
1. Introduction

The well-known and still unsolved 3x+ 1 problem was firstly proposed by Lothar Collatz in 1930’s, who

had great interest in representation of integer functions by directed graphs.

Conjecture 1.1. Consider a map f : N → N such that

f(n) =

{
3n+ 1, if n is odd,

n/2, if n is even.

Then for each natural number n, there exists a finite number t such that f t(n) = f ◦ f ◦ · · · ◦ f(n)� �� �
t−times

= 1.

In [2], by introducing the reverse binary embedding of natural numbers into [0, 1), we obtained a graph K

of the Collatz function f , which is a Cantor set generated by an iterated function system. Our interest is

in the dynamics on the Cantor set K presented by the iteration of the Collatz procedure f . In this note, we

advance the analysis of the dynamics. We introduce interval preserving maps on [0, 1), approximating the

dynamics of the Collatz procedure, and consider a 3x+ 1 problem of ‘finite bit’ version.

2. Reverse binary embedding of natural numbers and a conjugacy of Collatz procedure

Definition 2.1. Let n = ak · 2k+ ak−1 · 2k−1+ · · ·+ a0 (= (akak−1 · · · a0)2 for short ) be a binary expansion

of a natural number n. The reverse binary embedding β of n is given by

β(n) =
a0
2
+

a1
22

+ · · ·+ ak
2k+1

= (0.a0a1 · · · ak)2.

By definition, β : N → [0, 1) is one-to-one and N is densely embedded into [0, 1). Moreover, even

and odd numbers are embedded in [0, 1/2) and [1/2, 1) respectively. We note that the binary expression

x = (0.b1b2 · · · )2 of a real number x ∈ [0, 1) has ambiguity. If there exists k ∈ N such that bl = 1 for all

l ≥ k, then x = (0.b1b2 · · · bk−1)2 + 2−k+1, hence x has another binary expression. Thus we always assume

that any binary expression x = (0.b1b2 · · · )2 has infinitely many 0’s in the sequence bj ’s, including the case

that x has a finite expression x = (0.b1b2 · · · bk)2. For a real number x ∈ [0, 1) and k ∈ N, x|k denotes a cut
off of x at (−k − 1)-th order in the binary expression;

x|k = (0.b1b2 · · · bk)2 =
k∑

j=1

bj
2j

, if x = (0.b1b2 · · · )2 =
∞∑
j=1

bj
2j

.

We use a notation [ x )k as a segment
[
x|k, x|k + 1

2k

)
, then we have a natural decomposition of segments

(2.1) [ (0.b1b2 · · · bk)2 )k = [ (0.b1b2 · · · bk0)2 )k+1 ⊕ [ (0.b1b2 · · · bk1)2 )k+1 ,

where [a, b)⊕ [b, c) stands for a division of an interval [a, c) at b. For a natural number n, we put ord(n) =

[log2 n], where [x] stands for an integer not greater than x, and for a binary expression n = (alal−1 · · · a0)2,
n|k denotes an upper cut off of n at k-th order;

n|k = (ak−1ak−2 · · · a0)2 ≡ n mod 2k.

Apparently we have

Lemma 2.2. For x, y ∈ [0, 1) and m,n, k ∈ N,
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(1) x ∈ [ x )k.

(2) [ x )k ∩ [ y )k ̸= ∅ holds if and only if x|k = y|k, and hence [ x )k = [ y )k.

(3) if x ̸= y, there exists l ∈ N such that [ x )l ∩ [ y )l = ∅.

(4) [ x )k+1 � [ x )k and
∞∩
k=1

[ x )k = {x}.

(5) β(m)|k = β(m|k).
(6) Thus [ β(m) )k = [ β(n) )k if and only if m|k = n|k.

To observe the dynamics of the Collatz procedure, we consider a map F : [0, 1) → [0, 1) conjugate to f ,

that is, F ◦β(n) = β ◦f(n) holds for any natural number n. The embedding β brings not only a well-defined

map F : β(N)→ β(N), but also an extension of F on [0, 1) as follows.

