Interval Preserving Map Approximation of 3x + 1 **Problem**

Yukihiro HASHIMOTO

Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Introduction

The well-known and still unsolved 3x + 1 problem was firstly proposed by Lothar Collatz in 1930's, who had great interest in representation of integer functions by directed graphs.

Conjecture 1.1. Consider a map $f : \mathbf{N} \to \mathbf{N}$ such that

$$f(n) = \begin{cases} 3n+1, & \text{if } n \text{ is odd,} \\ n/2, & \text{if } n \text{ is even.} \end{cases}$$

Then for each natural number n, there exists a finite number t such that $f^t(n) = \underbrace{f \circ f \circ \cdots \circ f(n)}_{t-times} = 1.$

In [2], by introducing the reverse binary embedding of natural numbers into [0, 1), we obtained a graph \Re of the Collatz function f, which is a Cantor set generated by an iterated function system. Our interest is in the dynamics on the Cantor set \Re presented by the iteration of the Collatz procedure f. In this note, we advance the analysis of the dynamics. We introduce interval preserving maps on [0, 1), approximating the dynamics of the Collatz procedure, and consider a 3x + 1 problem of 'finite bit' version.

2. Reverse binary embedding of natural numbers and a conjugacy of Collatz procedure

Definition 2.1. Let $n = a_k \cdot 2^k + a_{k-1} \cdot 2^{k-1} + \cdots + a_0$ (= $(a_k a_{k-1} \cdots a_0)_2$ for short) be a binary expansion of a natural number n. The reverse binary embedding β of n is given by

$$\beta(n) = \frac{a_0}{2} + \frac{a_1}{2^2} + \dots + \frac{a_k}{2^{k+1}} = (0.a_0a_1 \cdots a_k)_2.$$

By definition, $\beta : \mathbf{N} \to [0, 1)$ is one-to-one and \mathbf{N} is densely embedded into [0, 1). Moreover, even and odd numbers are embedded in [0, 1/2) and [1/2, 1) respectively. We note that the binary expression $x = (0.b_1b_2\cdots)_2$ of a real number $x \in [0, 1)$ has ambiguity. If there exists $k \in \mathbf{N}$ such that $b_l = 1$ for all $l \ge k$, then $x = (0.b_1b_2\cdots b_{k-1})_2 + 2^{-k+1}$, hence x has another binary expression. Thus we always assume that any binary expression $x = (0.b_1b_2\cdots)_2$ has infinitely many 0's in the sequence b_j 's, including the case that x has a finite expression $x = (0.b_1b_2\cdots b_k)_2$. For a real number $x \in [0, 1)$ and $k \in \mathbf{N}$, $x|_k$ denotes a cut off of x at (-k-1)-th order in the binary expression;

$$x|_{k} = (0.b_{1}b_{2}\cdots b_{k})_{2} = \sum_{j=1}^{k} \frac{b_{j}}{2^{j}}, \text{ if } x = (0.b_{1}b_{2}\cdots)_{2} = \sum_{j=1}^{\infty} \frac{b_{j}}{2^{j}}$$

We use a notation $[x]_k$ as a segment $[x]_k, x]_k + \frac{1}{2^k}$, then we have a natural decomposition of segments

(2.1)
$$[(0.b_1b_2\cdots b_k)_2)_k = [(0.b_1b_2\cdots b_k0)_2)_{k+1} \oplus [(0.b_1b_2\cdots b_k1)_2)_{k+1} ,$$

where $[a, b) \oplus [b, c)$ stands for a division of an interval [a, c) at b. For a natural number n, we put $\operatorname{ord}(n) = [\log_2 n]$, where [x] stands for an integer not greater than x, and for a binary expression $n = (a_l a_{l-1} \cdots a_0)_2$, $n|^k$ denotes an *upper cut off* of n at k-th order;

$$n|^k = (a_{k-1}a_{k-2}\cdots a_0)_2 \equiv n \mod 2^k.$$

Apparently we have

Lemma 2.2. For $x, y \in [0, 1)$ and $m, n, k \in \mathbf{N}$,

-5-

 $y)_k$.

