
JOURNAL OF MATHEMATICAL PHYSICS 57, 021702 (2016)

Radial Bargmann representation for the Fock space
of type B

Nobuhiro Asai,1,a) Marek Bożejko,2,b) and Takahiro Hasebe3,c)
1Department of Mathematics, Aichi University of Education, Hirosawa 1, Igaya,
Kariya 448-8542, Japan
2Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4,
50-384 Wrocław, Poland
3Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-ku,
Sapporo 060-0810, Japan

(Received 23 September 2015; accepted 28 December 2015; published online 13 January 2016)

Let να,q be the probability and orthogonality measure for the q-Meixner-Pollaczek
orthogonal polynomials, which has appeared in the work of Bożejko, Ejsmont,
and Hasebe [J. Funct. Anal. 269, 1769–1795 (2015)] as the distribution of the
(α,q)-Gaussian process (the Gaussian process of type B) over the (α,q)-Fock space
(the Fock space of type B). The main purpose of this paper is to find the radial
Bargmann representation of να,q. Our main results cover not only the representa-
tion of q-Gaussian distribution by van Leeuwen and Maassen [J. Math. Phys. 36,
4743–4756 (1995)] but also of q2-Gaussian and symmetric free Meixner distributions
on R. In addition, non-trivial commutation relations satisfied by (α,q)-operators are
presented. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939748]

I. INTRODUCTION

Bożejko-Ejsmont-Hasebe14 considered a deformation of the (algebraic) full Fock space with
two parameters α and q, namely, the (α,q)-Fock space (or the Fock space of type B) Fα,q(H) over
a complex Hilbert space H . The deformation with α = 0 is equivalent to the q-deformation by
Bożejko-Speicher16 and Bożejko-Kümmerer-Speicher,15 and the corresponding q-Bargmann-Fock
space has been constructed by van Leeuwen-Maassen.29

For the construction of Fα,q(H), their starting point is to replace the Coxeter group of type A,
that is, symmetric group Sn for the q-Fock space by the Coxeter group of type B, Σn B Zn2 o Sn
in (A1) of the Appendix. This replacement provides us a more general symmetrization operator on
H ⊗n than that of Ref. 16 to define the (α,q)-inner product ⟨·, ·⟩α,q in (A3). One can define annihila-
tion B−α,q( f ) and creation B+α,q( f ) operators acting on Fα,q(H) and the (α,q)-Gaussian process (the
Gaussian process of type B) Gα,q( f ) for f ∈ H as the sum of them, Gα,q( f ) B B−α,q( f ) + B+α,q( f ).
It is one of their main interests to find a probability distribution µα,q, f on R of Gα,q( f ), ∥ f ∥H = 1,
with respect to the vacuum state ⟨Ω, · Ω⟩α,q. Fα,q(H) equipped with ⟨·, ·⟩α,q, B−α,q( f ), and B+α,q( f )
is a typical example of interacting Fock spaces in the sense of Accardi-Bożejko.1 It suggests that
the theory of orthogonal polynomials plays intrinsic roles in all previous works mentioned above.
In fact, the measure µα,q, f given in Ref. 14 [Theorem 3.3] is derived essentially from the orthog-
onality measure να,q associated with the q-Meixner-Pollaczek orthogonal polynomials {P(α,q)

n (x)}
for α,q ∈ (−1,1) given by the recurrence relation,




P(α,q)
0 (x) = 1, P(α,q)

1 (x) = x,
xP(α,q)

n (x) = P(α,q)
n+1 (x) + (1 + αqn−1)[n]qP(α,q)

n−1 (x), n ≥ 1,
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where [n]q = 1 + q + · · · + qn−1 is the q number. However, the Bargmann representation (measure
on C) of να,q has not been obtained yet except the case of α = 0 for 0 ≤ q < 1,29 for q = 1,10,9 for
q = 012 and t-deformed cases of these,8,24 and for q > 1.23

Therefore, the main purpose of this paper is to find the radial Bargmann representation of
the probability measure να,q on R. Our results cover the radial Bargmann representations of
q-Gaussian, symmetric free Meixner (Kesten), and q2-Gaussian distributions on R.

The organization of this paper will be as follows. In Section II, we shall explain how the
(α,q)-Fock space is related to the notion of one-mode interacting Fock spaces and Bargmann
representation. In Section III, the radial Bargmann representation of να,q is constructed explicitly
in Theorem 3.11. In Section IV, commutation relations satisfied by one-mode (α,q)-annihilation
and creation operators will be treated. In the Appendix, we shall give a minimum reference on the
Coxeter group of type B extracted from Ref. 14.