Since β(2n) = β(n)/2, we have β(n) = β ◦ f(2n) = F ◦ β(2n) = F (β(n)/2), hence F (x) = 2x for

x ∈ [0, 1/2) ∩ β(N). Thus we extend F on [0, 1/2) by F (x) = 2x. In order to extend F on [1/2, 1), we need

the followings.

Lemma 2.3. For any natural number m,n, [ β(3m+ 1) )k = [ β(3n+ 1) )k holds if and only if [ β(m) )k =

[ β(n) )k.

Proof. By Lemma 2.2, [ β(m) )k = [ β(n) )k means m ≡ n mod 2k. Then 3m+ 1 ≡ 3n+ 1 mod 2k, and

hence [ β(3m+ 1) )k = [ β(3n+ 1) )k. The converse also holds since 3 and 2
k are prime to each other. �

Consider a sequence nk = β−1(x|k), k = 1, 2, . . . , then we see β(nk) = x|k = (x|k+1)|k = β(nk+1)|k. By
Lemma 2.2 (5), we see nk+1 ≡ nk mod 2k, hence 3nk+1 + 1 ≡ 3nk + 1 mod 2k. (2.1) shows

[ β(3nk+1 + 1) )k+1 � [ β(3nk+1 + 1) )k = [ β(3nk + 1) )k ,

and then
∞∩
k=1

[ β(3nk + 1) )k consists of a unique point, expressed as lim
k→∞

β(3nk + 1). Thus we define a

conjugacy F : [0, 1)→ [0, 1) of the Collatz procedure f ;

(2.2) F (x) =

{
2x, x ∈ [0, 1/2),

lim
k→∞

β(3β−1(x|k) + 1), x ∈ [1/2, 1).

We see that for any odd number n, β(n)|k = β(n) ∈ [1/2, 1) by taking k > ord(n), therefore F (β(n)) =

β(3n + 1) = β(f(n)). We also see that [ x )k = [ β(nk) )k and [ F (x) )k = [ β(3nk + 1) )k as F (x) ∈
[ β(3nk + 1) )k by definition.

Lemma 2.4. {β(3n+ 1) | n ∈ N} is dense in [0, 1).

Proof. As 2 ≡ (−1) mod 3, we have 22k ≡ 1 mod 3 and 22k+1 ≡ (−1) mod 3. Given x ∈ [0, 1) and

k ∈ N, consider mk = β−1(x|k). Suppose mk ≡ 0 mod 3, then there exists n ∈ N with mk + 22k = 3n+ 1,

hence

β(3n+ 1) = β(mk + 22k) = x|k +
1

22k+1
∈ [ x )k .

Similarly when mk ≡ 1 mod 3 (resp. mk ≡ (−1) mod 3), we find n ∈ N with mk = 3n + 1 (resp.

mk + 22k+1 = 3n + 1), showing that β(3n + 1) ∈ [ x )k. As a result, for any x ∈ [0, 1) and k ∈ N, there

exists n ∈ N with |x− β(3n+ 1)| < 2−k. �

The following proposition implies that F is approximated by interval exchange maps.

Proposition 2.5. For any odd number n and any natural number k, the conjugacy F is a right continuous

bijection

F : [ β(n) )k → [ β(3n+ 1) )k .
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Proof. Consider x, y ∈ [ β(n) )k with x ̸= y, then we find a natural number l > k with [ x )l ∩ [ y )l = ∅.
Applying Lemma 2.2 and 2.3 for x|l and y|l, we see

[
β(3β−1(x|l) + 1)

)
l
∩
[
β(3β−1(y|l) + 1)

)
l
= ∅, showing

F (x) ̸= F (y), that is, F is injective on [ β(n) )k. Lemma 2.3 and 2.4 means that [ β(n) )k ∩ β(N) is

embedded in [ β(3n+ 1) )k densely by F . Then for any y ∈ [ β(3n+ 1) )k and natural number l > k, we

choose ml ∈ N such that β(ml) ∈ [ β(n) )k and β(3ml + 1) ∈ [ y )l. As β(3ml+1 + 1) ∈ [ y )l+1 ⊂ [ y )l,

we see β(3ml+1 + 1)|l = β(3ml + 1)|l, hence β(ml+1)|l = β(ml)|l by Lemma 2.3. Thus [ β(ml+1) )l+1 �

[ β(ml) )l. Let x be a unique accumulation point {x} =
∞∩
l>k

[ β(ml) )l, then x|l = β(ml)|l = β(ml|l). We see

y|l = β(3ml + 1)|l = β(3ml|l + 1)|l as 3ml + 1 ≡ 3ml|l + 1 mod 2l, hence

β(3β−1(x|l) + 1) = β(3ml|l + 1) ∈ [ y )l .