To observe the dynamics of the Collatz procedure, we consider a map $F : [0,1) \to [0,1)$ conjugate to f, that is, $F \circ \beta(n) = \beta \circ f(n)$ holds for any natural number n. The embedding β brings not only a well-defined map $F : \beta(\mathbf{N}) \to \beta(\mathbf{N})$, but also an extension of F on [0,1) as follows.

Since $\beta(2n) = \beta(n)/2$, we have $\beta(n) = \beta \circ f(2n) = F \circ \beta(2n) = F(\beta(n)/2)$, hence F(x) = 2x for $x \in [0, 1/2) \cap \beta(\mathbf{N})$. Thus we extend F on [0, 1/2) by F(x) = 2x. In order to extend F on [1/2, 1), we need the followings.

Lemma 2.3. For any natural number m, n, $[\beta(3m+1)]_k = [\beta(3n+1)]_k$ holds if and only if $[\beta(m)]_k = [\beta(n)]_k$.

Proof. By Lemma 2.2, $[\beta(m)]_k = [\beta(n)]_k$ means $m \equiv n \mod 2^k$. Then $3m + 1 \equiv 3n + 1 \mod 2^k$, and hence $[\beta(3m+1)]_k = [\beta(3n+1)]_k$. The converse also holds since 3 and 2^k are prime to each other. \Box

Consider a sequence $n_k = \beta^{-1}(x|_k)$, k = 1, 2, ..., then we see $\beta(n_k) = x|_k = (x|_{k+1})|_k = \beta(n_{k+1})|_k$. By Lemma 2.2 (5), we see $n_{k+1} \equiv n_k \mod 2^k$, hence $3n_{k+1} + 1 \equiv 3n_k + 1 \mod 2^k$. (2.1) shows

$$\left[\beta(3n_{k+1}+1)\right]_{k+1} \subseteq \left[\beta(3n_{k+1}+1)\right]_{k} = \left[\beta(3n_{k}+1)\right]_{k}$$

and then $\bigcap_{k=1}^{\infty} [\beta(3n_k+1))_k$ consists of a unique point, expressed as $\lim_{k\to\infty} \beta(3n_k+1)$. Thus we define a conjugacy $F: [0,1) \to [0,1)$ of the Collatz procedure f;

(2.2)
$$F(x) = \begin{cases} 2x, & x \in [0, 1/2), \\ \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), & x \in [1/2, 1). \end{cases}$$

We see that for any odd number n, $\beta(n)|_k = \beta(n) \in [1/2, 1)$ by taking $k > \operatorname{ord}(n)$, therefore $F(\beta(n)) = \beta(3n + 1) = \beta(f(n))$. We also see that $[x]_k = [\beta(n_k)]_k$ and $[F(x)]_k = [\beta(3n_k + 1)]_k$ as $F(x) \in [\beta(3n_k + 1)]_k$ by definition.

Lemma 2.4. $\{\beta(3n+1) \mid n \in \mathbb{N}\}$ is dense in [0,1).

Proof. As $2 \equiv (-1) \mod 3$, we have $2^{2k} \equiv 1 \mod 3$ and $2^{2k+1} \equiv (-1) \mod 3$. Given $x \in [0,1)$ and $k \in \mathbf{N}$, consider $m_k = \beta^{-1}(x|_k)$. Suppose $m_k \equiv 0 \mod 3$, then there exists $n \in \mathbf{N}$ with $m_k + 2^{2k} = 3n + 1$, hence

$$\beta(3n+1) = \beta(m_k + 2^{2k}) = x|_k + \frac{1}{2^{2k+1}} \in [x]_k.$$

Similarly when $m_k \equiv 1 \mod 3$ (resp. $m_k \equiv (-1) \mod 3$), we find $n \in \mathbf{N}$ with $m_k = 3n + 1$ (resp. $m_k + 2^{2k+1} = 3n + 1$), showing that $\beta(3n + 1) \in [x]_k$. As a result, for any $x \in [0, 1)$ and $k \in \mathbf{N}$, there exists $n \in \mathbf{N}$ with $|x - \beta(3n + 1)| < 2^{-k}$.

