Interval Preserving Map Approximation of $3 x+1$ Problem

Yukihiro HASHIMOTO
Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Introduction

The well-known and still unsolved $3 x+1$ problem was firstly proposed by Lothar Collatz in 1930's, who had great interest in representation of integer functions by directed graphs.

Conjecture 1.1. Consider a map $f: \mathbf{N} \rightarrow \mathbf{N}$ such that

$$
f(n)= \begin{cases}3 n+1, & \text { if } n \text { is odd } \\ n / 2, & \text { if } n \text { is even }\end{cases}
$$

Then for each natural number n, there exists a finite number t such that $f^{t}(n)=\underbrace{f \circ f \circ \cdots \circ f(n)}_{t-\text { times }}=1$.
In [2], by introducing the reverse binary embedding of natural numbers into $[0,1$), we obtained a graph \mathfrak{K} of the Collatz function f, which is a Cantor set generated by an iterated function system. Our interest is in the dynamics on the Cantor set \mathfrak{K} presented by the iteration of the Collatz procedure f. In this note, we advance the analysis of the dynamics. We introduce interval preserving maps on $[0,1)$, approximating the dynamics of the Collatz procedure, and consider a $3 x+1$ problem of 'finite bit' version.

2. Reverse binary embedding of natural numbers and a conjugacy of Collatz procedure

Definition 2.1. Let $n=a_{k} \cdot 2^{k}+a_{k-1} \cdot 2^{k-1}+\cdots+a_{0}\left(=\left(a_{k} a_{k-1} \cdots a_{0}\right)_{2}\right.$ for short $)$ be a binary expansion of a natural number n. The reverse binary embedding β of n is given by

$$
\beta(n)=\frac{a_{0}}{2}+\frac{a_{1}}{2^{2}}+\cdots+\frac{a_{k}}{2^{k+1}}=\left(0 . a_{0} a_{1} \cdots a_{k}\right)_{2}
$$

By definition, $\beta: \mathbf{N} \rightarrow[0,1)$ is one-to-one and \mathbf{N} is densely embedded into $[0,1)$. Moreover, even and odd numbers are embedded in $[0,1 / 2)$ and $[1 / 2,1)$ respectively. We note that the binary expression $x=\left(0 . b_{1} b_{2} \cdots\right)_{2}$ of a real number $x \in[0,1)$ has ambiguity. If there exists $k \in \mathbf{N}$ such that $b_{l}=1$ for all $l \geq k$, then $x=\left(0 . b_{1} b_{2} \cdots b_{k-1}\right)_{2}+2^{-k+1}$, hence x has another binary expression. Thus we always assume that any binary expression $x=\left(0 . b_{1} b_{2} \cdots\right)_{2}$ has infinitely many 0 's in the sequence b_{j} 's, including the case that x has a finite expression $x=\left(0 . b_{1} b_{2} \cdots b_{k}\right)_{2}$. For a real number $x \in[0,1)$ and $k \in \mathbf{N},\left.x\right|_{k}$ denotes a cut off of x at $(-k-1)$-th order in the binary expression;

$$
\left.x\right|_{k}=\left(0 . b_{1} b_{2} \cdots b_{k}\right)_{2}=\sum_{j=1}^{k} \frac{b_{j}}{2^{j}}, \quad \text { if } x=\left(0 . b_{1} b_{2} \cdots\right)_{2}=\sum_{j=1}^{\infty} \frac{b_{j}}{2^{j}} .
$$

We use a notation $[x)_{k}$ as a segment $\left[\left.x\right|_{k},\left.x\right|_{k}+\frac{1}{2^{k}}\right.$), then we have a natural decomposition of segments

$$
\begin{equation*}
\left[\left(0 . b_{1} b_{2} \cdots b_{k}\right)_{2}\right)_{k}=\left[\left(0 . b_{1} b_{2} \cdots b_{k} 0\right)_{2}\right)_{k+1} \oplus\left[\left(0 . b_{1} b_{2} \cdots b_{k} 1\right)_{2}\right)_{k+1} \tag{2.1}
\end{equation*}
$$

where $[a, b) \oplus[b, c)$ stands for a division of an interval $[a, c)$ at b. For a natural number n, we put $\operatorname{ord}(n)=$ $\left[\log _{2} n\right]$, where $[x]$ stands for an integer not greater than x, and for a binary expression $n=\left(a_{l} a_{l-1} \cdots a_{0}\right)_{2}$, $\left.n\right|^{k}$ denotes an upper cut off of n at k-th order;

$$
\left.n\right|^{k}=\left(a_{k-1} a_{k-2} \cdots a_{0}\right)_{2} \equiv n \quad \bmod 2^{k} .
$$