II. KEY IDEAS AND OUR PURPOSE

Let us point out some of the keys to calculate the distribution of Gα,q( f ) in Ref. 14. It is shown

that a linear map, Φ: Span{ f ⊗n | f ∈ H, n ≥ 0} → L2(R, µα,q, f ) given by Φ( f ⊗n) = P(α⟨ f , f ⟩H,q)
n (x),

is an isometry and a relation under ∥ f ∥H = 1,

Gα,q( f ) f ⊗n = (B+α,q( f ) + B−α,q( f ))( f ⊗n)
= f ⊗(n+1) + (1 + α⟨ f , f ⟩H)qn−1[n]q f ⊗(n−1),

is satisfied where f denotes a self-adjoint involution of f ∈ H in (A2). This corresponds to
the three terms recursion relation satisfied by P(α⟨ f , f ⟩H,q)

n (x) through Φ. Then, it is proved that
µα,q, f = να⟨ f , f ⟩H,q (see να,q in (3.3)) in the sense of

⟨Ω,Gα,q( f )nΩ⟩α,q =


xnµα,q, f (dx), (2.1)

where Ω denotes the vacuum vector. Therefore, in order to get the Bargmann representation of
να⟨ f , f ⟩H,q, it is enough to consider that of να,q in the sense of Definition 2.2 given later.

Since the structure mentioned above can be reduced to the one-mode analogue of (α,q)-
Fock spaces, let us recall fundamental relationships between one-mode interacting Bargmann-Fock
spaces and the theory of orthogonal polynomials of one variable.

Definition 2.1. Let {ωn}∞n=0 with ω0 B 1 be an infinite sequence of positive real numbers
and {αn}∞n=0 be of real numbers. A one-mode interacting Bargmann-Fock space B is defined as∞

n=0CΦn equipped with Φn B zn/[ωn]!, [ωn]! Bn
k=0ωk, the inner product ⟨Φm,Φn⟩B = δm,n

for all m,n ∈ N ∪ {0}, operators of creation a+, annihilation a−, and conservation a◦ defined by




a+Φn B
√
ωn+1Φn+1, n ≥ 0,

a−Φ0 = 0, a−Φn B
√
ωnΦn−1, n ≥ 1,

a◦Φn B αnΦn, n ≥ 0.
(2.2)

Let ({ωn}∞n=0,{αn}∞n=0) be a pair of sequences in Definition 2.1 and define a sequence of monic
polynomials {Pn(x)} recurrently by




P0(x) = 1, P1(x) = x − α0,

xPn(x) = Pn+1(x) + ωnPn−1 + αnPn(x), n ≥ 1.
(2.3)

Then, there exists a probability measure µ on R with finite moments of all orders such that {Pn(x)}
is the orthogonal polynomials with ⟨Pm(x),Pn(x)⟩L2(R, µ) = δm,n[ωn]! for all m,n ∈ N ∪ {0}. (See
Refs. 19 and 21, for example.)
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It is easy to see that a linear map

U : B =
∞
n=0

CΦn → L2(R, µ)

defined by U
([ωn]!Φn

)
= Pn(x) is an isometry and in addition, a+ + a− + a◦ = U∗XU is satisfied

due to (2.2) and (2.3), where X represents the multiplication operator by x in L2(R, µ). This inter-
twining relation provides a notion of the quantum decomposition of a classical random variable X
and

⟨Φ0, (a+ + a− + a◦)nΦ0⟩B =


xnµ(dx). (2.4)

Therefore, if ωn = (1 + αqn−1)[n]q, αn = 0, the equality in (2.4) is a one-mode analogue of (2.1).
Now, it is interesting to consider the following moment problem to realize the inner product by

the integral.

Problem 1. For a given {ωn} of µ, find a probability measure γµ satisfying the equality
C

zmznγµ(d2z) = δm,n[ωn]! (2.5)

for all m,n ∈ N ∪ {0}.

Definition 2.2. A measure γµ satisfying equality (2.5) is called a Bargmann representation
(measure on C) of a measure µ on R.

It was proved in Ref. 28 (see also Refs. 8 and 24) that if a measure µ admits any Bargmann
representation, then it also admits a radial (rotation invariant) Bargmann representation

γµ(d2z) = 1
2π

λ[0,2π)(dθ)ρµ(dr), z = reiθ, r ≥ 0, θ ∈ [0,2π),
where λ[0,2π) is the Lebesgue measure on [0,2π). It says that the angular part takes care of orthogo-
nality of (2.5). Therefore, Problem 1 can be transformed into Problem 2.

