each $n \in \mathbf{N}$, there exists a finite number t with $G^t(\beta(n)) = 1/2$.' Note that G does not preserve intervals, and so the Lebesgue measure. The finite bit approximation

$$G_k(x) = \begin{cases} x + x|_k, & \text{for } x \in [0, 1/2), \\ F_k(x), & \text{for } x \in [1/2, 1) \end{cases}$$

leads us to a mild version of the Collatz conjecture, a finite combinatorial problem proposed in [4], of which research is in progress.

Problem 4.1 $(3x + 1 \text{ problem on } G_k)$. Show that for any $x \in [0, 1)$, there exists $t \in \mathbb{N}$ such that

$$G_k^t(x) \in [0]_k \cup [\beta(1)]_k = [0, 1/2^k] \cup [1/2, 1/2 + 1/2^k].$$

References

- [1] K. Dajani and C. Kraaikamp, *Ergodic theory of numbers*, Carus Mathematical Monographs **29**, Mathematical Association of America, 2002.
- [2] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd ed. Wiley, 2003.
- [3] Y. Hashimoto, A fractal set associated with the Collatz problem, Bull. of Aichi Univ. of Education, Natural Science 56, pp 1-6, 2007.
- [4] Y. Hashimoto, Interval preserving map approximation of 3x + 1 problem, Bull. of Aichi Univ. of Education, Natural Science **61**, pp 5-14, 2012.
- [5] J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages and Computations, 2nd Ed. Addison-Wesley, 2001.
- [6] M. Keane, Interval Exchange Transformations, Math. Z. 141, pp 25-31, 1975.
- [7] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Dover Publications, 2005.
- [8] J. Lagarias, The Ultimate Challenge: The 3x + 1 Problem, AMS, 2011.
- [9] M. Lothaire, *Algebraic combinatorics on words*, Encyclopedia of mathematics and its applications **90**, Cambridge University Press, 2002.
- [10] F. Oliveira and F. L. C. da Rocha, Minimal non-ergodic C¹-diffeomorphisms of the circle, Ergod. Th. & Dynam. Sys. 21 no. 6, pp 1843-1854, 2001.
- [11] M. Queffélec, Substitution Dynamical Systems Spectral Analysis, Lect. Notes in Math. 1294, 2nd Ed., Springer, 2010.
- [12] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8, pp 477-493, 1957.
- [13] M. Shirvani and T. D. Rogers, On Ergodic One-Dimensional Cellular Automata, Commun. Math. Phys. 136, pp 599-605, 1991.
- [14] G. Wirsching, The Dynamical System Generated by the 3x + 1 Function, Lect. Notes in Math. 1681, Springer, 1998.
- [15] H. Xie, Grammatical complexity and one-dimensional dynamical systems, Directions in chaos 6, World Scientific, 1997.
- [16] J. C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction, in 'Frontiers in Number Theory, Physics, and Geometry I', pp 403-438, 2005.

(Received September 13, 2012)