Apparently we have
Lemma 2.2. For $x, y \in[0,1)$ and $m, n, k \in \mathbf{N}$,
(1) $x \in[x)_{k}$.
(2) $[x)_{k} \cap[y)_{k} \neq \emptyset$ holds if and only if $\left.x\right|_{k}=\left.y\right|_{k}$, and hence $[x)_{k}=[y)_{k}$.
(3) if $x \neq y$, there exists $l \in \mathbf{N}$ such that $[x)_{l} \cap[y)_{l}=\emptyset$.
(4) $[x)_{k+1} \subsetneq[x)_{k}$ and $\bigcap_{k=1}^{\infty}[x)_{k}=\{x\}$.
(5) $\left.\beta(m)\right|_{k}=\beta\left(\left.m\right|^{k}\right)$.
(6) Thus $[\beta(m))_{k}=[\beta(n))_{k}$ if and only if $\left.m\right|^{k}=\left.n\right|^{k}$.

To observe the dynamics of the Collatz procedure, we consider a map $F:[0,1) \rightarrow[0,1)$ conjugate to f, that is, $F \circ \beta(n)=\beta \circ f(n)$ holds for any natural number n. The embedding β brings not only a well-defined $\operatorname{map} F: \beta(\mathbf{N}) \rightarrow \beta(\mathbf{N})$, but also an extension of F on $[0,1)$ as follows.

Since $\beta(2 n)=\beta(n) / 2$, we have $\beta(n)=\beta \circ f(2 n)=F \circ \beta(2 n)=F(\beta(n) / 2)$, hence $F(x)=2 x$ for $x \in[0,1 / 2) \cap \beta(\mathbf{N})$. Thus we extend F on $[0,1 / 2)$ by $F(x)=2 x$. In order to extend F on $[1 / 2,1)$, we need the followings.

Lemma 2.3. For any natural number m, $n,[\beta(3 m+1))_{k}=[\beta(3 n+1))_{k}$ holds if and only if $[\beta(m))_{k}=$ $[\beta(n))_{k}$.
Proof. By Lemma 2.2, $[\beta(m))_{k}=[\beta(n))_{k}$ means $m \equiv n \bmod 2^{k}$. Then $3 m+1 \equiv 3 n+1 \bmod 2^{k}$, and hence $[\beta(3 m+1))_{k}=[\beta(3 n+1))_{k}$. The converse also holds since 3 and 2^{k} are prime to each other.

Consider a sequence $n_{k}=\beta^{-1}\left(\left.x\right|_{k}\right), k=1,2, \ldots$, then we see $\beta\left(n_{k}\right)=\left.x\right|_{k}=\left.\left(\left.x\right|_{k+1}\right)\right|_{k}=\left.\beta\left(n_{k+1}\right)\right|_{k}$. By Lemma 2.2 (5), we see $n_{k+1} \equiv n_{k} \bmod 2^{k}$, hence $3 n_{k+1}+1 \equiv 3 n_{k}+1 \bmod 2^{k}$. (2.1) shows

$$
\left[\beta\left(3 n_{k+1}+1\right)\right)_{k+1} \subsetneq\left[\beta\left(3 n_{k+1}+1\right)\right)_{k}=\left[\beta\left(3 n_{k}+1\right)\right)_{k}
$$

and then $\bigcap_{k=1}^{\infty}\left[\beta\left(3 n_{k}+1\right)\right)_{k}$ consists of a unique point, expressed as $\lim _{k \rightarrow \infty} \beta\left(3 n_{k}+1\right)$. Thus we define a conjugacy $\stackrel{k=1}{F}:[0,1) \rightarrow[0,1)$ of the Collatz procedure f;

$$
F(x)= \begin{cases}2 x, & x \in[0,1 / 2) \tag{2.2}\\ \lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), & x \in[1 / 2,1)\end{cases}
$$

We see that for any odd number $n,\left.\beta(n)\right|_{k}=\beta(n) \in[1 / 2,1)$ by taking $k>\operatorname{ord}(n)$, therefore $F(\beta(n))=$ $\beta(3 n+1)=\beta(f(n))$. We also see that $[x)_{k}=\left[\beta\left(n_{k}\right)\right)_{k}$ and $[F(x))_{k}=\left[\beta\left(3 n_{k}+1\right)\right)_{k}$ as $F(x) \in$ $\left[\beta\left(3 n_{k}+1\right)\right)_{k}$ by definition.
Lemma 2.4. $\{\beta(3 n+1) \mid n \in \mathbf{N}\}$ is dense in $[0,1)$.
Proof. As $2 \equiv(-1) \bmod 3$, we have $2^{2 k} \equiv 1 \bmod 3$ and $2^{2 k+1} \equiv(-1) \bmod 3$. Given $x \in[0,1)$ and $k \in \mathbf{N}$, consider $m_{k}=\beta^{-1}\left(\left.x\right|_{k}\right)$. Suppose $m_{k} \equiv 0 \bmod 3$, then there exists $n \in \mathbf{N}$ with $m_{k}+2^{2 k}=3 n+1$, hence

$$
\beta(3 n+1)=\beta\left(m_{k}+2^{2 k}\right)=\left.x\right|_{k}+\frac{1}{2^{2 k+1}} \in[x)_{k}
$$