Problem 2. Find a positive radial measure ρµ satisfying ∞

0
r2nρµ(dr) = [ωn]!

for all m,n ∈ N ∪ {0}.

Main purpose. We shall consider Problem 2 associated with ωn = (1 + αqn−1)[n]q, αn = 0 of να.q

in Section III. Furthermore, commutation relations satisfied by a+,a− acting on B associated with
ωn = (1 + αqn−1)[n]q will be presented in Section IV.

Remark 2.3. (1) One can notice that γµ and ρµ are determined only by [ωn]!. Therefore,
it is enough in general for the Bargmann representation in the above sense to consider the
symmetric measure µ with αn = 0 for all n, which implies that a◦ is a zero operator.

(2) If µ is symmetric, then αn = 0 for all n is implied. The converse statement is true if µ is
determined by its moments.

III. (α, q)-BARGMANN REPRESENTATION

A. q-Meixner-Pollaczek polynomials

Let us recall standard notations from q-calculus, which can be found in Refs. 20 and 22, for
example. The q-shifted factorials are defined by

(a; q)0 B 1, (a; q)k B
k

ℓ=1

(1 − aqℓ−1), k = 1,2, . . . ,∞,
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and the product of q-shifted factorials is defined by

(a1,a2; q)k B (a1; q)k(a2; q)k, k = 1,2, . . . ,∞.

Remark 3.1. The q-shifted factorials are a natural extension of the Pochhammer symbol (·)n
because one can see that limq→1[k]q = k implies

lim
q→1

(qk; q)n
(1 − q)n = (k)n, (3.1)

where (k)0 B 1, (k)n B k(k + 1) · · · (k + n − 1), n ≥ 1.

As we have mentioned, {P(α,q)
n (x)} for α,q ∈ (−1,1) is the q-Meixner-Pollaczek polynomials

satisfying the recurrence relation,




P(α,q)
0 (x) = 1, P(α,q)

1 (x) = x,
xP(α,q)

n (x) = P(α,q)
n+1 (x) + (1 + αqn−1)[n]qP(α,q)

n−1 (x), n ≥ 1.
(3.2)

It is known in Ref. 22 [14.9.2] and Ref. 14 [page 1781] that the orthogonality measure να.q for such
polynomials has the density of the form

(q, γ2; q)∞
2π


1 − q

4 − (1 − q)x2

(
g(x,1; q)g(x,−1; q)g(x,√q; q)g(x,−√q; q)

g(x, iγ; q)g(x,−iγ; q)
)
, (3.3)

supported on the interval (−2/


1 − q,2/


1 − q), where

g(x,b; q) =
∞
k=0

(1 − 4bx(1 − q)−1/2qk + b2q2k)

and

γ =



√
−α, α < 0,

i
√
α, α ≥ 0.

Example 3.2. (1) If α = 0, then q-Meixner-Pollaczek polynomials get back to the q-Hermite
polynomials H (q)

n (x) whose orthogonality measure is the standard q-Gaussian measure on
(−2/


1 − q,2/


1 − q) given by

νq(dx)B


1 − q
π

sin θ
∞
n=1

(1 − qn)|1 − qne2iθ |2dx,

where x


1 − q = 2 cos θ, θ ∈ [0, π]. Furthermore, one can get the standard Gaussian law as
q → 1, the Bernoulli law as q → −1, and the standard Wigner’s semi-circle law if q = 0. See
Refs. 15 and 16.

(2) The measure να,0 is the symmetric free Meixner law.2,13,26

(3) The measure νq,q is the q2-Gaussian law scaled by


1 + q.
(4) If α = −q2β as suggested in Remark 3.1, then the measure ν−q2β,q under a certain scaling

converges to the classical symmetric Meixner law as q ↑ 1,

22β

2πΓ(2β) |Γ(β + ix)|2dx, x ∈ R. (3.4)

See also Ref. 22 [14.9.15].

B. Problem

For α,q ∈ (−1,1), we would like to know when there exists a radial measure ρνα,q satisfying ∞

0
r2k ρνα,q(dr) = (−α; q)k[k]q!, k ∈ N ∪ {0}. (3.5)
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Here, [k]q! denotes the q-factorials defined by

[0]q! B 1, [k]q! B
k

ℓ=1

[ℓ]q = (q; q)k
(1 − q)k , k ≥ 1.