The following proposition implies that F is approximated by interval exchange maps.

Proposition 2.5. For any odd number n and any natural number k, the conjugacy F is a right continuous bijection

$$F: [\beta(n))_k \to [\beta(3n+1))_k.$$

Proof. Consider $x, y \in [\beta(n)]_k$ with $x \neq y$, then we find a natural number l > k with $[x]_l \cap [y]_l = \emptyset$. Applying Lemma 2.2 and 2.3 for $x|_l$ and $y|_l$, we see $\left[\beta(3\beta^{-1}(x|_l)+1)\right]_l \cap \left[\beta(3\beta^{-1}(y|_l)+1)\right]_l = \emptyset$, showing $F(x) \neq F(y)$, that is, F is injective on $[\beta(n)]_k$. Lemma 2.3 and 2.4 means that $[\beta(n)]_k \cap \beta(\mathbf{N})$ is embedded in $[\beta(3n+1)]_k$ densely by F. Then for any $y \in [\beta(3n+1)]_k$ and natural number l > k, we choose $m_l \in \mathbf{N}$ such that $\beta(m_l) \in [\beta(n)]_k$ and $\beta(3m_l+1) \in [y]_l$. As $\beta(3m_{l+1}+1) \in [y]_{l+1} \subset [y]_l$, we see $\beta(3m_{l+1}+1)|_l = \beta(3m_l+1)|_l$, hence $\beta(m_{l+1})|_l = \beta(m_l)|_l$ by Lemma 2.3. Thus $[\beta(m_{l+1})]_{l+1} \subseteq \beta(m_{l+1})|_l$ $[\beta(m_l))_l$. Let x be a unique accumulation point $\{x\} = \bigcap [\beta(m_l))_l$, then $x|_l = \beta(m_l)|_l = \beta(m_l)^l$. We see $y|_l = \beta$

$$(3m_l+1)|_l = \beta(3m_l|^l+1)|_l$$
 as $3m_l+1 \equiv 3m_l|^l+1 \mod 2^l$, hence

$$\beta(3\beta^{-1}(x|_l) + 1) = \beta(3m_l)^l + 1) \in [y]_l.$$

Taking $l \to \infty$, we have F(x) = y, showing that F is a surjection $[\beta(n)]_k \to [\beta(3n+1)]_k$.

For any $x \in [\beta(n)]_k$ and l > k, we see $F(x) \in [\beta(3\beta^{-1}(x|_l) + 1)]_l$ by the definition of F. We also have $F(w) \in \left[\beta(3\beta^{-1}(w|_l)+1)\right]_l = \left[\beta(3\beta^{-1}(x|_l)+1)\right]_l$ whenever $w \in [x]_l$, that is, $|F(w) - F(x)| < 2^{-l}$ if $w \in [x]_l$. Therefore F is right continuous.

Note that for any natural number n, $[\beta(n)]_k = [\beta(n), \beta(n) + 2^{-k})$ if $k > \operatorname{ord}(n)$, thus $w \in [\beta(n)]_k$ means $w \geq \beta(n)$. Therefore we state the right continuity only in Proposition 2.5. Indeed, for example, we see

$$\lim_{\substack{w \to (0.11)_2 \\ w < (0.11)_2}} F(w) = (0.001)_2 \neq (0.0101)_2 = F((0.11)_2)$$

