
Abstract

We give an alternative proof of the multisummability property of divergent power series solutions of
ordinary differential equations of irregular singular type, which is already known (cf. references).

1 Introduction

We consider the following nonlinear ordinary differential equation of irregular singular type

(1.1) xp+1
d
dx
u(x) = f (x, u(x)),

where x ∈ C, p ∈ {1, 2, · · · } and f (x, u) is a quadratic polynomial in u variable with coefficients that are
multisummable formal power series in x variable.

We assume that f (0, 0) = 0 and ∂ f∂u (0, 0) = a � 0. Then the equation has a unique formal power series
solution û(x) =

∑
n≥1 unxn because of the assumption a � 0.

We shall prove the multisummability of this formal solution. We have to mention that for the multi-
summability of such formal solutions, B. Braaksma [3] gave a complete proof at the first time. Different
proofs are obtained by many authors (cf. W. Balser [1], [2], J.-P. Ramis and Y. Sibuya [4] and their refer-
ences). In the paper [3] by Braaksma, the key point of the proof is that he proved an analytic continuation
property of solutions of the convolution equations which are obtained by Borel transformation of the ordi-
nary differential equation. In the book [1] by Balser, he employed an iteration method for solutions of the
convolution equations. In this paper, we shall define an approximation of solutions by series of functions
for the convolution equations in Section 5, which enable us to give a different proof from theirs, but under a
restricted assumption (3.4) on the type of multisummability.

The contents of this paper are as follows. In section 2, we give a brief review of the definition of
multisummability. In section 3, we state the multisummability result (Theorem 2). In section 4, we prove
our main theorem admitting Proposition 5, where we introduce the convolution equations derived from the
original ordinary differential equation and study the existence and growth estimate of solutions in a sectorial
domain. In section 5, we give the proof of Proposition 5. In this paper, we study only a single equation
(1.1), but the result for system of equations is obtained similarly.

2 Definition of multisummability

We give notations and definitions by following Balser [1], [2].
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• Sector For d ∈ R, α > 0 and ρ (0 < ρ ≤ ∞), we define a sector S = S (d, α, ρ) by

(2.1) S (d, α, ρ) :=
{
x ∈ C; |d − arg x| < α

2
, 0 < |x| < ρ

}
,

where d, α and ρ are called the direction, the opening angle and the radius of S , respectively. We write
S (d, α,∞) = S (d, α).

• Gevrey formal power series We denote by C[[x]] the ring of formal power series of x with coefficients
in C. For k > 0, we define C[[x]]1/k, the ring of formal power series of Gevrey order 1/k in the following
way: f̂ (x) =

∑∞
n=0 fnx

n ∈ C[[x]]1/k if there exist some positive constants C and K such that for any n, we
have

(2.2) | fn| ≤ CKnΓ(1 + n/k),

where Γ denotes the Gamma function.

• Gevrey asymptotic expansion Let k > 0, f̂ (x) =
∑∞
n=0 fnx

n ∈ C[[x]]1/k and f (x) be analytic in S (d, α, ρ).
Then we define that

(2.3) f (x) ∼k f̂ (x) in S (d, α, ρ),

if for any closed subsector S � of S (d, α, ρ), there exist some positive constants C and K such that for any N,
we have

(2.4)

������� f (x) −
N−1∑
n=0

fnxn
������� ≤ CK

N |x|NΓ (1 + N/k) , x ∈ S �.

• Exponential growth function Let k > 0 and f (x) be analytic in S (d, α). Then we define that f (x) ∈
Exp(k, S (d, α)) if for any closed subsector S � of S (d, α), there exist some positive constants C and δ such
that we have

(2.5) | f (x)| ≤ Ceδ|x|k , x ∈ S �.

• Laplace transformation Let f (x) ∈ Exp(k, S (d, α)) and bounded at the origin. Then we define the
k-Laplace transformation (Lk,d f )(ξ) by

(2.6) (Lk,d f )(ξ) :=
1
ξk

∫ ∞(d)
0

exp
{
− (x/ξ)k

}
f (x)dxk,

where the path of integration runs from 0 to∞ along arg x = d. Then (Lk,d f )(ξ) is analytic in S (d, α�+π/k, ρ)
for any α� < α and some positive ρ which depends on α�.