Similarly when $m_{k} \equiv 1 \bmod 3\left(\right.$ resp. $\left.m_{k} \equiv(-1) \bmod 3\right)$, we find $n \in \mathbf{N}$ with $m_{k}=3 n+1$ (resp. $m_{k}+2^{2 k+1}=3 n+1$, showing that $\beta(3 n+1) \in[x)_{k}$. As a result, for any $x \in[0,1)$ and $k \in \mathbf{N}$, there exists $n \in \mathbf{N}$ with $|x-\beta(3 n+1)|<2^{-k}$.

The following proposition implies that F is approximated by interval exchange maps.
Proposition 2.5. For any odd number n and any natural number k, the conjugacy F is a right continuous bijection

$$
F:[\beta(n))_{k} \rightarrow[\beta(3 n+1))_{k}
$$

Proof. Consider $x, y \in[\beta(n))_{k}$ with $x \neq y$, then we find a natural number $l>k$ with $[x)_{l} \cap[y)_{l}=\emptyset$. Applying Lemma 2.2 and 2.3 for $\left.x\right|_{l}$ and $\left.y\right|_{l}$, we see $\left[\beta\left(3 \beta^{-1}\left(\left.x\right|_{l}\right)+1\right)\right)_{l} \cap\left[\beta\left(3 \beta^{-1}\left(\left.y\right|_{l}\right)+1\right)\right)_{l}=\emptyset$, showing $F(x) \neq F(y)$, that is, F is injective on $[\beta(n))_{k}$. Lemma 2.3 and 2.4 means that $[\beta(n))_{k} \cap \beta(\mathbf{N})$ is embedded in $[\beta(3 n+1))_{k}$ densely by F. Then for any $y \in[\beta(3 n+1))_{k}$ and natural number $l>k$, we choose $m_{l} \in \mathbf{N}$ such that $\beta\left(m_{l}\right) \in[\beta(n))_{k}$ and $\beta\left(3 m_{l}+1\right) \in[y)_{l}$. As $\beta\left(3 m_{l+1}+1\right) \in[y)_{l+1} \subset[y)_{l}$, we see $\left.\beta\left(3 m_{l+1}+1\right)\right|_{l}=\left.\beta\left(3 m_{l}+1\right)\right|_{l}$, hence $\left.\beta\left(m_{l+1}\right)\right|_{l}=\left.\beta\left(m_{l}\right)\right|_{l}$ by Lemma 2.3. Thus $\left[\beta\left(m_{l+1}\right)\right)_{l+1} \subsetneq$ $\left[\beta\left(m_{l}\right)\right)_{l}$. Let x be a unique accumulation point $\{x\}=\bigcap_{l>k}^{\infty}\left[\beta\left(m_{l}\right)\right)_{l}$, then $\left.x\right|_{l}=\left.\beta\left(m_{l}\right)\right|_{l}=\beta\left(\left.m_{l}\right|^{l}\right)$. We see $\left.y\right|_{l}=\left.\beta\left(3 m_{l}+1\right)\right|_{l}=\left.\beta\left(\left.3 m_{l}\right|^{l}+1\right)\right|_{l}$ as $3 m_{l}+\left.1 \equiv 3 m_{l}\right|^{l}+1 \bmod 2^{l}$, hence

$$
\beta\left(3 \beta^{-1}\left(\left.x\right|_{l}\right)+1\right)=\beta\left(\left.3 m_{l}\right|^{l}+1\right) \in[y)_{l} .
$$

Taking $l \rightarrow \infty$, we have $F(x)=y$, showing that F is a surjection $[\beta(n))_{k} \rightarrow[\beta(3 n+1))_{k}$.
For any $x \in[\beta(n))_{k}$ and $l>k$, we see $F(x) \in\left[\beta\left(3 \beta^{-1}\left(\left.x\right|_{l}\right)+1\right)\right)_{l}$ by the definition of F. We also have $F(w) \in\left[\beta\left(3 \beta^{-1}\left(\left.w\right|_{l}\right)+1\right)\right)_{l}=\left[\beta\left(3 \beta^{-1}\left(\left.x\right|_{l}\right)+1\right)\right)_{l}$ whenever $w \in[x)_{l}$, that is, $|F(w)-F(x)|<2^{-l}$ if $w \in[x)_{l}$. Therefore F is right continuous.