FIGURE 1. The graph of F conjugate to the Collatz procedure

Yukihiro HASHIMOTO

3. Piecewise linear approximant of the conjugacy F

In view of Proposition 2.5, we construct a sequence of piecewise linear maps F_k approximating the conjugacy F: for each $k \in \mathbf{N}$, we define the k-th approximant F_k as

$$F_k(x) = \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + F(x|_k)|_k, & \text{for } x \in [1/2, 1), \end{cases}$$
$$= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1). \end{cases}$$

By definition, F_k is right continuous. Since $w|_k = \beta(n)|_k$ if $w \in [\beta(n)]_k$ and $\beta(3n|^k+1)|_k = \beta(3n+1)|_k$, we see

$$F(w) = w - \beta(n)|_k + \beta(3n+1)|_k, \quad \text{for } w \in [\beta(n))_k.$$

Thus $F_k([\beta(n))_k) = [\beta(3n+1))_k$ for any odd number n, compatible with Proposition 2.5. As a result, we see $F(x), F_k(x) \in [\beta(3n+1)]_k$ for any $x \in [\beta(n)]_k$, showing that

$$|F(x) - F_k(x)| < 2^{-k}$$

holds for any $x \in [1/2, 1)$. Therefore the sequence $F_k, k = 1, 2, \ldots$ approximates F uniformly on [1/2, 1).

In the following subsections, we investigate the approximants F_k 's to extract dynamical characteristics of the map 3x + 1.

3.1. Behavior of carries from lower to upper bits. For $n, k \in \mathbf{N}$, we define an integer valued function

$$\tau_k(n) = \left[\frac{3n|^k + 1}{2^k}\right].$$

The function τ_k describes the number of bits carried in the calculation 3n + 1 at k-th bit, as follows.

Proposition 3.1. Given an odd number n and take $k \in \mathbf{N}$, then we have

- (1) $\tau_k(n) \in \{0, 1, 2\}.$
- (2) For binary expressions $n = (a_l \cdots a_0)_2$ and $3n + 1 = (c_l \cdots c_0)_2$ with $l \ge \operatorname{ord}(n) + 2$, we have

$$c_k = (a_k + \tau_k(n)) \Big|^1 \quad \text{for } k \le l.$$

(3)

$$\tau_{k+1}(n|^k) = \begin{cases} 0, & \text{if } \tau_k(n) = 0, 1, \\ 1, & \text{if } \tau_k(n) = 2, \end{cases} \qquad \tau_{k+1}(n|^k + 2^k) = \begin{cases} 1, & \text{if } \tau_k(n) = 0, \\ 2, & \text{if } \tau_k(n) = 1, 2. \end{cases}$$
(4) If $\tau_k(n) = 0$, $\tau_k(n) = 0$,

(4) If
$$\tau_k(n) = 0$$
 or 2,

$$\left[F(\beta(n|^k)) \right]_k = \left[F(\beta(n|^k)) \right]_{k+1} \oplus \left[F(\beta(n|^k + 2^k)) \right]_{k+1}$$
holds, and if $\tau_k(n) = 1$,

$$\left[F(\beta(n|^k)) \right]_k = \left[F(\beta(n|^k + 2^k)) \right]_{k+1} \oplus \left[F(\beta(n|^k)) \right]_{k+1}$$

holds.

Proof. (1) As $n|^k \leq 2^k - 1$, we have

$$0 \le \left[\frac{3n^{k}+1}{2^{k}}\right] \le \left[\frac{3 \cdot 2^{k}-2}{2^{k}}\right] = \left[3 - \frac{1}{2^{k-1}}\right] \le 2.$$

$$-8-$$

(2) By definition, we see $n|^{k+1} = (a_k a_{k-1} \cdots a_0)_2 = a_k \cdot 2^k + n|^k$ and $3n|^k + 1 = \tau_k(n) \cdot 2^k + (3n+1)|^k$. We also see $(3n+1)|^{k+1} = c_k \cdot 2^k + (3n+1)|^k$ while

$$(3.1) \qquad (3n+1)^{k+1} = (3n^{k+1}+1)^{k+1} = \left(3(a_k \cdot 2^k + n^{k}) + 1\right)^{k+1} \\ = \left((3a_k + \tau_k(n)) \cdot 2^k + (3n+1)^k\right)^{k+1} = \left(3a_k + \tau_k(n)\right)^{1} \cdot 2^k + (3n+1)^k$$

Therefore $c_k = (3a_k + \tau_k(n))|^1 = (a_k + \tau_k(n))|^1$.

