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Interval Preserving Map Approximation of 3x + 1 Problem
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1. Introduction

The well-known and still unsolved 3z + 1 problem was firstly proposed by Lothar Collatz in 1930’s, who

had great interest in representation of integer functions by directed graphs.

Conjecture 1.1. Consider a map f: N — N such that
3n+1, ifn is odd,
-]

n/2, if n is even.
Then for each natural number n, there exists a finite number t such that f'(n) = fo fo---o f(n) = 1.
—_———
t—times

In [2], by introducing the reverse binary embedding of natural numbers into [0,1), we obtained a graph £
of the Collatz function f, which is a Cantor set generated by an iterated function system. Our interest is
in the dynamics on the Cantor set K presented by the iteration of the Collatz procedure f. In this note, we
advance the analysis of the dynamics. We introduce interval preserving maps on [0, 1), approximating the
dynamics of the Collatz procedure, and consider a 3z + 1 problem of ‘finite bit’ version.

2. Reverse binary embedding of natural numbers and a conjugacy of Collatz procedure

Definition 2.1. Let n = ap -2 +ap_1 - 271 + -+ ag (= (apar—_1---ag)a for short ) be a binary expansion

of a natural number n. The reverse binary embedding 5 of n is given by

ap a ag
B(n) = ?4_2724_...4_% = (0.apay - - - ag)s.

By definition, § : N — [0,1) is one-to-one and N is densely embedded into [0,1). Moreover, even
and odd numbers are embedded in [0,1/2) and [1/2,1) respectively. We note that the binary expression
x = (0.b1by - - - )2 of a real number z € [0,1) has ambiguity. If there exists k& € N such that b = 1 for all
I >k, then o = (0.byby - --b_1)2 + 27¥1 hence 2 has another binary expression. Thus we always assume
that any binary expression x = (0.b1by - - - )2 has infinitely many 0’s in the sequence b;’s, including the case
that  has a finite expression x = (0.b1bs - - - by )2. For a real number z € [0,1) and k € N, x| denotes a cut
off of x at (—k — 1)-th order in the binary expression;

k b. > b
j= Jj=

We use a notation [ x ), as a segment [w|k, x| + 2%), then we have a natural decomposition of segments

(2.1) [ (O.blbg s bk)Q )k = [ (0.b1b2 cee ka)Q )k+1 D [ (O.blbg s bkl)z )kJrl ,

where [a,b) @ [b, ¢) stands for a division of an interval [a, ¢) at b. For a natural number n, we put ord(n) =
[logy n], where [z] stands for an integer not greater than x, and for a binary expression n = (q;a;_1 - - - ag)2,

n|k denotes an upper cut off of n at k-th order;
n\k = (ag—10K—2---apg)2 =n mod ok
Apparently we have

Lemma 2.2. For z,y € [0,1) and m,n,k € N,
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re[T),.
[z ), N[y ), # 0 holds if and only if x|, = y|i, and hence [z ), = [y )s-
if © # vy, there exists | € N such that [z ), N[y ), = 0.

[2)ps1 G [2 )y and ﬂ [2)), ={z}.
k=1

(5) B(m)|, = B(m|").
[ =[B(n)),, if and only if m|* = n|k.

To observe the dynamics of the Collatz procedure, we consider a map F : [0,1) — [0,1) conjugate to f,
that is, F'o f(n) = So f(n) holds for any natural number n. The embedding f brings not only a well-defined
map F: B(N) — B(IN), but also an extension of F on [0,1) as follows.

Since B(2n) = B(n)/2, we have B(n) = B o f(2n) = Fo (2n) = F(B8(n)/2), hence F(x) = 2z for
z €[0,1/2) N B(N). Thus we extend F on [0,1/2) by F(x) = 2z. In order to extend F on [1/2,1), we need
the followings.