Note that for any natural number $n,[\beta(n))_{k}=\left[\beta(n), \beta(n)+2^{-k}\right)$ if $k>\operatorname{ord}(n)$, thus $w \in[\beta(n))_{k}$ means $w \geq \beta(n)$. Therefore we state the right continuity only in Proposition 2.5. Indeed, for example, we see

$$
\lim _{\substack{w \rightarrow(0.11)_{2} \\ w<(0.11)_{2}}} F(w)=(0.001)_{2} \neq(0.0101)_{2}=F\left((0.11)_{2}\right) .
$$

Figure 1. The graph of F conjugate to the Collatz procedure

3. Piecewise linear approximant of the conjugacy F

In view of Proposition 2.5, we construct a sequence of piecewise linear maps F_{k} approximating the conjugacy F : for each $k \in \mathbf{N}$, we define the k-th approximant F_{k} as

$$
\begin{aligned}
F_{k}(x) & = \begin{cases}2 x, & \text { for } x \in[0,1 / 2) \\
x-\left.x\right|_{k}+\left.F\left(\left.x\right|_{k}\right)\right|_{k}, & \text { for } x \in[1 / 2,1)\end{cases} \\
& = \begin{cases}2 x, & \text { for } x \in[0,1 / 2) \\
x-\left.x\right|_{k}+\left.\beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)\right|_{k}, & \text { for } x \in[1 / 2,1)\end{cases}
\end{aligned}
$$

By definition, F_{k} is right continuous. Since $\left.w\right|_{k}=\left.\beta(n)\right|_{k}$ if $w \in[\beta(n))_{k}$ and $\left.\beta\left(\left.3 n\right|^{k}+1\right)\right|_{k}=\left.\beta(3 n+1)\right|_{k}$, we see

$$
F(w)=w-\left.\beta(n)\right|_{k}+\left.\beta(3 n+1)\right|_{k}, \quad \text { for } w \in[\beta(n))_{k}
$$

Thus $F_{k}\left([\beta(n))_{k}\right)=[\beta(3 n+1))_{k}$ for any odd number n, compatible with Proposition 2.5. As a result, we see $F(x), F_{k}(x) \in[\beta(3 n+1))_{k}$ for any $x \in[\beta(n))_{k}$, showing that

$$
\left|F(x)-F_{k}(x)\right|<2^{-k}
$$

holds for any $x \in[1 / 2,1)$. Therefore the sequence $F_{k}, k=1,2, \ldots$ approximates F uniformly on $[1 / 2,1)$.
In the following subsections, we investigate the approximants F_{k} 's to extract dynamical characteristics of the map $3 x+1$.
3.1. Behavior of carries from lower to upper bits. For $n, k \in \mathbf{N}$, we define an integer valued function

$$
\tau_{k}(n)=\left[\frac{\left.3 n\right|^{k}+1}{2^{k}}\right]
$$

The function τ_{k} describes the number of bits carried in the calculation $3 n+1$ at k-th bit, as follows.
Proposition 3.1. Given an odd number n and take $k \in \mathbf{N}$, then we have
(1) $\tau_{k}(n) \in\{0,1,2\}$.
(2) For binary expressions $n=\left(a_{l} \cdots a_{0}\right)_{2}$ and $3 n+1=\left(c_{l} \cdots c_{0}\right)_{2}$ with $l \geq \operatorname{ord}(n)+2$, we have

$$
c_{k}=\left.\left(a_{k}+\tau_{k}(n)\right)\right|^{1} \quad \text { for } k \leq l
$$

(3)

$$
\tau_{k+1}\left(\left.n\right|^{k}\right)=\left\{\begin{array}{ll}
0, & \text { if } \tau_{k}(n)=0,1, \\
1, & \text { if } \tau_{k}(n)=2,
\end{array} \quad \tau_{k+1}\left(\left.n\right|^{k}+2^{k}\right)= \begin{cases}1, & \text { if } \tau_{k}(n)=0 \\
2, & \text { if } \tau_{k}(n)=1,2\end{cases}\right.
$$

(4) If $\tau_{k}(n)=0$ or 2 ,

$$
\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k}=\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k+1} \oplus\left[F\left(\beta\left(\left.n\right|^{k}+2^{k}\right)\right)\right)_{k+1}
$$

holds, and if $\tau_{k}(n)=1$,

$$
\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k}=\left[F\left(\beta\left(\left.n\right|^{k}+2^{k}\right)\right)\right)_{k+1} \oplus\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k+1}
$$

holds.
Proof. (1) As $\left.n\right|^{k} \leq 2^{k}-1$, we have

$$
0 \leq\left[\frac{\left.3 n\right|^{k}+1}{2^{k}}\right] \leq\left[\frac{3 \cdot 2^{k}-2}{2^{k}}\right]=\left[3-\frac{1}{2^{k-1}}\right] \leq 2
$$