It is easy to get the inequality for α,q ∈ (−1,1),
�(−α; q)k[k]q!

�
≤

(
4

1 − |q|
)k
, k ∈ N ∪ {0}. (3.6)

Due to Carleman criterion for the moment problem, this inequality implies that a radial measure
ρνα,q is determined uniquely by the sequence

�(−α; q)k[k]q!
	
.

We shall follow the procedure below to construct ρνα,q in (3.5).

(1) Recall the radial part of the q-Gaussian measure on C (q-Bargmann measure), ρνq = ρν0,q,
obtained in Ref. 29,  ∞

0
r2k ρνq(dr) = [k]q!. (3.7)

(2) Find a radial (possibly signed) measure ρα,q having the moment (−α; q)k.
(3) Compute the multiplicative (Mellin) convolution ρνq ~ ρα,q to get ρνα,q.

Remark 3.3. It is known29 that a radial measure ρνq in (3.7) does not exist for q < 0. However,
one can see that the positivity assumption on q can be relaxed for ρνα,q if α = q. It will be discussed
right after the proof of Proposition 3.6 and in Proposition 3.7.

C. Construction of (α, q)-radial measures
Lemma 3.4. Suppose that α ∈ (−1,1) and q ∈ [0,1). Let

ρα,q B (−α; q)∞
∞
n=0

(−α)n
(q; q)n δqn/2,

which is a signed measure. Then, we have ∞

0
r2k ρα,q(dr) = (−α; q)k, k ∈ N ∪ {0}.

In particular, if taking α = −q, then one can see ρνq = D(1−q)−1/2(ρ−q,q), namely, ∞

0
r2k D(1−q)−1/2(ρ−q,q)(dr) = (q; q)k

(1 − q)k = [k]q!,

where Dt(λ) is the push-forward of λ by the map x → t x for a measure λ on R.

Proof. First, we have  ∞

0
r2k ρα,q(dr) = (−α; q)∞

∞
n=0

(−αqk)n
(q; q)n .

Since Euler’s formula (see Ref. 20 [1.3.15]),

1
(a; q)∞ =

∞
n=0

an

(q; q)n , (3.8)

is known, we replace a by −αqk in (3.8) to obtain ∞

0
r2k ρα,q(dr)= (−α; q)∞

(−αqk; q)∞
= (−α; q)k .

The proof is complete. �
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Remark 3.5. (1) The last equality in proof is due to the formula

(a; q)k = (a; q)∞
(aqk; q)∞ .

See Ref. 20 [1.2.30], for example.
(2) Euler’s formula is considered as the q-analogue of exponential function ea due to

lim
q→1

1
((1 − q)a; q)n = ea.

Let


n
ℓ

q
B

[n]q!
[ℓ]q![n − ℓ]q!

=
(q; q)n

(q; q)ℓ(q; q)n−ℓ
be the q-binomial coefficients and hn(z | q) be the Rogers-Szegö polynomials20,27 defined by

hn(z | q) =
n

ℓ=0



n
ℓ

q
zℓ.

Proposition 3.6. Suppose that α ∈ (−1,1) and q ∈ [0,1). Let

ρνα,q B




(−α,q; q)∞
∞
n=0

qn

(q; q)n hn(−αq−1 | q)δ(1−q)−1/2qn/2, q > 0,

−αδ0 + (1 + α)δ1, q = 0,
(3.9)

which is a signed measure in general. Then, we have ∞

0
r2k ρνα,q(dr) = (−α,q; q)k

(1 − q)k = (−α; q)k[k]q!, k ∈ N ∪ {0}. (3.10)

Proof. First of all, it is easy to show (3.10) for the case q = 0. Therefore, let us assume q > 0.
One can compute the multiplicative (Mellin) convolution ~ to get ρνα,q as follows:

ρνα,q = ρα,q ~ D(1−q)−1/2(ρ−q,q)
= (−α,q; q)∞

∞
n=0

*
,

n
ℓ=0

(−α)ℓqn−ℓ

(q; q)ℓ(q; q)n−ℓ
+
-
δ(1−q)−1/2qn/2

= (−α,q; q)∞
∞
n=0

qn

(q; q)n hn(−αq−1 | q)δ(1−q)−1/2qn/2.

On the other hand, by Lemma 3.4, we have ∞

0
r2k D(1−q)−1/2(ρ−q,q)(dr) = (q; q)k

(1 − q)k = [k]q!.