Lemma 2.3. For any natural number m,n, [ B(3m + 1) ), = [ B(3n + 1) ), holds if and only if [ B(m) ), =
[B(n) )y

Proof. By Lemma 2.2, [ B(m) ), = [ B(n) ), means m =n mod 2*. Then 3m +1=3n+1 mod 2*, and
hence [ B(3m + 1) ), = [ B(3n + 1) ),. The converse also holds since 3 and 2* are prime to each other. [

Consider a sequence nj, = 7 1(z|y), k = 1,2,..., then we see 8(ng) = x|x = (@|pr1)|rx = B(ngr1)|r- By
Lemma 2.2 (5), we see ng1 = n, mod 2F, hence 3ny1 +1=3n; +1 mod 2*. (2.1) shows

[BBgy1 +1) )y S BB +1) ), =[ BB +1) )y,

and then ﬂ [ B(3ng + 1) ), consists of a unique point, expressed as klim B(3ny + 1). Thus we define a
—00
k=1
conjugacy F :[0,1) — [0,1) of the Collatz procedure f;
25 i %, z€0,1/2),
(22) )= im p@s ) + 1), w e 1/2,1).
— 00

We see that for any odd number n, S(n)|x = B(n) € [1/2,1) by taking k > ord(n), therefore F(5(n))
B3n + 1) = B(f(n)). We also see that [z), = [B(ng)), and [ F(z)), = [BBnk+1)), as F(z) €
[ B(3ng + 1) ), by definition.

Lemma 2.4. {(3n+1) | n € N} is dense in [0,1).

Proof. As 2 = (—1) mod 3, we have 2?* =1 mod 3 and 2%*! = (—1) mod 3. Given z € [0,1) and
k € N, consider my, = 71 (z|1). Suppose mj, =0 mod 3, then there exists n € N with my, 4+ 22* = 3n + 1,
hence .

B(Bn+1) = B(my, + 2°) :$|k+W €lz)y-
Similarly when m; = 1 mod 3 (resp. my = (—1) mod 3), we find n € N with m; = 3n + 1 (resp.
my + 221 = 3n + 1), showing that 3(3n + 1) € [x),. As a result, for any x € [0,1) and k € N, there
exists n € N with |z — B(3n +1)| < 27F. O

The following proposition implies that F' is approximated by interval exchange maps.

Proposition 2.5. For any odd number n and any natural number k, the conjugacy F' is a right continuous
bijection
F:[B(n) ), = [BBn+1)),.
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Proof. Consider z,y € [ 8(n) ), with  # y, then we find a natural number | > k with [z ), N[y ), = 0.
Applying Lemma 2.2 and 2.3 for z|; and y|;, we see [ 3(337*(z|;) + 1) )lﬂ [B8B8 () +1) )l = (), showing
F(x) # F(y), that is, F' is injective on [ 3(n) ),. Lemma 2.3 and 2.4 means that [ 8(n) ), N B(N) is
embedded in [ 5(3n + 1) ), densely by F. Then for any y € [ 3(3n+ 1) ), and natural number [ > k, we
choose m; € N such that S(my;) € [ B(n) ), and B(3my +1) € [y );. As BBmyp+1) € [y )y C [y )
we see B(3mis1 + i = B3my + 1)1, hence f(mua)ly = S(my)); by Lemma 2.3. Thus [ S(mis1) ey <

o0

[ B(my) );. Let « be a unique accumulation point {z} = ﬂ [ B(my) ), then x|, = B(my)|; = B(my|'). We see
>k

yli = BBmy + 1)|; = BBmy|' +1)|; as 3my + 1 =3my|' +1 mod 2!, hence

BEBB (z)) +1) = BBmil +1) € [y),.

Taking | — oo, we have F'(x) = y, showing that F is a surjection [ 5(n) ), — [ 6(3n+1) ),.

For any z € [ B(n) ), and | > k, we see F(z) € [ 8387 (z|;) +1) )l by the definition of F'. We also have
F(w) € [ BB (w];) +1) ), = [ B3B8~ (z]) +1) ), whenever w € [z );, that is, [F(w) — F(z)| < 27 if
w € [x);. Therefore F is right continuous. O

Note that for any natural number n, [ 3(n)), = [B(n),8(n) +27%) if k > ord(n), thus w € [ B(n) ),
means w > B(n). Therefore we state the right continuity only in Proposition 2.5. Indeed, for example, we

see

lim  F(w) = (0.001)y # (0.0101)y = F((0.11)y).
wﬁ(oll)z
w<(0.11)2

FIGURE 1. The graph of F' conjugate to the Collatz procedure
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3. Piecewise linear approximant of the conjugacy F

In view of Proposition 2.5, we construct a sequence of piecewise linear maps F} approximating the

conjugacy F': for each k € N, we define the k-th approximant Fj, as

(o) 2z, for x € [0,1/2),
€Tr) =
¥ v —alp + Fzlo)le, for € [1/2,1),

2, for z € [0,1/2),
x— x|+ BB (xlk) + 1)k, forx € [1/2,1).