(2) By definition, we see $\left.n\right|^{k+1}=\left(a_{k} a_{k-1} \cdots a_{0}\right)_{2}=a_{k} \cdot 2^{k}+\left.n\right|^{k}$ and $\left.3 n\right|^{k}+1=\tau_{k}(n) \cdot 2^{k}+\left.(3 n+1)\right|^{k}$. We also see $\left.(3 n+1)\right|^{k+1}=c_{k} \cdot 2^{k}+\left.(3 n+1)\right|^{k}$ while

$$
\begin{align*}
\left.(3 n+1)\right|^{k+1} & =\left.\left(\left.3 n\right|^{k+1}+1\right)\right|^{k+1}=\left.\left(3\left(a_{k} \cdot 2^{k}+\left.n\right|^{k}\right)+1\right)\right|^{k+1} \tag{3.1}\\
& =\left.\left(\left(3 a_{k}+\tau_{k}(n)\right) \cdot 2^{k}+\left.(3 n+1)\right|^{k}\right)\right|^{k+1}=\left.\left(3 a_{k}+\tau_{k}(n)\right)\right|^{1} \cdot 2^{k}+\left.(3 n+1)\right|^{k}
\end{align*}
$$

Therefore $c_{k}=\left.\left(3 a_{k}+\tau_{k}(n)\right)\right|^{1}=\left.\left(a_{k}+\tau_{k}(n)\right)\right|^{1}$.
(3) The case $\tau_{k+1}(n)$ is shown by definition. We also see $\left.3 n\right|^{k}+1=\tau_{k}(n) \cdot 2^{k}+r$ where $r=\left.\left(\left.3 n\right|^{k}+1\right)\right|^{k}<2^{k}$. Then we have

$$
2^{k+1}<3\left(\left.n\right|^{k}+2^{k}\right)+1=\left(\tau_{k}(n)+3\right) \cdot 2^{k}+r<\left(\tau_{k}(n)+4\right) \cdot 2^{k}
$$

When $\tau_{k}(n)=0$, it holds that $2^{k+1}<3\left(\left.n\right|^{k}+2^{k}\right)+1<2^{k+2}$, hence $\tau_{k+1}\left(\left.n\right|^{k}+2^{k}\right)=1$. When $\tau_{k}(n)=1,2$, we have

$$
2^{k+2}=(1+3) \cdot 2^{k} \leq\left(\tau_{k}(n)+3\right) \cdot 2^{k}+r<(2+4) \cdot 2^{k}=3 \cdot 2^{k+1}
$$

hence $\tau_{k+1}\left(\left.n\right|^{k}+2^{k}\right)=2$.
(4) Taking n for $\left.n\right|^{k}+a_{k} \cdot 2^{k}$, it comes from (3.1) that

$$
\left.\beta\left(3\left(\left.n\right|^{k}+a_{k} \cdot 2^{k}\right)+1\right)\right|_{k+1}=\left.\beta\left(\left.3 n\right|^{k}+1\right)\right|_{k}+\left.\frac{1}{2^{k+1}} \beta\left(3 a_{k}+\tau_{k}(n)\right)\right|_{1}
$$

When $\tau_{k}(n)=0$ or 2 , we have $\left.\left(3 a_{k}+\tau_{k}(n)\right)\right|^{1}=a_{k}$, and when $\tau_{k}(n)=1$, we have $\left.\left(3 a_{k}+\tau_{k}(n)\right)\right|^{1}=1-a_{k}$, hence the assertion.

Since $\left[\beta\left(\left.n\right|^{k}\right)\right)_{k}=\left[\beta\left(\left.n\right|^{k}\right)\right)_{k+1} \oplus\left[\beta\left(\left.n\right|^{k}+2^{k}\right)\right)_{k+1}$, Proposition 3.1 (4) means that F flips the images of $\left[\beta\left(\left.n\right|^{k}\right)\right)_{k+1}$ and $\left[\beta\left(\left.n\right|^{k}+2^{k}\right)\right)_{k+1}$ if and only if $\tau_{k}(n)=1$.
3.2. Substitution dynamics and automaton associated with the approximant F_{k} 's. According to Proposition 3.1, the behavior of τ_{k} 's brings a substitution dynamics and an automaton.

For an odd number n and $k \in \mathbf{N}$, we call n stationary at k-th order when $\tau_{k}(n)=0$, exchanging when $\tau_{k}(n)=1$ and unfixed when $\tau_{k}(n)=2$ respectively. We label each segment $[\beta(n))_{k}$ as S, E and U when n is stationary, exchanging and unfixed at k-th order respectively. The original segment $[\beta(1))_{1}=[1 / 2,1)$ is labeled U.