(3) The case $\tau_{k+1}(n)$ is shown by definition. We also see $3n|^k+1 = \tau_k(n) \cdot 2^k + r$ where $r = (3n|^k+1)|^k < 2^k$. Then we have

$$2^{k+1} < 3(n|^k + 2^k) + 1 = (\tau_k(n) + 3) \cdot 2^k + r < (\tau_k(n) + 4) \cdot 2^k.$$

When $\tau_k(n) = 0$, it holds that $2^{k+1} < 3(n|^k + 2^k) + 1 < 2^{k+2}$, hence $\tau_{k+1}(n|^k + 2^k) = 1$. When $\tau_k(n) = 1, 2$, we have

$$2^{k+2} = (1+3) \cdot 2^k \le (\tau_k(n)+3) \cdot 2^k + r < (2+4) \cdot 2^k = 3 \cdot 2^{k+1},$$

hence $\tau_{k+1}(n|^k + 2^k) = 2$. (4) Taking *n* for $n|^k + a_k \cdot 2^k$, it comes from (3.1) that

$$\beta(3(n)^{k} + a_{k} \cdot 2^{k}) + 1)|_{k+1} = \beta(3n)^{k} + 1)|_{k} + \frac{1}{2^{k+1}}\beta(3a_{k} + \tau_{k}(n))|_{1}$$

When $\tau_k(n) = 0$ or 2, we have $(3a_k + \tau_k(n))|^1 = a_k$, and when $\tau_k(n) = 1$, we have $(3a_k + \tau_k(n))|^1 = 1 - a_k$, hence the assertion.

Since $\left[\beta(n|^k) \right]_k = \left[\beta(n|^k) \right]_{k+1} \oplus \left[\beta(n|^k + 2^k) \right]_{k+1}$, Proposition 3.1 (4) means that F flips the images of $\left[\beta(n|^k) \right]_{k+1}$ and $\left[\beta(n|^k + 2^k) \right]_{k+1}$ if and only if $\tau_k(n) = 1$.

3.2. Substitution dynamics and automaton associated with the approximant F_k 's. According to Proposition 3.1, the behavior of τ_k 's brings a substitution dynamics and an automaton.

For an odd number n and $k \in \mathbf{N}$, we call n stationary at k-th order when $\tau_k(n) = 0$, exchanging when $\tau_k(n) = 1$ and unfixed when $\tau_k(n) = 2$ respectively. We label each segment $[\beta(n)]_k$ as S, E and U when n is stationary, exchanging and unfixed at k-th order respectively. The original segment $[\beta(1)]_1 = [1/2, 1)$ is labeled U.

Then combining Proposition 3.1 (3) and (4), to increment the approximation order k by 1 causes a division of each segment, and induces a substitution