Taking l → ∞, we have F (x) = y, showing that F is a surjection [ β(n) )k → [ β(3n+ 1) )k.

For any x ∈ [ β(n) )k and l > k, we see F (x) ∈
[
β(3β−1(x|l) + 1)

)
l
by the definition of F . We also have

F (w) ∈
[
β(3β−1(w|l) + 1)

)
l
=

[
β(3β−1(x|l) + 1)

)
l
whenever w ∈ [ x )l, that is, |F (w) − F (x)| < 2−l if

w ∈ [ x )l. Therefore F is right continuous. �

Note that for any natural number n, [ β(n) )k = [β(n), β(n) + 2−k) if k > ord(n), thus w ∈ [ β(n) )k
means w ≥ β(n). Therefore we state the right continuity only in Proposition 2.5. Indeed, for example, we

see

lim
w→(0.11)2
w<(0.11)2

F (w) = (0.001)2 ̸= (0.0101)2 = F ((0.11)2).

0 10.5

0.5

1

Figure 1. The graph of F conjugate to the Collatz procedure
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3. Piecewise linear approximant of the conjugacy F

In view of Proposition 2.5, we construct a sequence of piecewise linear maps Fk approximating the

conjugacy F : for each k ∈ N, we define the k-th approximant Fk as

Fk(x) =

{
2x, for x ∈ [0, 1/2),

x− x|k + F (x|k)|k, for x ∈ [1/2, 1),

=

{
2x, for x ∈ [0, 1/2),

x− x|k + β(3β−1(x|k) + 1)|k, for x ∈ [1/2, 1).

By definition, Fk is right continuous. Since w|k = β(n)|k if w ∈ [ β(n) )k and β(3n|k + 1)|k = β(3n + 1)|k,
we see

F (w) = w − β(n)|k + β(3n+ 1)|k, for w ∈ [ β(n) )k .

Thus Fk([ β(n) )k) = [ β(3n+ 1) )k for any odd number n, compatible with Proposition 2.5. As a result, we

see F (x), Fk(x) ∈ [ β(3n+ 1) )k for any x ∈ [ β(n) )k, showing that

|F (x)− Fk(x)| < 2−k

holds for any x ∈ [1/2, 1). Therefore the sequence Fk, k = 1, 2, . . . approximates F uniformly on [1/2, 1).

In the following subsections, we investigate the approximants Fk’s to extract dynamical characteristics of

the map 3x+ 1.

3.1. Behavior of carries from lower to upper bits. For n, k ∈ N, we define an integer valued function

τk(n) =

[
3n|k + 1

2k

]
.

The function τk describes the number of bits carried in the calculation 3n+ 1 at k-th bit, as follows.

Proposition 3.1. Given an odd number n and take k ∈ N, then we have

(1) τk(n) ∈ {0, 1, 2}.
(2) For binary expressions n = (al · · · a0)2 and 3n+ 1 = (cl · · · c0)2 with l ≥ ord(n) + 2, we have

ck =
(
ak + τk(n)

)��1 for k ≤ l.

(3)

τk+1(n|k) =

{
0, if τk(n) = 0, 1,

1, if τk(n) = 2,
τk+1(n|k + 2k) =

{
1, if τk(n) = 0,

2, if τk(n) = 1, 2.

(4) If τk(n) = 0 or 2,
[
F (β(n|k))

)
k
=

[
F (β(n|k))

)
k+1

⊕
[
F (β(n|k + 2k))

)
k+1

holds, and if τk(n) = 1,
[
F (β(n|k))

)
k
=

[
F (β(n|k + 2k))

)
k+1

⊕
[
F (β(n|k))

)
k+1

holds.