Then combining Proposition 3.1 (3) and (4), to increment the approximation order k by 1 causes a division of each segment, and induces a substitution

$$
\sigma: S \rightarrow S E \quad E \rightarrow S U \quad U \rightarrow E U
$$

which are mapped by F as

$$
F(\sigma): F(S) \rightarrow F(S) F(E) \quad F(E) \rightarrow F(U) F(S) \quad F(U) \rightarrow F(E) F(U)
$$

Accordingly we associate each $\beta(n)$ with a string $\boldsymbol{w}=w_{1} w_{2} \cdots$ consists of S, E and U; we take w_{k} for S, E or U when $[\beta(n))_{k}$ is labeled as S, E or U, in another words, when $\tau_{k}(n)=0,1$, or 2 respectively. Note that $w_{k}=S$ if $k>\operatorname{ord}(n)+2$ as $3 n+1<2^{\operatorname{ord}(n)+3}$. The sequence \boldsymbol{w} is given by calculating $\tau_{k}(n)$ for each k, however, Proposition 3.1 (3) brings us another way to obtain \boldsymbol{w} directly, without help of τ_{k}. Actually, suppose that $\left(0 . b_{1} b_{2} \cdots b_{k}\right)_{2}$ is stationary S at k-th order for instance, then $\left(0 . b_{1} b_{2} \cdots b_{k} b_{k+1}\right)_{2}$ is again stationary S if $b_{k+1}=0$ and exchanging E if $b_{k+1}=1$.

Thus we define a deterministic finite state automaton $M=(\{S, E, U\},\{0,1\}, \delta, E,\{S\})$ with states S, E, U, an alphabet $\{0,1\}$ of input symbols, an initial state E, an accepting state S and a transition
function δ given as

$$
\begin{array}{lll}
\delta(S, 0)=S, & \delta(E, 0)=S, & \delta(U, 0)=E \\
\delta(S, 1)=E, & \delta(E, 1)=U, & \delta(U, 1)=U
\end{array}
$$

The automaton M encodes a binary $\left(0 . b_{1} b_{2} \cdots b_{k}\right)_{2}$ to a string $\boldsymbol{w}=w_{1} w_{2} \cdots w_{k}$ over $\{S, E, U\}$, by scanning each term of $b_{1} b_{2} \cdots b_{k}$ from left to right. Apparently we see the automaton M comes to the final state S whenever M has read binaries of the form $\left(0 . b_{1} b_{2} \cdots b_{k} 00\right)_{2}$ completely; any input data of the form $b_{1} \cdots b_{k} 00$ is accepted by M

Conversely, we restore the binary $F(\beta(n))=\beta(3 n+1)$ from $\beta(n)$ and its encode \boldsymbol{w}.
Corollary 3.2. Consider a binary expression $\beta(n)=\left(0 . b_{1} b_{2} \cdots b_{k}\right)_{2}$ with $b_{k-1}=b_{k}=0$ for any odd number n, and its encode $\boldsymbol{w}=w_{1} w_{2} \cdots w_{k}$ that the automaton M outputs. Let $c_{1} c_{2} \cdots c_{k}$ be a string consist of 0 and 1, defined as

$$
c_{i}= \begin{cases}b_{i}, & \text { if } w_{i-1} \neq E \\ 1-b_{i}, & \text { if } w_{i-1}=E\end{cases}
$$

where we take w_{0} for E. Then we have

$$
\beta(3 n+1)=\left(0 . c_{1} c_{2} \cdots c_{k}\right)_{2}
$$

Proof. Applying Proposition 3.1 (2) for $n=\left(b_{k} b_{k-1} \cdots b_{1}\right)_{2}$ and $3 n+1=\left(c_{k} c_{k-1} \cdots c_{1}\right)_{2}$, we have

$$
c_{i}=\left.\left(b_{i}+\tau_{i-1}(n)\right)\right|^{1}= \begin{cases}b_{i}, & \text { if } \tau_{i-1}(n)=0,2 \\ 1-b_{i}, & \text { if } \tau_{i-1}(n)=1\end{cases}
$$

hence the assertion.

Figure 2. Substitution σ on segments

Figure 3. Transitive diagram of M
3.3. An attracting property and a $3 x+1$ problem on F_{k} 's. It easily comes from the definition of F_{k} that any finitely long binary sequence $\beta(n)$ arrives at a certain k-bit binary sequence by a sufficiently large number of iterations of F_{k}.