Let f̂ (x) =
∑∞
n=0 fnx

n ∈ C[[x]]. Then we define the formal k-Laplace transformation (L̂k f̂ )(ξ) by

(2.7) (L̂k f̂ )(ξ) :=
∞∑
n=0

fnΓ(1 + n/k)ξn ∈ C[[ξ]].

Let k1 > 0. If f (x) ∼k1 f̂ (x) in S (d, α) and f (x) ∈ Exp(k, S (d, α)), then (Lk,d f )(ξ) ∼k2 (L̂k f̂ )(ξ) in S (d, α� +
π/k, ρ) with k2 = (k−1 + k−11 )−1.
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• Borel transformation Let ε > 0, and let g(ξ) be analytic in S (d, α, ρ) with α > π/k and bounded at the
origin. Then we define the k-Borel transformation (Bk,dg)(x) by

(2.8) (Bk,dg)(x) :=
1
2πi

∫
γk

ξkg(ξ) exp
{
(x/ξ)k

}
dξ−k,

where the path γk(⊂ S (d, α, ρ)) runs from the origin along arg ξ = d + (π + ε)/(2k) to some finite point ξ1,
then along the circle |ξ| = |ξ1| to the ray arg ξ = d − (π + ε)/(2k), and back to the origin along this ray. Then
(Bk,dg)(x) ∈ Exp(k, S (d, α − π/k)).

Let ĝ(ξ) =
∑∞
n=0 gnξ

n ∈ C[[ξ]]. Then we define the formal k-Borel transformation (B̂kĝ)(x) by

(2.9) (B̂kĝ)(x) :=
∞∑
n=0

gn
Γ(1 + n/k)

xn ∈ C[[x]].

Let k1 > 0. If g(ξ) ∼k1 ĝ(ξ) in S (d, α, ρ) with α > π/k, then (Bk,dg)(x) ∼k2 (B̂kĝ)(x) in S (d, α − π/k), where
k2 = (k−11 − k−1)−1 if k1 < k, and k2 = ∞ if k1 ≥ k, respectively.

Moreover , if f (x) and g(ξ) are satisfied the assumptions above, we have (Bk,dLk,d f )(x) = f (x), and
(Lk,dBk,dg)(ξ) = g(ξ).

• Convolution Let f (ξ) and g(ξ) be analytic in S (d, α, ρ), and bounded at the origin. Then k-convolution
of f (ξ) and g(ξ) is defined by

(2.10) ( f ∗k g)(ξ) =
∫ ξ
0
f ((ξk − ηk)1/k) d

dη
g(η)dη.

We remark that this k-convolution is not commutative in general. In fact, by integration by parts, we get
the following.

( f ∗k g)(ξ) = g(ξ) f (0) − f (ξ)g(0) + (g ∗k f )(ξ).

If f (0) = g(0) = 0, the k-convolution is commutative.
We give the relationship between k-Laplace transformation, k-Borel transformation and k-convolution.
If f , g ∈ Exp(k, S (d, α)) with f (0) = g(0) = 0, then we have Lk,d( f ∗k g) = (Lk,d f ) · (Lk,dg) on

S (d, α� + π/k, ρ). Similarly if f and g are analytic in S (d, α, ρ) with α > π/k and f (0) = g(0) = 0, then we
have Bk,d( f · g) = (Bk,d f ) ∗k (Bk,dg) on S (d, α − π/k).

• Acceleration We define the (k̃, k)-acceleration operator in a direction d denoted byAk̃,k;d. Let k̃ > k > 0
and κ = (k−1 − k̃−1)−1. Let f (x) ∈ Exp(κ, S (d, α)) and bounded at the origin. Then we define the (k̃, k)-
accerelation of f by

(2.11) (Ak̃,k;d f )(ξ) :=
1
ξk

∫ ∞(d)
0

f (x)Ck̃/k
(
(x/ξ)k

)
dxk.

Here for α > 1, the kernel function Cα(z) is given by

(2.12) Cα(z) =
1
2πi

∫
γ
u1/α−1 exp{u − zu1/α}du,

where the path of integration γ is Hankel’s integral for the inverse Gamma function: from ∞ along arg u =
−π to some u0(< 0), then on the circle |u| = |u0| to arg u = π, and back to∞ along the ray of argument π.