By definition, Fy, is right continuous. Since wly = B(n)|x if w € [ B(n) ), and B(3n|* + 1)|x = B(3n + 1)]4,
we see

Fw)=w—-38n)|r+BBn+1)|g, forwel[B(n)),.

Thus Fi([ B(n) )) = [ B(3n + 1) ), for any odd number n, compatible with Proposition 2.5. As a result, we
see F(z), F(z) € [ f(3n+1) ), for any x € [ B(n) );, showing that

|F(a) = Fy(z)| < 27"

holds for any = € [1/2,1). Therefore the sequence Fj, k = 1,2, ... approximates F' uniformly on [1/2,1).
In the following subsections, we investigate the approximants Fj’s to extract dynamical characteristics of
the map 3z + 1.

3.1. Behavior of carries from lower to upper bits. For n,k € N, we define an integer valued function

re(n) = Fmv;fl] .

The function 7 describes the number of bits carried in the calculation 3n 4+ 1 at k-th bit, as follows.

Proposition 3.1. Given an odd number n and take k € N, then we have

(1) m(n) €4{0,1,2}.
(2) For binary expressions n = (a;---ag)2 and 3n+1 = (¢ - co)2 with I > ord(n) + 2, we have

cr = (ak + Tk(n)) ’1 for k <.

1, Zf Tk(n) = 0,
;o if me(n) =1

Tk+1(n|k) = 1 if m(n) =

)

(3) ‘ B
{0’ i mhln) = 2’ b T (n]* +2°) = {

(4) If 7(n) = 0 or 2,
[F@@) ), =[FEEr))
holds, and if ,(n) = 1,
| FB0) ) =[P +24))
holds.

Proof. (1) As n|F < 2F — 1, we have

3n|F 4+ 1 3-2F -2 1
0= [ <[5 - b =
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(2) By definition, we see n|[F*t! = (agar_1---ag)2 = ap, - 2¥ +n|* and 3n|* +1 = 74(n) - 2 + Bn + 1)|F. We
also see (3n + 1)1 = ¢, - 28 4+ (3n + 1)|* while

k+1
3.1)  (Bn+ DFF = 3nfFtt 4 1)) = (3(% L9k k) ¢ 1) ]

= ((Sak + 7(n)) - 2% 4 (3n + 1)|k) ‘Hl = (3ai, + 1(n)) ’1 2k 4 Bn+ 1)k

Therefore ¢ = (3@;C + Tk(n)) |1 = (ak + Tk(n)) |1.
(3) The case 7x11(n) is shown by definition. We also see 3n|*+1 = 74(n) - 28+ where r = (3n|* +1)|* < 2*.
Then we have

ML < 3(n|F + 28) 1 = (mu(n) +3) - 28 + 7 < (m(n) +4) - 2~.
When 75 (n) = 0, it holds that 27! < 3(n|F + 2%) + 1 < 2842 hence 7441 (n|* +2%) = 1. When 74(n) = 1,2,

we have
M2 — (143) 28 < (mp(n) +3) - 2% + 7 < (2+4)-2F = 3. 2k+1

hence 741 (n|F + 2F) = 2.
(4) Taking n for n|¥ + ay - 2%, it comes from (3.1) that

BB + ag 25+ Ve =BG + Dle+ e Bag + me(m)l.

When 7(n) = 0 or 2, we have (3ay, + 7x(n))|' = ax, and when 74(n) = 1, we have (3ay + 7(n))|! =1 — ay,

hence the assertion. O

Since [ B(n|*) )= [ B(n|¥) )k+1 @ [ B(n|* +2F) )k+1’ Proposition 3.1 (4) means that F' flips the images
of [ B(n|*) ), , and [ B(n[* +2%) ), if and only if 74(n) = 1.

3.2. Substitution dynamics and automaton associated with the approximant Fj’s. According to
Proposition 3.1, the behavior of 73’s brings a substitution dynamics and an automaton.

For an odd number n and k € N, we call n stationary at k-th order when 7i(n) = 0, exchanging when
Ti(n) = 1 and unfized when 74 (n) = 2 respectively. We label each segment [ 5(n) ), as S, E and U when n
is stationary, exchanging and unfixed at k-th order respectively. The original segment [ 5(1) ), = [1/2,1) is
labeled U.