$$\sigma: S \to SE \qquad E \to SU \qquad U \to EU,$$

which are mapped by F as

$$F(\sigma): F(S) \to F(S)F(E)$$
 $F(E) \to F(U)F(S)$ $F(U) \to F(E)F(U).$

Accordingly we associate each $\beta(n)$ with a string $\boldsymbol{w} = w_1 w_2 \cdots$ consists of S, E and U; we take w_k for S, E or U when $[\beta(n)]_k$ is labeled as S, E or U, in another words, when $\tau_k(n) = 0, 1$, or 2 respectively. Note that $w_k = S$ if $k > \operatorname{ord}(n) + 2$ as $3n + 1 < 2^{\operatorname{ord}(n)+3}$. The sequence \boldsymbol{w} is given by calculating $\tau_k(n)$ for each k, however, Proposition 3.1 (3) brings us another way to obtain \boldsymbol{w} directly, without help of τ_k . Actually, suppose that $(0.b_1b_2\cdots b_k)_2$ is stationary S at k-th order for instance, then $(0.b_1b_2\cdots b_kb_{k+1})_2$ is again stationary S if $b_{k+1} = 0$ and exchanging E if $b_{k+1} = 1$.

Thus we define a deterministic finite state automaton $M = (\{S, E, U\}, \{0, 1\}, \delta, E, \{S\})$ with states S, E, U, an alphabet $\{0, 1\}$ of input symbols, an initial state E, an accepting state S and a transition

function δ given as

 $\delta(S,0) = S, \quad \delta(E,0) = S, \quad \delta(U,0) = E,$ $\delta(S,1) = E, \quad \delta(E,1) = U, \quad \delta(U,1) = U.$

The automaton M encodes a binary $(0.b_1b_2\cdots b_k)_2$ to a string $\boldsymbol{w} = w_1w_2\cdots w_k$ over $\{S, E, U\}$, by scanning each term of $b_1b_2\cdots b_k$ from left to right. Apparently we see the automaton M comes to the final state Swhenever M has read binaries of the form $(0.b_1b_2\cdots b_k00)_2$ completely; any input data of the form $b_1\cdots b_k00$ is accepted by M

Conversely, we restore the binary $F(\beta(n)) = \beta(3n+1)$ from $\beta(n)$ and its encode w.

Corollary 3.2. Consider a binary expression $\beta(n) = (0.b_1b_2\cdots b_k)_2$ with $b_{k-1} = b_k = 0$ for any odd number n, and its encode $w = w_1w_2\cdots w_k$ that the automaton M outputs. Let $c_1c_2\cdots c_k$ be a string consist of 0 and 1, defined as

$$c_{i} = \begin{cases} b_{i}, & \text{if } w_{i-1} \neq E, \\ 1 - b_{i}, & \text{if } w_{i-1} = E, \end{cases}$$

where we take w_0 for E. Then we have

$$\beta(3n+1) = (0.c_1c_2\cdots c_k)_2.$$

Proof. Applying Proposition 3.1 (2) for $n = (b_k b_{k-1} \cdots b_1)_2$ and $3n + 1 = (c_k c_{k-1} \cdots c_1)_2$, we have

$$c_{i} = (b_{i} + \tau_{i-1}(n)) \Big|^{1} = \begin{cases} b_{i}, & \text{if } \tau_{i-1}(n) = 0, 2, \\ 1 - b_{i}, & \text{if } \tau_{i-1}(n) = 1, \end{cases}$$

hence the assertion.

FIGURE 2. Substitution σ on segments

FIGURE 3. Transitive diagram of M

3.3. An attracting property and a 3x + 1 problem on F_k 's. It easily comes from the definition of F_k that any finitely long binary sequence $\beta(n)$ arrives at a certain k-bit binary sequence by a sufficiently large number of iterations of F_k .

Proposition 3.3. Consider the k-th approximant F_k . Then for any natural number n, there exists $t \in \mathbf{N}$ that

$$\operatorname{ord}(\beta^{-1}(F_k^t(\beta(n)))) \le k.$$

Proof. Denote $n_l = \beta^{-1}(F_k^l(\beta(n)))$. When n_l is odd, decompose $n_l = A_l + B_l$ with $B_l = n_l|^k$ and $A_l = n_l - B_l$. By definition, we see $\beta(n_l)|_k = \beta(B_l)$ and $\beta(n_l) = \beta(A_l) + \beta(B_l)$. Thus $F_k(\beta(n_l)) = \beta(A_l) + F(\beta(B_l))|_k$ by the definition of F_k . As $F_k(\beta(n_l)) \in [0, 1/2)$, we see

$$F_k^2(\beta(n_l)) = 2(\beta(A_l) + F(\beta(B_l))|_k) = \beta(A_l/2) + 2F(\beta(B_l))|_k.$$

As $\operatorname{ord}(A_l/2) = \operatorname{ord}(A_l) - 1$, there exists $t \in \mathbb{N}$ such that $A_t = 0$, hence the assertion.