Then (Ak̃,k;d f )(ξ) is analytic in S (d, α� + π/κ, ρ) for any α� < α and some positive ρ which depends on
α�. Moreover, if f (x) ∼k1 f̂ (x) in S (d, α), then

(2.13) (Ak̃,k;d f )(ξ) ∼k2
∞∑
n=0

fn
Γ(1 + n/k)
Γ(1 + n/k̃)

ξn in S (d, α� + π/k, ρ), where k2 = (k−11 + κ
−1)−1.
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If f , g ∈ Exp(κ, S (d, α)) with f (0) = g(0) = 0, then we haveAk̃,k;d( f ∗k g) = (Ak̃,k;d f ) ∗k̃ (Ak̃,k;dg).

• Definition of multisummability Let q ∈ N and f̂ (x) ∈ C[[x]]. Let +∞ = k0 > k1 > k2 > · · · >
kq−1 > kq > 0 and define κi by κi = (k−1i − k−1i−1)−1 for i = 1, 2, · · · , q. For i = 1, 2, · · · , q, let di ∈ R and
Si = S (di, π/ki + εi) (εi > 0) and S �i = S (di, εi) be sectors such that Sj−1 ⊂ Sj, j = 2, 3, · · · , q. Then f̂ (x)
is k-summable (k = (k1, k2, · · · , kq)) in multidirection d = (d1, d2, · · · , dq), if the following conditions are
satisfied:

a) fq(ξ) := (B̂kq f̂ )(ξ) is convergent in a neighborhood of the origin.
b) For j = q, q − 1, · · · , 1, the function f j can be continued analytically on S �j and f j ∈ Exp(κ j, S �j ),

and if j � 1, we define f j−1 := Ak j−1,k j;d j f j which is analytic in S (d j, π/κ j + ε�j, ρ j) with ε�j ≤ ε j − ε j−1 and
ρ j > 0. In this case, we have f1 ∈ Exp(κ1, S �i ) (κ1 = (k−11 − k−10 )−1 = k1).

Then the k-sum of f̂ (x) in multidirection d is defined by Lk1,d1 f1 and denoted by fk,d(x). We notice that
fk,d(x) ∼kq f̂ (x) in S (d1, π/k1 + ε�1, ρ1).

We may omit the direction d in the operators Lk,d,Bk,d,Ak̃,k;d and fk,d.

3 Result

In the equation (1.1), let the form of f (x, u) be

(3.1) f (x, u) = f [0](x) + f [1](x)u(x) + f [2](x)u2(x).

Here without loss of generality, we may assume that f [2](0) = 0. In fact, by putting ũ(x) = u(x) − u1x =∑
n≥2 unxn, we get an equation of ũ of the form

(3.2) xp+1
d
dx
ũ = f̃ [0](x) + f̃ [1](x)ũ(x) + f̃ [2](x)ũ2(x),

where f̃ [1](0) = ∂ f∂u (0, 0) = a and f̃
[2](x) = O(x). We put f̃ [1](x) = a + ˜̃f [1](x) ( ˜̃f [1](0) = 0). After deleting

”tilde”, we obtain the following form

(3.3) xp+1
d
dx
u(x) = f [0](x) + au(x) + f [1](x)u(x) + f [2](x)u2(x).

For the multisummability result, we assume the following conditions.
Inhomogeneous part f [0](x) and the coefficients f [1](x), f [2](x) are k-summable in multidirection d.
Moreover, we assume that

(3.4) p ≥ k1.

We remark that in the following we interpret for the estimates of solutions that κ0 = p if p > k1, and

κ1 =


k1 if p = k1,
κ̃1 = (k−11 − p−1)−1 if p > k1.

To formulate the result we use the following definition.

Definition 1 The set of singular directions D for the operator xp+1 ddx − a is defined by

(3.5) D = {(arg a + 2πn)/p; n = 0, 1, 2, · · · , p − 1}.
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Under the above preparations, we can prove the following result.

Theorem 2 Let u(x) be the formal solution of (3.3).
When p = k1, the formal solution u(x) is k-summable in multidirection (τ1, d2, · · · , dq), where τ1 � D

and S (τ1, δ1) ⊂ S (d1, ε1).
When p > k1, the formal solution u(x) is (p, k1, · · · , kq)-summable in multidirection (d0, d1, · · · , dq),

where d0 � D and S (d0, π/p + ε0) ⊂ S (d1, π/k1 + ε1).