Then combining Proposition 3.1 (3) and (4), to increment the approximation order k by 1 causes a division

of each segment, and induces a substitution
c:5—=SE E— SU U— EU,
which are mapped by F' as
F(o): F(S)— F(S)F(FE) F(E)— F(U)F(S) F({U)— F(E)F(U).

Accordingly we associate each 3(n) with a string w = wjws--- consists of S, E and U; we take wy, for
S,E or U when [ 5(n) ), is labeled as S, E or U, in another words, when 7;(n) = 0,1, or 2 respectively.
Note that wy = S if k > ord(n) + 2 as 3n 4+ 1 < 2°'4+3 The sequence w is given by calculating 7 (n)
for each k, however, Proposition 3.1 (3) brings us another way to obtain w directly, without help of 7.
Actually, suppose that (0.b1by - - - by )2 is stationary S at k-th order for instance, then (0.b1bg - - - bgbgy1)2 is
again stationary S if by = 0 and exchanging E if bgy; = 1.

Thus we define a deterministic finite state automaton M = ({S,E,U},{0,1},4, E,{S}) with states
S, E,U, an alphabet {0,1} of input symbols, an initial state E, an accepting state S and a transition
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function § given as

3(5,0)=15, o(E,0)=S5, o(U,0) =

0(S,1)=E, o(E,1)=U, o6(U1)=UT.
The automaton M encodes a binary (0.b1bg - - - b)2 to a string w = wyws - - - wy, over {S, E,U}, by scanning
each term of biby - - - by from left to right. Apparently we see the automaton M comes to the final state S
whenever M has read binaries of the form (0.b1bs - - - b£00)2 completely; any input data of the form by - - - b;00
is accepted by M

Conversely, we restore the binary F'(5(n)) = 8(3n + 1) from B(n) and its encode w.

Corollary 3.2. Consider a binary expression S(n) = (0.b1by - - - bg)o with by_1 = by, = 0 for any odd number
n, and its encode w = wiws - - - wy that the automaton M outputs. Let cico---cp be a string consist of O
and 1, defined as

o= bi, Zf Wi—1 7& E,
' 1—b;, ifwi-1=E,

where we take wy for E. Then we have
6(371 + 1) = (0.0102 o -Ck)g.
Proof. Applying Proposition 3.1 (2) for n = (bgbg—1---b1)2 and 3n + 1 = (cxck—1 - - - ¢1)2, we have

1 b;, if 7;_1(n) =0,2,
i = (bi + T =
C ( + T 1(”))‘ {1 _ bi7 if Tz‘,l(n) — 1’

hence the assertion. O

1/2 5/8 3/4 7/8 1

FIGURE 2. Substitution ¢ on segments FIGURE 3. Transitive diagram of M

3.3. An attracting property and a 3z 4+ 1 problem on Fj’s. It easily comes from the definition of Fj
that any finitely long binary sequence §(n) arrives at a certain k-bit binary sequence by a sufficiently large

number of iterations of Fj.

Proposition 3.3. Consider the k-th approzimant Fy,. Then for any natural number n, there exists t € N
that

ord(5~H(F(B(n)))) < k.

))). When n; is odd, decompose n; = A;+ B with B; = n;|¥ and A; = n;— B,.

B(By) and B(n;) = B(A;) + B(By). Thus Fi(B(n)) = B(A1) + F(B(B1))[x by
1) €10,1/2), we see

Proof. Denote n; = 8~ Y(FL(B
By definition, we see ,B(nl) k
the definition of Fy. As Fj(8

(n

FE(B(m)) = 2(B(A) + F(B(B))|k) = B(A1/2) + 2F (B(B1)) |-
As ord(A4;/2) = ord(A4;) — 1, there exists t € N such that A; = 0, hence the assertion. O

(n
(n
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Thus the orbit of any finite binary sequence S(n) eventually joins that of a k bit one, meaning that we

concentrate our attention on k bit binaries to answer the following ‘Collatz-like’ problem on F:
Problem 3.4 (3xz + 1 problem on Fy). Show that for any natural number n, there exists t € N such that
FL(B(n)) =0 or 1/2.

Note that finite bit approximation causes the fixed point n = 0, e.g., for F3 we have
(0.101)2  +~—  (0.000)2,

by eliminating binaries smaller than 273. Problem 3.4 moderates the original 3z + 1 problem, where only

finite numbers smaller than 2* are considered. Thus any orbit of #(n) are eventually periodic.