Proof. (1) As n|k ≤ 2k − 1, we have

0 ≤
[
3n|k + 1

2k

]
≤

[
3 · 2k − 2

2k

]
=

[
3− 1

2k−1

]
≤ 2.
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(2) By definition, we see n|k+1 = (akak−1 · · · a0)2 = ak · 2k + n|k and 3n|k + 1 = τk(n) · 2k + (3n+ 1)|k. We

also see (3n+ 1)|k+1 = ck · 2k + (3n+ 1)|k while

(3n+ 1)|k+1 = (3n|k+1 + 1)|k+1 =
(
3(ak · 2k + n|k) + 1

) ���
k+1

(3.1)

=
(
(3ak + τk(n)) · 2k + (3n+ 1)|k

) ���
k+1

=
(
3ak + τk(n)

)��1 · 2k + (3n+ 1)|k.

Therefore ck =
(
3ak + τk(n)

)��1 = (
ak + τk(n)

)��1.
(3) The case τk+1(n) is shown by definition. We also see 3n|k+1 = τk(n) ·2k+r where r = (3n|k+1)|k < 2k.

Then we have

2k+1 < 3(n|k + 2k) + 1 = (τk(n) + 3) · 2k + r < (τk(n) + 4) · 2k.

When τk(n) = 0, it holds that 2k+1 < 3(n|k + 2k) + 1 < 2k+2, hence τk+1(n|k + 2k) = 1. When τk(n) = 1, 2,

we have

2k+2 = (1 + 3) · 2k ≤ (τk(n) + 3) · 2k + r < (2 + 4) · 2k = 3 · 2k+1,

hence τk+1(n|k + 2k) = 2.

(4) Taking n for n|k + ak · 2k, it comes from (3.1) that

β(3(n|k + ak · 2k) + 1)|k+1 = β(3n|k + 1)|k +
1

2k+1
β(3ak + τk(n))|1.

When τk(n) = 0 or 2, we have (3ak + τk(n))|1 = ak, and when τk(n) = 1, we have (3ak + τk(n))|1 = 1− ak,

hence the assertion. �

Since
[
β(n|k)

)
k
=

[
β(n|k)

)
k+1

⊕
[
β(n|k + 2k)

)
k+1

, Proposition 3.1 (4) means that F flips the images

of
[
β(n|k)

)
k+1

and
[
β(n|k + 2k)

)
k+1

if and only if τk(n) = 1.

3.2. Substitution dynamics and automaton associated with the approximant Fk’s. According to

Proposition 3.1, the behavior of τk’s brings a substitution dynamics and an automaton.

For an odd number n and k ∈ N, we call n stationary at k-th order when τk(n) = 0, exchanging when

τk(n) = 1 and unfixed when τk(n) = 2 respectively. We label each segment [ β(n) )k as S, E and U when n

is stationary, exchanging and unfixed at k-th order respectively. The original segment [ β(1) )1 = [1/2, 1) is

labeled U .

Then combining Proposition 3.1 (3) and (4), to increment the approximation order k by 1 causes a division

of each segment, and induces a substitution

σ : S → SE E → SU U → EU,

which are mapped by F as

F (σ) : F (S)→ F (S)F (E) F (E)→ F (U)F (S) F (U)→ F (E)F (U).

Accordingly we associate each β(n) with a string w = w1w2 · · · consists of S,E and U ; we take wk for

S,E or U when [ β(n) )k is labeled as S,E or U , in another words, when τk(n) = 0, 1, or 2 respectively.

Note that wk = S if k > ord(n) + 2 as 3n + 1 < 2ord(n)+3. The sequence w is given by calculating τk(n)

for each k, however, Proposition 3.1 (3) brings us another way to obtain w directly, without help of τk.

Actually, suppose that (0.b1b2 · · · bk)2 is stationary S at k-th order for instance, then (0.b1b2 · · · bkbk+1)2 is

again stationary S if bk+1 = 0 and exchanging E if bk+1 = 1.