Proposition 3.3. Consider the k-th approximant F_{k}. Then for any natural number n, there exists $t \in \mathbf{N}$ that

$$
\operatorname{ord}\left(\beta^{-1}\left(F_{k}^{t}(\beta(n))\right)\right) \leq k
$$

Proof. Denote $n_{l}=\beta^{-1}\left(F_{k}^{l}(\beta(n))\right)$. When n_{l} is odd, decompose $n_{l}=A_{l}+B_{l}$ with $B_{l}=\left.n_{l}\right|^{k}$ and $A_{l}=n_{l}-B_{l}$. By definition, we see $\left.\beta\left(n_{l}\right)\right|_{k}=\beta\left(B_{l}\right)$ and $\beta\left(n_{l}\right)=\beta\left(A_{l}\right)+\beta\left(B_{l}\right)$. Thus $F_{k}\left(\beta\left(n_{l}\right)\right)=\beta\left(A_{l}\right)+\left.F\left(\beta\left(B_{l}\right)\right)\right|_{k}$ by the definition of F_{k}. As $F_{k}\left(\beta\left(n_{l}\right)\right) \in[0,1 / 2)$, we see

$$
F_{k}^{2}\left(\beta\left(n_{l}\right)\right)=2\left(\beta\left(A_{l}\right)+\left.F\left(\beta\left(B_{l}\right)\right)\right|_{k}\right)=\beta\left(A_{l} / 2\right)+\left.2 F\left(\beta\left(B_{l}\right)\right)\right|_{k}
$$

As $\operatorname{ord}\left(A_{l} / 2\right)=\operatorname{ord}\left(A_{l}\right)-1$, there exists $t \in \mathbf{N}$ such that $A_{t}=0$, hence the assertion.

Thus the orbit of any finite binary sequence $\beta(n)$ eventually joins that of a k bit one, meaning that we concentrate our attention on k bit binaries to answer the following 'Collatz-like' problem on F_{k} :

Problem $3.4\left(3 x+1\right.$ problem on $\left.F_{k}\right)$. Show that for any natural number n, there exists $t \in \mathbf{N}$ such that

$$
F_{k}^{t}(\beta(n))=0 \text { or } 1 / 2
$$

Note that finite bit approximation causes the fixed point $n=0$, e.g., for F_{3} we have

$$
(0.101)_{2} \quad \mapsto \quad(0.000)_{2},
$$

by eliminating binaries smaller than 2^{-3}. Problem 3.4 moderates the original $3 x+1$ problem, where only finite numbers smaller than 2^{k} are considered. Thus any orbit of $\beta(n)$ are eventually periodic.

4. Interval preserving approximant of the conjugacy F

The approximant F_{k} behaves as an interval exchange transformation on $\left[1 / 2,1\right.$), while F_{k} expands the interval $[0,1 / 2)$, which seems to cause some difficulties to close the true nature of the $3 x+1$ problem on F_{k}. Accordingly, we consider another series of approximants G_{k} 's defined as

$$
\begin{array}{rlr}
G_{k}(x) & =x-\left.x\right|_{k}+\left.F\left(\left.x\right|_{k}\right)\right|_{k}, & \text { for } x \in[0,1), \\
& = \begin{cases}x+\left.x\right|_{k}, & \text { for } x \in[0,1 / 2), \\
x-\left.x\right|_{k}+\left.\beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)\right|_{k}, & \text { for } x \in[1 / 2,1),\end{cases}
\end{array}
$$

which are interval preserving and right continuous, approximating F uniformly on $[0,1$);

$$
\left|F(x)-G_{k}(x)\right|<2^{-k} \text { for all } x \in[0,1)
$$

Since G_{k} translates only each segment $[\beta(n))_{k}$ to another by definition, the orbit of any point $x \in[0,1)$ are eventually periodic, described completely by the orbit of the k bit sequence $\left.x\right|_{k}$. Thus the corresponding $3 x+1$ problem is stated as follows, which reduces Problem 3.4 to a finite combinatorial one:

Problem $4.1\left(3 x+1\right.$ problem on $\left.G_{k}\right)$. Show that for any $x \in[0,1)$, there exists $t \in \mathbf{N}$ such that

$$
G_{k}^{t}(x) \in[0)_{k} \cup[\beta(1))_{k}=\left[0,1 / 2^{k}\right) \cup\left[1 / 2,1 / 2+1 / 2^{k}\right)
$$

Again we note that any $x \in[0)_{k}$ is fixed under G_{k}. In spite of restricting our argument to finite bits, Problem 4.1 seems to be not trivial. If we consider $5 x+1$ map instead of $3 x+1$ for instance, we find lots of periodic orbits as increasing the approximation order k. Problem 4.1 appears to be presenting the unique characteristics of $3 x+1$ map.