Therefore, one can get ∞

0
r2k ρνα,q(dr) =

 ∞

0
r2k ρα,q(dr)

 ∞

0
r2k D(1−q)−1/2(ρ−q,q)(dr)

= (−α; q)k[k]q!, k ∈ N ∪ {0}.
�

In Proposition 3.6, we have obtained ρνα,q for α ∈ (−1,1) and q ∈ (0,1). Due to the term

δ(1−q)−1/2qn/2 in ρνα,q,

it seems impossible for q ∈ (−1,0) to define ρνα,q. However, if −1 < α = q < 0, then νq,q coincides
with a scaled q2-Gaussian measure, and hence, the Bargmann measure exists.
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Proposition 3.7. Suppose −1 < α = q < 0. We define

ρνq,q B D(1+q)1/2(ρν
q2)

= (q2; q2)∞
∞
n=0

q2n

(q2; q2)n δ(1−q)−1/2(−q)n.
(3.11)

Then, one can see  ∞

0
r2k ρνq,q(dr) = (1 + q)k[k]q2! = (−q; q)k[k]q!.

Proof. One can see by direct computations

(−q; q)k[k]q!=



k
ℓ=1

(1 − (−q)qℓ−1)






k
ℓ=1

1 − qℓ

1 − q




= (1 + q)k
k

ℓ=1

1 − q2ℓ

1 − q2

= (1 + q)k[k]q2!.

Thus, ρνq,q can be defined as the radial measure for q2-Gaussian measure on C scaled by (1 + q)1/2,
namely, ρνq,q = D(1+q)1/2(ρν

q2). �

Remark 3.8. If we use the fact that hn(−1 | q) = 0 for odd n ≥ 1 (see proof of Lemma 3.9), we
can extend definition (3.9) to the case −1 < α = q < 0. This will give an alternative way to define
ρνq,q for −1 < q < 0, but both definitions give the same measure.

We need some properties of the Rogers-Szegö polynomials to know when the measure ρνα,q
becomes positive.

Lemma 3.9 (Ref. 25). Suppose that q ∈ (−1,1).
(1) If n ≥ 0 is odd, then hn(x | q) ≥ 0 if and only if x ≥ −1. Moreover, the point x = −1 is the

unique zero of hn(x | q) on R.
(2) If n ≥ 0 is even, then hn(x | q) > 0 for all x ∈ R.

Proof. It is known that all the zeros of hn(z | q) lie on the unit circle |z | = 1. See Ref. 25 or
Ref. 27 [Theorem 1.6.11]. Note that the result was obtained for q ∈ [0,1), but the proof can be
extended to q ∈ (−1,1) without any modifications.

By definition, one can see


n
ℓ

q
=

(1 − qn−ℓ+1)(1 − qn−ℓ+2) · · · (1 − qn)
(1 − q)(1 − q2) · · · (1 − qℓ) > 0,

and hence, hn(1 | q) > 0 for all n ≥ 0. Thus, hn(x | q) , 0 for x ∈ R \ {−1}. It then suffices to show
that hn(−1 | q) > 0 for all even n ≥ 0 and hn(−1 | q) = 0 for all odd n ≥ 1. The recurrence relation
for the Rogers-Szegö polynomials is known to be

hn+1(z | q) = (z + 1)hn(z | q) − (1 − qn)zhn−1(z | q), n ≥ 1. (3.12)

See Ref. 27 [1.6.76] (note that formula (1.6.76) has an error of a sign). It is easy to see that
h0(−1 | q) = 1 > 0,h1(−1 | q) = 0, so by induction and (3.12), one can show hn(−1 | q) > 0 for all
even n ≥ 0 and hn(−1 | q) = 0 for all odd n ≥ 1. �

We need the following lemma in proof of Theorem 3.11 for the non-existence part of a radial
Bargmann measure.

Lemma 3.10. Let µ be a signed measure on R with compact support and let ν be a non-negative
measure on R. If µ and ν have the same finite moments of all orders, then µ = ν.
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Proof. We denote by mn the moments of µ (and ν by assumption). Since µ is compactly
supported, say on [−R,R],

|mn| =
�����


[−R,R]

xn µ(dx)
�����
≤ ∥µ∥Rn, n ∈ N ∪ {0},

where ∥µ∥ denotes the total variation of µ. Therefore, ν is also supported on [−R,R]. By Weier-
strass’ approximation, we have

[−R,R]
f (x) µ(dx) =


[−R,R]

f (x) ν(dx) (3.13)

for all f ∈ C([−R,R]). This implies that µ = ν since, if we use the Hahn decomposition µ =
µ+ − µ−, then (3.13) implies

[−R,R]
f (x) µ+(dx) =


[−R,R]

f (x) (ν + µ−)(dx),

and hence, µ+ = ν + µ− as non-negative finite measures. �

In summary, the complete answer to the unique existence of a radial Bargmann representation
of να,q is stated as follows.