In the case where p = k1, its multisum uk(x) is the analytic solution of (3.3) in S̃1 = S (τ1, π/k1 + δ�1, ρ
�
1) for

any δ�1 < δ1 and ρ
�
1 > 0, and uk(x) ∼kq u(x) in S̃1. In the case where p > k1, its multisum u(p,k)(x) is the

analytic solution of (3.3) in S̃0 = S (d0, π/p+ ε�0, ρ
�
0) for any ε

�
0 < ε0 and ρ

�
0 > 0, and u(p,k)(x) ∼kq u(x) in S̃0.

4 Convolution equations

We recall the equation (3.3) as follows.

(4.1) xp+1
d
dx
u(x) = f [0](x) + a u(x) + f [1](x)u(x) + f [2](x)u2(x),

where a � 0 and f [�](x) = O(x) as x→ 0 for � = 0, 1, 2.
First, we take formal ki-Borel and p-Borel transformation of the equation (4.1).
For i = 1, 2, · · · , q,

(4.2)
ξp

Γ(1 + p/ki)
∗ki ξ

d
dξ
vi(ξ) = f

[0]
i (ξ) + avi(ξ) + ( f

[1]
i ∗ki vi)(ξ) + ( f

[2]
i ∗ki vi ∗ki vi)(ξ),

and for i = 0, 1,

(4.3) pD−1ξ ξ
p d
dξ
vi(ξ) = f

[0]
i (ξ) + avi(ξ) + ( f

[1]
i ∗p vi)(ξ) + ( f

[2]
i ∗p vi ∗p vi)(ξ),

where D−1ξ =
∫ ξ
0 , and f

[�]
i are given as follows: Let S �i = S (di, εi) for i = 1, 2, · · · , q.

1) f [�]q := B̂kq f [�], which is holomorphic in a neighborhood of the origin and belongs to Exp(κq, S �q).
2) f [�]i := Aki,ki+1 f

[�]
i+1, which is analytic in S (di+1, π/κi + ε

�
i+1, ρi+1) and belongs to Exp(κi, S

�
i ) for

i = q − 1, · · · , 2, 1.
3) f [�]0 := Ap,k1 f

[�]
1 = Bp f

[�]
k ∈ Exp(p, S (d1, π/κ̃1 + ε

�
1)) with κ̃1 = (k

−1
1 − p−1)−1 if p > k1.

Here we use the relation (Bpxp+1 ddxu)(ξ) = pD−1ξ ξp
d
dξ (Bpu)(ξ) in the expression (4.3).

We differentiate the convolution equations (4.2) and (4.3) with respect to ξ and putwi(ξ) = d/(dξ)vi(ξ)⇔
vi(ξ) = (D−1ξ wi)(ξ). By dividing by a in (4.2), and pξ

p − a in (4.3) respectively, we obtain the following
expressions.

For i = 1, 2, · · · , q,

wi(ξ) =
1
a
d
dξ

{
ξp

Γ(1 + p/ki)
∗ki ξwi(ξ) − f

[0]
i (ξ)(4.4)

−
(
f [1]i ∗ki (D

−1
ξ wi)

)
(ξ) −

(
f [2]i ∗ki (D

−1
ξ wi) ∗ki (D−1ξ wi)

)
(ξ)
}
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=
1
a

[
p(p − ki)
Γ(1 + p/ki)

ξki−1
(
ξp−2ki ∗ki D−1ξ (ξkiwi)

)
(ξ) − d

dξ
f [0]i (ξ)

−ξki−1
( d
dξ
f [1]i (ξ) · ξ1−ki ∗ki (D−1ξ wi)

)
(ξ)

−ξki−1
( d
dξ
f [2]i (ξ) · ξ1−ki ∗ki (D−1ξ wi)(ξ) ∗ki (D−1ξ wi)(ξ)

)]

=: Ti(D−1ξ wi)(ξ),

and for i = 0, 1,

wi(ξ) =
1

pξp − a
d
dξ

[
f [0]i (ξ) +

(
f [1]i ∗p (D

−1
ξ wi)

)
(ξ) +

(
f [2]i ∗p (D

−1
ξ wi) ∗p (D−1ξ wi)

)
(ξ)
]

(4.5)

=
1

pξp − a

[
d
dξ
f [0]i (ξ) + ξp−1

( d
dξ
f [1]i (ξ) · ξ1−p ∗p (D−1ξ wi)(ξ)

)

+ξp−1
( d
dξ
f [2]i (ξ) · ξ1−p ∗p (D−1ξ wi)(ξ) ∗p (D−1ξ wi)(ξ)