Thus we define a deterministic finite state automaton M = ({S,E, U}, {0, 1}, δ, E, {S}) with states

S,E, U , an alphabet {0, 1} of input symbols, an initial state E, an accepting state S and a transition
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function δ given as

δ(S, 0) = S, δ(E, 0) = S, δ(U, 0) = E,

δ(S, 1) = E, δ(E, 1) = U, δ(U, 1) = U.

The automaton M encodes a binary (0.b1b2 · · · bk)2 to a string w = w1w2 · · ·wk over {S,E, U}, by scanning
each term of b1b2 · · · bk from left to right. Apparently we see the automaton M comes to the final state S

wheneverM has read binaries of the form (0.b1b2 · · · bk00)2 completely; any input data of the form b1 · · · bk00
is accepted by M

Conversely, we restore the binary F (β(n)) = β(3n+ 1) from β(n) and its encode w.

Corollary 3.2. Consider a binary expression β(n) = (0.b1b2 · · · bk)2 with bk−1 = bk = 0 for any odd number

n, and its encode w = w1w2 · · ·wk that the automaton M outputs. Let c1c2 · · · ck be a string consist of 0

and 1, defined as

ci =

{
bi, if wi−1 ̸= E,

1− bi, if wi−1 = E,

where we take w0 for E. Then we have

β(3n+ 1) = (0.c1c2 · · · ck)2.

Proof. Applying Proposition 3.1 (2) for n = (bkbk−1 · · · b1)2 and 3n+ 1 = (ckck−1 · · · c1)2, we have

ci =
(
bi + τi−1(n)

)��1 =
{
bi, if τi−1(n) = 0, 2,

1− bi, if τi−1(n) = 1,

hence the assertion. �

U

U

U U

E

E E

S

S S

E

E

U

U

U

1/2 3/45/8 7/8 1

Figure 2. Substitution σ on segments

S E U
1 1

10

0 0

Figure 3. Transitive diagram of M

3.3. An attracting property and a 3x+ 1 problem on Fk’s. It easily comes from the definition of Fk

that any finitely long binary sequence β(n) arrives at a certain k-bit binary sequence by a sufficiently large

number of iterations of Fk.

Proposition 3.3. Consider the k-th approximant Fk. Then for any natural number n, there exists t ∈ N

that

ord(β−1(F t
k(β(n)))) ≤ k.

Proof. Denote nl = β−1(F l
k(β(n))). When nl is odd, decompose nl = Al+Bl with Bl = nl|k and Al = nl−Bl.

By definition, we see β(nl)|k = β(Bl) and β(nl) = β(Al) + β(Bl). Thus Fk(β(nl)) = β(Al) + F (β(Bl))|k by
the definition of Fk. As Fk(β(nl)) ∈ [0, 1/2), we see

F 2
k (β(nl)) = 2

(
β(Al) + F (β(Bl))|k

)
= β(Al/2) + 2F (β(Bl))|k.

As ord(Al/2) = ord(Al)− 1, there exists t ∈ N such that At = 0, hence the assertion. �
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Thus the orbit of any finite binary sequence β(n) eventually joins that of a k bit one, meaning that we

concentrate our attention on k bit binaries to answer the following ‘Collatz-like’ problem on Fk:

Problem 3.4 (3x+ 1 problem on Fk). Show that for any natural number n, there exists t ∈ N such that

F t
k(β(n)) = 0 or 1/2.

Note that finite bit approximation causes the fixed point n = 0, e.g., for F3 we have

(0.101)2 �→ (0.000)2,

by eliminating binaries smaller than 2−3. Problem 3.4 moderates the original 3x + 1 problem, where only

finite numbers smaller than 2k are considered. Thus any orbit of β(n) are eventually periodic.

4. Interval preserving approximant of the conjugacy F

The approximant Fk behaves as an interval exchange transformation on [1/2, 1), while Fk expands the

interval [0, 1/2), which seems to cause some difficulties to close the true nature of the 3x+1 problem on Fk.

Accordingly, we consider another series of approximants Gk’s defined as

Gk(x) = x− x|k + F (x|k)|k, for x ∈ [0, 1),

=

{
x+ x|k, for x ∈ [0, 1/2),

x− x|k + β(3β−1(x|k) + 1)|k, for x ∈ [1/2, 1),

which are interval preserving and right continuous, approximating F uniformly on [0, 1);

|F (x)−Gk(x)| < 2−k for all x ∈ [0, 1).