Theorem 3.11. Suppose that α,q ∈ (−1,1). The probability measure να,q has a radial Bargmann
representation if and only if either (i) q ≥ 0 and α ≤ q or (ii) α = q , 0.

In fact, the radial measure is given uniquely by

ρνα,q =




−αδ0 + (1 + α)δ1 (α ≤ q = 0),
(−α,q; q)∞

∞
n=0

qn

(q; q)n hn(−αq−1 | q)δ(1−q)−1/2qn/2 (q > 0, α < q),

(q2; q2)∞
∞
n=0

q2n

(q2; q2)n δ(1−q)−1/2|q |n (α = q , 0).

Proof. 1. Existence and uniqueness. If q ∈ [0,1) and α ≤ q, then by Proposition 3.6 and
Lemma 3.9, the signed measure ρνα,q is in fact a non-negative measure and becomes the radial part
of a Bargmann measure. The case α = q < 0 was discussed in Proposition 3.7. Due to Carleman
criterion for the moment problem, the inequality given in (3.6) guarantees the uniqueness of ρνα,q
for these cases.
2. Non-existence. (1) If q ∈ (0,1) and α > q, then ρνα,q is not a non-negative measure and is really
a signed measure since hn(−α/q | q) < 0 for odd integers n ≥ 0 and q > 0 from Lemma 3.9. By
Lemma 3.10, if a radial Bargmann measure exists, then it must be equal to the signed measure να,q.
This is a contradiction. Thus, a radial Bargmann measure does not exist.
(2) If q = 0 and α > q = 0, then by (3.9), να,0 is really a signed measure, and hence, by the same
argument as above, a radial Bargmann measure does not exist.
(3) Let

βk(α,q) B (−α; q)k[k]q!, k ≥ 0,α,q ∈ (−1,1).
Given q < 0 and α , q, suppose that there exists a radial part of a Bargmann measure, ρ. Let ρ2 be
the push-forward of ρ by the map x → x2. Then,

βk(α,q) =
 ∞

0
xk ρ2(dx) =

 ∞

0
x2k ρ(dx). (3.14)

By the way, by Proposition 3.6, it holds that βk(α,q′) =
 ∞

0 x2k ρνα,q′(dx) for any q′ > 0, that is,

βk(α,q′) = (−α,q′; q′)∞
∞
n=0

(q′)n
(q′; q′)n hn(−α(q′)−1 | q′) (q′)kn

(1 − q′)k , q′ > 0, (3.15)

which is true even for q′ = q by analytic continuation.
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Now let us consider the signed measure

µ B (−α,q; q)∞
∞
n=0

qn

(q; q)n hn(−αq−1 | q)δ(1−q)−1qn, α , q < 0,

supported on the points qn

1−q for n = 0,1,2,3, . . .. Then, by (3.15) for q′ = q and by (3.14),
R

xk µ(dx) = βk(α,q) =
 ∞

0
xk ρ2(dx), k ∈ N ∪ {0}.

By Lemma 3.10, the signed measure µ and the probability measure ρ2 should be equal. How-
ever, the support of µ is not contained in [0,∞), and hence, µ cannot be equal to ρ2. This is a
contradiction. �

Example 3.12. (1) The radial measure ρν0,q for q ∈ [0,1) is of the q-Bargmann.29

(2) The radial measure ρνq,q for q ∈ (−1,1) is of the q2-Bargmann.
(3) lim

q↑1
ρνα,q is of the classical Bargmann.10,9

(4) Consider α = −q2β, β > 0. This choice of α is suggested by (3.1) in Remark 3.1. In fact, one
can see

lim
q↑1

(1 − q2β+n−1)[n]q
4(1 − q) =

1
4
(n + 2β − 1)n.

This limit sequence is the Jacobi sequence of the symmetric Meixner distribution in (3.4), so
that ρν−q2β,q

under suitable scaling converges weakly as q ↑ 1 to the radial measure with the
density,

2πr
Γ(2β)

 ∞

0
h(r, t/4)e−tt2β−1dt,

where

h(r, t) = 1
πt

exp
(
−r2

t

)
, r ∈ R, t > 0.