)]

=: Ti(D−1ξ wi)(ξ),

where we use the relation

d
dξ
(u ∗k v)(ξ) = u(0)v�(ξ) + ξk−1

∫ ξ
0
u�((ξk − ηk)1/k) · (ξk − ηk)(1−k)/kv�(η)dη

= u(0)v�(ξ) + ξk−1(u�(ξ) · ξ1−k ∗k v(ξ))

and wi(0) = 0.
We shall analyze the above convolution equations (4.4) and (4.5).
Let U�i be a closed subsector of S

�
i = S (di, εi) and U(r) := U

�
i ∩ {|ξ| ≤ r} for some r > 0. Let B(r) be the

space of continuous functions u : U(r)→ C such that u is analytic in the interior of U(r) and

(4.6) ||u||r := sup
ξ∈U(r)

|u(ξ)| < ∞.

Lemma 3 1) Let k > 0. For u, v ∈ B(r), we have the following inequality.
�����
d
dξ

(
(D−1ξ u) ∗k (D−1ξ v)

)
(ξ)
����� =
�����ξk−1
(
u(ξ) · ξ1−k ∗k (D−1ξ v)(ξ)

)����� ≤
1
k
B(1/k, 1/k)||u||r ||v||r |ξ|,(4.7)

where B(α, β) denotes the Beta function.
2) Let κ ≥ k > 0. Let u and v be analytic in S (d, ε) and satisfy

(4.8) |u(ξ)| ≤ U |ξ|�
Γ((1 + �)/k)

eδ|ξ|
κ

, |v(ξ)| ≤ V |ξ|m
Γ((1 + m)/k)

eδ|ξ|
κ

, ξ ∈ S (d, ε),

where U,V, δ > 0 and �,m ≥ 0. Then we have
�����
d
dξ

(
(D−1ξ u) ∗k (D−1ξ v)

)
(ξ)
����� =
�����ξk−1
(
u(ξ) · ξ1−k ∗k (D−1ξ v)(ξ)

)����� ≤
1
k

UV |ξ|�+m+1
Γ((� + m + 2)/k)

eδ|ξ|
κ

.(4.9)

Lemma 3 1) implies that the operator Ti is well-defined on B(s) for some positive s. In fact, we have the
following estimates.

(4.10)
�����
d
dξ
f [�]i (ξ)

����� ≤ F,
�����

1
pξp − a

����� ≤ A, ξ ∈ U(s).
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Therefore we get the following estimates by Lemma 3. For wi ∈ B(s), we have

(4.11) |Ti(D−1ξ wi)(ξ)| ≤ C1(k)||wi||ssp +C2 +C3(k)||wi||ss +C4(k)||wi||2s s2 := fi(s; ||wi||s) < ∞,

for i = 1, 2, · · · , q and

(4.12) |Ti(D−1ξ wi)(ξ)| ≤ C�1 +C�2(k)||wi||ss +C�3(k)||wi||2s s2 := fi(s; ||wi||s) < ∞,

for i = 0, 1, where Cm and C�m are positive constants.

Proposition 4 The equation Tq(D−1ξ wq) = wq has a unique holomorphic solution in a neighborhood of
origin.

Proposition 4 follows from above estimates for Ti. More precisely, we can prove that the operator Tq is a
contraction map on a proper Banach space by taking r sufficiently small as follows:
� Proof of Proposition 4 � Let M > 0. We define a closed ball B(r,M) := {u ∈ B(r); ||u||r ≤ M}, where we
put U(r) = {|ξ| ≤ r} in the above definition.

First, let M > C2 and let r0 be a smallest positive root of fq(r;M) = M. For any M with M > C2 if we
take r > 0 such that r ≤ min{r0, s}, then the operator Tq is well-defined on B(r,M).　

Next, let u, v ∈ B(r,M). Then we have

(4.13) |Tq(D−1ξ u) − Tq(D−1ξ v)| ≤ (C1(k)rp +C3(k)r + 2MC4(k)r2)||u − v||r := g(r)||u − v||r.

If we take r1 ≤ s such that g(r1) < 1, then Tq becomes a contraction map on B(r1,M).
Consequently, a closed ball B(r,M) (M > C2) is defined as follows:
First, we take and fix r1 > 0 such that g(r1) < 1.
Next, we take r > 0 such that r ≤ min{s, r0, r1}.
By taking the closed ball B(r,M) like this, we see that the equation Tq(D−1ξ wq) = wq has a unique

solution in B(r,M).