To attack the original $3 x+1$ problem, we have to face the fact that for any initial point $\beta(n)$, it seems to exist sufficiently large approximation order k where the orbit of $\beta(n)$ under G_{k} pass through only stationary segments. Consider $n=15=(1111)_{2}$. Table 1 shows the corresponding orbits under G_{7} and G_{8} (omitting even numbers). We see that the orbit pass through stationary segments for $k \geq 8$; each segment label is finished at S. Thus the orbit is determined independently of the approximation order $k \geq 8$, meaning that the orbit under G_{k} coincides with the original one under F. See the graphs of G_{1} to G_{8} and their orbits of $(0.1111)_{2}$ in Figures 4 and 5.

Orbit under G_{7} :

n	$\beta(n)$	segment label
15	.1111000	UUUUESS
23	.1110100	UUUEUES
35	.1100010	UUESSES
53	.1010110	UEUEUUE
1	.1000000	UESSSSS

Orbit under G_{8} :

n	$\beta(n)$	segment label
15	.1111000	UUUUESSS
23	.1110100	UUUEUESS
35	.1100010	UUESSESS
53	.1010110	UEUEUUES
5	.1010000	UEUESSSS
1	.1000000	UESSSSSS

Table 1. Orbits of $n=15$ under G_{7} and G_{8}

5. A conjecture arisen from a graph symmetric to F

In view of the definition (2.2) of the conjugacy F, we also consider a map H symmetrical about $(1 / 2,1 / 2)$ with F on $\beta(\mathbf{N})$:

$$
H(x)= \begin{cases}\lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), & x \in[0,1 / 2) \\ 2 x-1, & x \in[1 / 2,1)\end{cases}
$$

In fact, the topological closure of

$$
\{(\beta(n), \beta(3 n+1) \mid n \in \mathbf{N}\}
$$

is symmetrical about $(1 / 2,1 / 2)$. For any natural numbers n and k, consider the one's-complement $\overline{\left.n\right|^{k}}$ of k bit; $\overline{\left.n\right|^{k}}=2^{k}-1-\left.n\right|^{k}$. Then we have $\beta\left(\left.n\right|^{k}\right)+\beta\left(\overline{\left.n\right|^{k}}\right)=1-2^{-k}$. It is easily seen that $\overline{\left.(3 n+1)\right|^{k}}=\left.\left(3 \overline{\left.n\right|^{k}}+1\right)\right|^{k}$. Then we see $1-2^{-k}=\beta\left(\left.(3 n+1)\right|^{k}\right)+\beta\left(\left.\overline{3 n+1}\right|^{k}\right)=\left.\beta(3 n+1)\right|_{k}+\left.\beta\left(\left.3 \bar{n}\right|^{k}+1\right)\right|_{k}$. As a result, we show

$$
\lim _{k \rightarrow \infty}\left(\beta\left(\overline{\left.n\right|^{k}}\right),\left.\beta\left(3 \overline{\left.n\right|^{k}}+1\right)\right|_{k}\right)
$$

is symmetrical to $(\beta(n), \beta(3 n+1))$ about $(1 / 2,1 / 2)$.
We also note that H is the conjugacy of the following arithmetic procedure:

$$
h(n)= \begin{cases}3 n+1, & \text { if } n \text { is even } \\ (n-1) / 2, & \text { if } n \text { is odd }\end{cases}
$$

It is easy to find that h has at least three periodic orbits, which pass through $n=0, n=4$ and $n=16$ respectively. However observation of the dynamics of H leads us to another conjecture:

Conjecture 5.1. For each natural number n, there exists a finite number t such that $h^{t}(n)=0,4$ or 16 .
Note that H is also right continuous on $[0,1)$, where we are to consider, so to speak, the 'left continuous version' of F.

References

[1] K. Dajani and C. Kraaikamp, Ergodic theory of numbers, Carus Mathematical Monographs 29, Mathematical Association of America, 2002.
[2] Y. Hashimoto, A fractal set associated with the Collatz problem, Bull. of Aichi Univ. of Education, Natural Science 56, pp 1-6, 2007.
[3] J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages and Computations, 2nd Ed. AddisonWesley, 2001.
[4] J. Lagarias, The $3 x+1$ problem and its generalization, Amer. Math. Monthly 92, pp. 3-23, 1985.
[5] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of mathematics and its applications 90, Cambridge University Press, 2002.
[6] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8, pp 477-493, 1957.
[7] G. Wirsching, The Dynamical System Generated by the $3 x+1$ Function, Lect. Notes in Math. 1681, Springer, 1998.
[8] H. Xie, Grammatical complexity and one-dimensional dynamical systems, Directions in chaos 6, World Scientific, 1997.

Figure 4. Graphs of G_{1} to G_{6} with their orbit start from $(0.1111)_{2}$

Figure 5. Graphs of G_{7} and G_{8} with their orbit start from $(0.1111)_{2}$