This is an integral representation of the radial density for the Bessel kernel measure, which can
be also represented by the modified Bessel function.5,7

(5) ρνα,0 for α ∈ (−1,0] is the radial measure for the symmetric free Meixner distribution. See
Remark 3.13.

Remark 3.13. Let µt be a t-deformed probability measure of a probability measure µ on R
defined through the Cauchy transform Gµ of µ,

1
Gµt(z)

B
t

Gµ(z) + (1 − t)z, t ≥ 0,

examined by Bożejko-Wysoczański.17,18 Krystek-Wojakowski24 discussed the radial Bargmann
representation of a t-deformed probability measure µt, t-Bargmann representation for short, and ob-
tained necessary and sufficient condition for the admissibility of the representation. The t-Bargmann
representation of the Kesten measure κt has the form

ρκt =

(
1 − 1

t

)
δ0 +

1
t
δ√t, t ≥ 1.

In Ref. 8, the t-Bargmann representation of a symmetric free Meixner law ϕs, t, with two positive
parameters s, t is treated and is admitted if and only if t ≥ 1. In fact, one can see ρϕs, t = Ds(ρκt) and
hence,

ρν(1−t )/t,0 = ρϕ1/
√
t, t
= D1/

√
t(ρκt), t ≥ 1.

Therefore, case (5) in Example 3.12 can be viewed as a t-Bargmann representation, too.
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Furthermore, let us state the t-deformed version of Theorem 3.11 for q , 0 without proof.

Proposition 3.14. The t-deformed version of ρνα,q for q , 0 is given by(
1 − 1

t

)
δ0 +

1
t
ρνα,q, t ≥ 1.

Remark 3.15. The t-Bargmann representation of νq is treated in Ref. 24 for q = 1 and Ref. 8 for
0 ≤ q < 1.

Before closing this section, let us give a short remark about relations with the free infinite divis-
ibility. Many of the particular examples have so far suggested that the free infinite divisibility of a
probability measure implies the existence of a radial Bargmann representation. The converse is not
true in general because the Askey-Wimp-Kerov distribution µ9/10 for instance, discussed in Ref. 11,
is not freely infinitely divisible, but it has a Bargmann representation with a gamma distribution as
its radial measure. However, not many counterexamples have been found.

Therefore, we conjecture that the free infinite divisibility of our (α,q)-Gaussian distribution is
equivalent to the existence of its radial Bargmann measure.

Conjecture. Suppose that α,q ∈ (−1,1). The probability measure να,q is freely infinitely divisible if
and only if α = q or α < q ≥ 0.

This conjecture is guaranteed to be true in the restricted subfamilies {να,0 | α ∈ (−1,1)}
(Ref. 26 [Theorem 3.2]), {ν0,q | −1 < q < 1} (Refs. 3 and 4 [Example 3.11] for the free infinite
divisibility), and {νq,q | q ∈ (−1,1)} (all measures in this family are freely infinitely divisible since
they are q2-Gaussians).

IV. COMMUTATION RELATIONS AMONG ONE-MODE (α, q)-OPERATORS

Definition 4.1. Suppose that α,q ∈ (−1,1) and f is analytic on C.

(1) Let Z be the multiplication operator defined by

(Z f )(z) B z f (z).
(2) Let Dq be the Jackson derivative given by

(Dq f )(z) =



f (z) − f (qz)
(1 − q)z , z , 0,

f ′(0), z = 0.

(3) The α-deformed Jackson derivative is given as

Dα,q B



Dq + αq2ND1/q, q , 0,

D0 + α
d
dz

�
0, q = 0,

where N is the number operator. For q , 0, we can also write

Dα,q = Dq +
α

q2 D1/qq2N .

Remark 4.2. It is easy to check that the α-deformed Jackson derivative is equivalently defined
as

(Dα,q f )(z) = (Dq f )(z) + α(D1/q f )(q2z), q , 0.

For example, if f (z) = zn, (Dα,q f )(z) = (1 + αqn−1)[n]qzn−1 holds. In fact, the α-deformed Jackson
derivative is an analogue of the operator in Ref. 14 [Theorem2.5].
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Then, one can realize one-mode analogue of (α,q)-operators on an appropriate domain of the
one-mode interacting Bargmann-Fock space B, with ωn = (1 + αqn−1)[n]q and αn = 0 by

a+ B Z, a− B Dα,q, and Φn B
zn[ωn]!

.