Proposition 5 The case p = k1. Let i ∈ {1, 2, · · · , q}. Let S �1 = S (τ1, δ1) and S �i = S (di, εi) (i ≥ 2) be
sectors and S �1 ∩ D = φ. Let wi(ξ) be an analytic solution of (4.4)-(i) or (4.5)-(1) on S �i ∩ {|ξ| < s} for some
positive s. Then wi can be continued analytically on S �i and wi ∈ Exp(κi, S �i ).
The case p > k1. Let i ∈ {0, 1, · · · , q}. Let S �i = S (di, εi) be sectors and S �0 ∩ D = φ. Let wi(ξ) be an

analytic solution of (4.4)-(i) or (4.5)-(0) on S �i ∩ {|ξ| < s} for some positive s. Then wi can be continued
analytically on S �i and wi ∈ Exp(κi, S �i ), where we write κ1 = κ̃1(= (k−11 − p−1)−1) and κ0 = p.

Remark 6 Let i ∈ {2, 3, · · · , q}. Let wi ∈ Exp(κi, S �i ) be a solution of (4.4)-(i). Then wi−1 =
d
dξ (Aki−1,kiD−1ξ wi)

is a solution of (4.4)-(i − 1) or (4.5)-(1) in S (di, π/κi + ε�i , ρ�i) for any ε�i < εi and some positive ρ�i .
Moreover, in case where p > k1, if w1 ∈ Exp(κ̃1, S �1) is a solution of (4.4)-(1), then w0 =

d
dξ (Ap,k1D−1ξ w1)

is a solution of (4.5)-(0) in S (d1, π/κ̃1 + ε�1, ρ
�
1) for any ε

�
1 < ε1 and some positive ρ

�
1.

We postpone the proof of Proposition 5 and give the proof of Theorem 2.

� Proof of Theorem 2 � We only give the proof for the case where p = k1 because the proof for the case
where p > k1 is obtained similarly.

Let S �i = S (di, εi) for i ∈ {2, 3, · · · , q} and S �1 = S (τ1, δ1). Let u(x) be a formal solution of (3.3)
and set wq(ξ) = d

dξ (B̂kqu)(ξ). Then wq is a solution of (4.4)-(q) by Proposition 4 and it can be continued
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analytically on S �q and wq ∈ Exp(κq, S �q) by Proposition 5. Therefore wq−1(ξ) = d
dξ (Akq−1,kqD−1ξ wq)(ξ) is

well-defined and it is a solution of (4.4)-(q−1) by Remark 6. Moreover wq−1 is analytic in S �q−1 and belongs
to Exp(κq−1, S �q−1) by Proposition 5. Inductively we see that wi(ξ) =

d
dξ (Aki,ki+1D−1ξ wi+1)(ξ) ∈ Exp(κi, S �i )

and wi is a solution of (4.4)-(i). Finally, w1(ξ) = d
dξ (Ap,k2D−1ξ w2)(ξ) ∈ Exp(κ1, S �1), where κ1 = k1 = p and

it is a solution of (4.5)-(1). Hence u(x) is k-summable in multidirection (τ1, d2, · · · , dq) and its multisum is
given by uk(x) = (Lk1D−1ξ w1)(x), which is analytic in S (τ1, π/k1 + δ�1, ρ�1) for any δ�1 < δ1 and some positive
ρ�1.

5 Proof of Proposition 5

We shall prove Proposition 5. First, we define the sequence {wni (ξ)}n≥0 by the following recurrence formulas:
(A): For i = 1, 2, · · · , q,

w0i (ξ) = −1
a
d
dξ
f [0]i (ξ),

wni (ξ) = −1
a
d
dξ

[(
f [1]i (ξ) ∗ki (D−1ξ wn−1i )

)
(ξ)

+
∑

�+m=n−2

(
f [2]i ∗ki (D

−1
ξ w

�
i ) ∗ki (D−1ξ wmi )

)
(ξ) − ci(ξp ∗ki ξw

n−p
i )(ξ)

 , (n ≥ 1)

where w−ki (ξ) ≡ 0 if k > 0 and ci =
p(p−ki)
Γ(1+p/ki)