4. Interval preserving approximant of the conjugacy F

The approximant Fj, behaves as an interval exchange transformation on [1/2,1), while F} expands the
interval [0,1/2), which seems to cause some difficulties to close the true nature of the 3z 4+ 1 problem on Fy,.
Accordingly, we consider another series of approximants Gy’s defined as

Gr(x) =2 — zlk + F([k)|x, for z € [0,1),
_ Jrtalk, for z € [0,1/2),
x—xlp + BBA (k) + 1), for z € [1/2,1),

which are interval preserving and right continuous, approximating F' uniformly on [0, 1);
|F(x) — Gp(x)] < 27F forall z€0,1).

Since G}, translates only each segment [ 5(n) ), to another by definition, the orbit of any point « € [0,1)
are eventually periodic, described completely by the orbit of the & bit sequence xz|;. Thus the corresponding
3z + 1 problem is stated as follows, which reduces Problem 3.4 to a finite combinatorial one:

Problem 4.1 (3z + 1 problem on Gi). Show that for any x € [0,1), there exists t € N such that
Gi(x) €[0),U[B(1) ), = [0, 1/2° YU [1/2, 1/2+1/2").

Again we note that any « € [0 ), is fixed under Gj. In spite of restricting our argument to finite bits,
Problem 4.1 seems to be not trivial. If we consider 5z + 1 map instead of 3z + 1 for instance, we find lots of
periodic orbits as increasing the approximation order k. Problem 4.1 appears to be presenting the unique
characteristics of 3z + 1 map.

To attack the original 3z + 1 problem, we have to face the fact that for any initial point 5(n), it seems to
exist sufficiently large approximation order k& where the orbit of 5(n) under Gy, pass through only stationary
segments. Consider n = 15 = (1111). Table 1 shows the corresponding orbits under G7 and Gg (omitting
even numbers). We see that the orbit pass through stationary segments for k& > 8; each segment label is
finished at S. Thus the orbit is determined independently of the approximation order k£ > 8, meaning that
the orbit under G} coincides with the original one under F'. See the graphs of G| to Gg and their orbits of
(0.1111)2 in Figures 4 and 5.
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Orbit under G7: Orbit under Gg:

n | B(n) segment label n | B(n) segment label
15 .1111000 | UZUUUESS 15 .1111000 | UZUUUESSS
23| .1110100 | UZUUEUES 23| .1110100 | UZUUEUESS
35| .1100010 | UUESSES 35| .1100010 | UUESSESS
53 | .1010110 | UEUEUUFE 53 |.1010110 | UEUEUUES

1].1000000 | UESSSSS 51 .1010000 | UEUESSSS

11.1000000 | UESSSSSS

TABLE 1. Orbits of n = 15 under G7 and Gy

5. A conjecture arisen from a graph symmetric to F

In view of the definition (2.2) of the conjugacy F', we also consider a map H symmetrical about (1/2,1/2)
with F' on B(IN):
{ lim B35 (zl) + 1), = €0,1/2),
H(gg = { k—oo
2 —1, x €[1/2,1).
In fact, the topological closure of
{(B(n), BBn+1) | n € N}
is symmetrical about (1/2,1/2). For any natural numbers n and k, consider the one’s-complement n|* of k-
bit; n|F = 28 —1—n|*. Then we have 3(n|¥)+B(n|F) = 1—27F. It is easily seen that (3n 4 1)|F = (3n[F+1).
Then we see 1 —27% = B((3n+ 1)|*) + BBn + 1|*) = B(3n + 1)|1, + B(3A* + 1)|4. As a result, we show

Jim (B(n[F), B3nfF +1)]x)
is symmetrical to (8(n), 3(3n + 1)) about (1/2,1/2).

We also note that H is the conjugacy of the following arithmetic procedure:

hin) = 3n+1, if n is even,
| (n—1)/2, ifnisodd.

It is easy to find that h has at least three periodic orbits, which pass through n = 0, n = 4 and n = 16

respectively. However observation of the dynamics of H leads us to another conjecture:
Conjecture 5.1. For each natural number n, there exists a finite number t such that ht(n) = 0,4 or 16.

Note that H is also right continuous on [0, 1), where we are to consider, so to speak, the ‘left continuous

version’ of F.
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FIGURE 4. Graphs of G1 to Gg with their orbit start from (0.1111)
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FIGURE 5. Graphs of G7 and Gg with their orbit start from (0.1111)
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