Since Gk translates only each segment [ β(n) )k to another by definition, the orbit of any point x ∈ [0, 1)

are eventually periodic, described completely by the orbit of the k bit sequence x|k. Thus the corresponding
3x+ 1 problem is stated as follows, which reduces Problem 3.4 to a finite combinatorial one:

Problem 4.1 (3x+ 1 problem on Gk). Show that for any x ∈ [0, 1), there exists t ∈ N such that

Gt
k(x) ∈ [ 0 )k ∪ [ β(1) )k =

[
0, 1/2k

)
∪
[
1/2, 1/2 + 1/2k

)
.

Again we note that any x ∈ [ 0 )k is fixed under Gk. In spite of restricting our argument to finite bits,

Problem 4.1 seems to be not trivial. If we consider 5x+1 map instead of 3x+1 for instance, we find lots of

periodic orbits as increasing the approximation order k. Problem 4.1 appears to be presenting the unique

characteristics of 3x+ 1 map.

To attack the original 3x+1 problem, we have to face the fact that for any initial point β(n), it seems to

exist sufficiently large approximation order k where the orbit of β(n) under Gk pass through only stationary

segments. Consider n = 15 = (1111)2. Table 1 shows the corresponding orbits under G7 and G8 (omitting

even numbers). We see that the orbit pass through stationary segments for k ≥ 8; each segment label is

finished at S. Thus the orbit is determined independently of the approximation order k ≥ 8, meaning that

the orbit under Gk coincides with the original one under F . See the graphs of G1 to G8 and their orbits of

(0.1111)2 in Figures 4 and 5.
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Orbit under G7:

n β(n) segment label
15 .1111000 UUUUESS
23 .1110100 UUUEUES
35 .1100010 UUESSES
53 .1010110 UEUEUUE
1 .1000000 UESSSSS

Orbit under G8:

n β(n) segment label
15 .1111000 UUUUESSS
23 .1110100 UUUEUESS
35 .1100010 UUESSESS
53 .1010110 UEUEUUES
5 .1010000 UEUESSSS
1 .1000000 UESSSSSS

Table 1. Orbits of n = 15 under G7 and G8

5. A conjecture arisen from a graph symmetric to F

In view of the definition (2.2) of the conjugacy F , we also consider a map H symmetrical about (1/2, 1/2)

with F on β(N):

H(x) =

{
lim
k→∞

β(3β−1(x|k) + 1), x ∈ [0, 1/2),

2x− 1, x ∈ [1/2, 1).

In fact, the topological closure of

{(β(n), β(3n+ 1) | n ∈ N}
is symmetrical about (1/2, 1/2). For any natural numbers n and k, consider the one’s-complement n|k of k-
bit; n|k = 2k−1−n|k. Then we have β(n|k)+β(n|k) = 1−2−k. It is easily seen that (3n+ 1)|k = (3n|k+1)|k.
Then we see 1− 2−k = β((3n+ 1)|k) + β(3n+ 1|k) = β(3n+ 1)|k + β(3n|k + 1)|k. As a result, we show

lim
k→∞

(β(n|k), β(3n|k + 1)|k)

is symmetrical to (β(n), β(3n+ 1)) about (1/2, 1/2).

We also note that H is the conjugacy of the following arithmetic procedure:

h(n) =

{
3n+ 1, if n is even,

(n− 1)/2, if n is odd.

It is easy to find that h has at least three periodic orbits, which pass through n = 0, n = 4 and n = 16

respectively. However observation of the dynamics of H leads us to another conjecture:

Conjecture 5.1. For each natural number n, there exists a finite number t such that ht(n) = 0, 4 or 16.

Note that H is also right continuous on [0, 1), where we are to consider, so to speak, the ‘left continuous

version’ of F .
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Figure 4. Graphs of G1 to G6 with their orbit start from (0.1111)2
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Figure 5. Graphs of G7 and G8 with their orbit start from (0.1111)2
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