Thus the orbit of any finite binary sequence $\beta(n)$ eventually joins that of a k bit one, meaning that we concentrate our attention on k bit binaries to answer the following 'Collatz-like' problem on F_k :

Problem 3.4 $(3x + 1 \text{ problem on } F_k)$. Show that for any natural number n, there exists $t \in \mathbf{N}$ such that

$$F_k^t(\beta(n)) = 0 \ or \ 1/2.$$

Note that finite bit approximation causes the fixed point n = 0, e.g., for F_3 we have

$$(0.101)_2 \mapsto (0.000)_2$$

by eliminating binaries smaller than 2^{-3} . Problem 3.4 moderates the original 3x + 1 problem, where only finite numbers smaller than 2^k are considered. Thus any orbit of $\beta(n)$ are eventually periodic.

4. Interval preserving approximant of the conjugacy F

The approximant F_k behaves as an interval exchange transformation on [1/2, 1), while F_k expands the interval [0, 1/2), which seems to cause some difficulties to close the true nature of the 3x + 1 problem on F_k . Accordingly, we consider another series of approximants G_k 's defined as

$$G_k(x) = x - x|_k + F(x|_k)|_k, \quad \text{for } x \in [0, 1),$$
$$= \begin{cases} x + x|_k, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1), \end{cases}$$

which are interval preserving and right continuous, approximating F uniformly on [0, 1);

$$|F(x) - G_k(x)| < 2^{-k}$$
 for all $x \in [0, 1)$.

Since G_k translates only each segment $[\beta(n)]_k$ to another by definition, the orbit of any point $x \in [0, 1)$ are eventually periodic, described completely by the orbit of the k bit sequence $x|_k$. Thus the corresponding 3x + 1 problem is stated as follows, which reduces Problem 3.4 to a finite combinatorial one:

Problem 4.1 $(3x + 1 \text{ problem on } G_k)$. Show that for any $x \in [0, 1)$, there exists $t \in \mathbb{N}$ such that

$$G_k^t(x) \in [\ 0\)_k \cup [\ \beta(1)\)_k = \left[\ 0,\ 1/2^k\ \right) \cup \left[\ 1/2,\ 1/2 + 1/2^k\ \right).$$

Again we note that any $x \in [0]_k$ is fixed under G_k . In spite of restricting our argument to finite bits, Problem 4.1 seems to be not trivial. If we consider 5x + 1 map instead of 3x + 1 for instance, we find lots of periodic orbits as increasing the approximation order k. Problem 4.1 appears to be presenting the unique characteristics of 3x + 1 map.

To attack the original 3x + 1 problem, we have to face the fact that for any initial point $\beta(n)$, it seems to exist sufficiently large approximation order k where the orbit of $\beta(n)$ under G_k pass through only stationary segments. Consider $n = 15 = (1111)_2$. Table 1 shows the corresponding orbits under G_7 and G_8 (omitting even numbers). We see that the orbit pass through stationary segments for $k \ge 8$; each segment label is finished at S. Thus the orbit is determined independently of the approximation order $k \ge 8$, meaning that the orbit under G_k coincides with the original one under F. See the graphs of G_1 to G_8 and their orbits of $(0.1111)_2$ in Figures 4 and 5.