In fact, it is easy to check that




a+Φn =
√
ωn+1Φn+1,

a−Φn =
√
ωnΦn−1

hold and the q-commutation relation, one-mode analogue of (A4),

[a−,a+]qΦnB (a−a+ − qa+a−)Φn

= (I + αq2N)Φn,

is satisfied. Let us put Mα,q = I + αq2N and then one can get the expression

Mα,q = (1 + α)I − α(1 − q2)Z Dq2,

due to (Z Dq2)Φn = [n]q2Φn.
Therefore, one can obtain the following.

Theorem 4.3. Suppose α ∈ (−1,1) and q ∈ (−1,1). Then, the following are satisfied.

(1) [a−,a+]q = Mα,q, [a−,Mα,q]q2 = (1 − q2)a−, [Mα,q,a+]q2 = (1 − q2)a+.
(2) Mα,q = (1 + α)I − α(1 − q2)Z Dq2.
(3) In particular, if α = q, then one can obtain a more refined relation, [a−,a+]q2 = (1 + q)I.

Example 4.4. (1) α = 0 implies [a−,a+]q = I. Hence, M0,q = I commutes with both a+ and
a−,

[a−,M0,q]1 = [M0,q,a+]1 = 0.

Therefore, the case α , 0 provides non-trivial commutation relations.
(2) If α = −q2β for β > 0, then the limiting case of the scaled operator is obtained as

lim
q↑1

M−q2β,q

1 − q2 = lim
q↑1

I − q2βq2N

1 − q2 = N + β.

Moreover, let us consider the scaled operators,

A± B lim
q↑1

a±
1 − q2

.

Then, one can get

[A−, A+]1 = N + β

and hence,

[A−,N]1 = A−, [N, A+]1 = A+.

It should be noted that these are the commutation relations for the classical Meixner-Pollaczek
polynomials with respect to the symmetric Meixner distribution in (3.4). See Ref. 6.
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APPENDIX: ON A COXETER GROUP OF TYPE B

Let Σn be the set of bijections σ of the 2n points {±1,±2, . . . ,±n} with σ(−k) = −σ(k).
Equipped with the composition operation as a product, Σn becomes what is called a Coxeter group
of type B. It is generated by π0 B (1,−1) and πi B (i, i + 1), 1 ≤ i ≤ n − 1, which satisfy the
generalized braid relations




π2
i = e, 0 ≤ i ≤ n − 1,

(π0π1)4 = (πiπi+1)3 = e, 1 ≤ i ≤ n − 1,
(πiπ j)2 = e, |i − j | ≥ 2, 0 ≤ i, j ≤ n − 1.

(A1)

An element σ ∈ Σn expresses an irreducible form

σ = πi1 · · · πik, 0 ≤ i1, . . . , ik ≤ n − 1,

and in this case,

ℓ1(σ)B the number of π0 in σ,

ℓ2(σ)B the number of πi, 1 ≤ i ≤ n − 1, in σ

are well defined. Let H be a separable Hilbert space. For a given self-adjoint involution f → f for
f ∈ H , an action of Σn on H ⊗n is defined by




π0( f1 ⊗ · · · ⊗ fn) = f1 ⊗ f2 ⊗ · · · ⊗ fn, n ≥ 1,
πi( f1 ⊗ · · · ⊗ fn) = f1 ⊗ · · · ⊗ f i−1 ⊗ f i+1 ⊗ f i ⊗ f i+2 ⊗ · · · ⊗ fn, n ≥ 2, 1 ≤ i ≤ n − 1.

(A2)

The (α,q)-inner product on the full Fock space F (H) is defined by

⟨ f1 ⊗ · · · ⊗ fm, g1 ⊗ · · · ⊗ gn⟩α,q B δm,n


σ∈Σn

αℓ1(σ)qℓ2(σ)
n
j=1

⟨ f j, gσ( j)⟩H , α,q ∈ (−1,1), (A3)

with conventions 00 = 1 and g−k = gk, k = 1,2, . . . ,n. For example, if one may define the involution
as f B − f , then g−k = −gk. Equipped with this inner product, the full Fock space F (H) is denoted
by Fα,q(H) to emphasize on the dependence of the inner product on α,q.

The (α,q)-creation operator B+α,q( f ) is the usual left creation operator on the full Fock space,
and the (α,q)-annihilation operator B−α,q( f ) is its adjoint with respect to the inner product ⟨·, ·⟩α,q.
They satisfy the commutation relation

B−α,q( f )B+α,q(g) − qB+α,q(g)B−α,q( f ) = ⟨ f , g⟩H I + α⟨ f , g⟩Hq2N , f , g ∈ H. (A4)

The readers can consult Ref. 14 for details.
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