Yukihiro HASHIMOTO

Orbit under G_7 :			С	Orbit under G_8 :		
n	$\beta(n)$	segment label	1	n	eta(n)	segment label
15	.1111000	UUUUESS	1.	5	.1111000	UUUUESSS
23	.1110100	UUUEUES	23	$3 \mid$.1110100	UUUEUESS
35	.1100010	UUESSES	3	5	.1100010	UUESSESS
53	.1010110	UEUEUUE	5	$3 \mid$.1010110	UEUEUUES
1	.1000000	UESSSSS		5	.1010000	UEUESSSS
	1	1		$1 \mid$.1000000	UESSSSSS

TABLE 1. Orbits of n = 15 under G_7 and G_8

5. A conjecture arisen from a graph symmetric to F

In view of the definition (2.2) of the conjugacy F, we also consider a map H symmetrical about (1/2, 1/2) with F on $\beta(\mathbf{N})$:

$$H(x) = \begin{cases} \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), & x \in [0, 1/2), \\ 2x - 1, & x \in [1/2, 1). \end{cases}$$

In fact, the topological closure of

$$\{(\beta(n),\beta(3n+1) \mid n \in \mathbf{N}\}\$$

is symmetrical about (1/2, 1/2). For any natural numbers n and k, consider the one's-complement $\overline{n|^k}$ of k-bit; $\overline{n|^k} = 2^k - 1 - n|^k$. Then we have $\beta(n|^k) + \beta(\overline{n|^k}) = 1 - 2^{-k}$. It is easily seen that $\overline{(3n+1)|^k} = (3\overline{n|^k}+1)|^k$. Then we see $1 - 2^{-k} = \beta((3n+1)|^k) + \beta(\overline{3n+1}|^k) = \beta(3n+1)|_k + \beta(3\overline{n}|^k+1)|_k$. As a result, we show

$$\lim_{k \to \infty} (\beta(\overline{n|^k}), \beta(3\overline{n|^k} + 1)|_k)$$

is symmetrical to $(\beta(n), \beta(3n+1))$ about (1/2, 1/2).

We also note that H is the conjugacy of the following arithmetic procedure:

$$h(n) = \begin{cases} 3n+1, & \text{if } n \text{ is even,} \\ (n-1)/2, & \text{if } n \text{ is odd.} \end{cases}$$

It is easy to find that h has at least three periodic orbits, which pass through n = 0, n = 4 and n = 16 respectively. However observation of the dynamics of H leads us to another conjecture:

Conjecture 5.1. For each natural number n, there exists a finite number t such that $h^t(n) = 0, 4$ or 16.

Note that H is also right continuous on [0, 1), where we are to consider, so to speak, the 'left continuous version' of F.

References

- [1] K. Dajani and C. Kraaikamp, *Ergodic theory of numbers*, Carus Mathematical Monographs **29**, Mathematical Association of America, 2002.
- [2] Y. Hashimoto, A fractal set associated with the Collatz problem, Bull. of Aichi Univ. of Education, Natural Science 56, pp 1-6, 2007.
- [3] J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages and Computations, 2nd Ed. Addison-Wesley, 2001.
- [4] J. Lagarias, The 3x + 1 problem and its generalization, Amer. Math. Monthly 92, pp. 3-23, 1985.
- [5] M. Lothaire, *Algebraic combinatorics on words*, Encyclopedia of mathematics and its applications **90**, Cambridge University Press, 2002.
- [6] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8, pp 477-493, 1957.
- [7] G. Wirsching, The Dynamical System Generated by the 3x + 1 Function, Lect. Notes in Math. 1681, Springer, 1998.
- [8] H. Xie, Grammatical complexity and one-dimensional dynamical systems, Directions in chaos 6, World Scientific, 1997.

FIGURE 4. Graphs of G_1 to G_6 with their orbit start from $(0.1111)_2$

FIGURE 5. Graphs of G_7 and G_8 with their orbit start from $(0.1111)_2$

(Received September 14, 2011)