.
(B): For i = 0, 1,

w0i (ξ) =
1

pξp − a
d
dξ
f [0]i (ξ),

wni (ξ) =
1

pξp − a
d
dξ


(
f [1]i ∗p (D

−1
ξ w

n−1
i )
)
(ξ) +

∑
�+m=n−2

(
f [2]i ∗p (D

−1
ξ w

�
i ) ∗p (D−1ξ wmi )

)
(ξ)

 , (n ≥ 1)

where w−ki (ξ) ≡ 0 if k > 0.
We putWi(ξ) :=

∑
n≥0 wni (ξ). We see thatWi(ξ) is nothing but a formal power series solution of (4.4, 4.5)-

(i) from above recurrence formulas and in particular, the formal power series solution Wq(ξ) is convergent
in a neighborhood of the origin by Proposition 4. Therefore Wq(ξ) coincides with wq(ξ) = d/(dξ)(B̂kqu)(ξ).
Then we can prove the following proposition.

Proposition 7 The formal solution Wi(ξ) of (4.4, 4.5)-(i) is an analytic function on S �i , and belongs to
Exp(κi, S �i ), where S

�
1 = S (τ1, δ1) and S

�
i = S (di, εi) (i ≥ 2) if p = k1, and S �i = S (di, εi) if p > k1.

In order to prove Proposition 7, we recall estimates of the coefficients and inhomogeneous part, that is,
f [�]i (ξ) ∈ Exp(κi, S (di, εi)) for i = 0, 1, · · · , q, where κ1 = k1 and κ0 = p. Therefore we have the following
estimates.

(5.1)
�����
d
dξ
f [�]i (ξ)

����� ≤
L

Γ(1/ki)
exp{δ|ξ|κi}, ξ ∈ S �i , (� = 0, 1, 2)

with some positive constants L and δ. Moreover, it is assumed

(5.2)
�����

1
pξp − a

����� ≤ A, ξ ∈ S �i (i = 0, 1).

Proposition 7 is derived from the following lemma.
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Lemma 8 Let i ∈ {0, 1, 2, · · · , q}. For any n, each function wni (ξ), which is defined by recurrence formula
(A) or (B), is analytic in the sector S �i and there exists a positive constant Bi,n such that the following
inequalities hold for ξ ∈ S �i .
For i = 1, 2, · · · , q,

(5.3) |wni (ξ)| ≤ Bi,n
|ξ|n

Γ ((1 + n)/ki)
exp{δ|ξ|κi}.

For i = 0,

(5.4) |wn0(ξ)| ≤ B0,n
|ξ|n

Γ ((1 + n)/p)
exp{δ|ξ|p}.

Moreover, there are some positive constants C and K such that for all n the following inequalities hold.
For i = 2, 3, · · · , q, or i = 1 and p > k1,

(5.5) Bi,n ≤ CKnn!1/p.

For i = 1 and p = k1, or i = 0,

(5.6) Bi,n ≤ CKn.

By taking the integral path in the convolution as the segment [0, ξ], we may see that eachwni (ξ) is analytic
in S �i . The inequalities (5.3) and (5.4) follow from Lemma 3 2). In fact, we shall prove the inequality (5.3)
for the case where i ≥ 2, or i = 1 and p > k1.

We consider the recurrence formula (A).
For n = 0, since we have |w0i (ξ)| = (1/|a|)|d/(dξ) f [0]i (ξ)| ≤ (1/|a|)(L/Γ(1/ki))eδ|ξ|

κi , we may put Bi,0 =
L/|a|.

We assume that the inequality (5.3) holds up to n − 1. Then we have from Lemma 3 2)

(5.7) |wni (ξ)| ≤
|ξ|n

Γ((1 + n)/ki)
eδ|xi|

κi L
|a|


1
ki
Bi,n−1 +

1
k2i

∑
�+m=n−2

Bi,�Bi,m +
n − p + 1
L

Bi,n−p

 ,

where Bi,−k = 0 if k > 0. Therefore we may put

(5.8) Bi,n =
L
|a|


1
ki
Bi,n−1 +

1
k2i

∑
�+m=n−2

Bi,�Bi,m +
n − p + 1
L

Bi,n−p

 .

This means that the desired inequality (5.3) is obtained.
In order to prove the inequalities (5.5) and (5.6), we use the majorant method effectively for recurrence

formulas which are satisfied by Bi,n. We only consider the case where i ≥ 2. For the recurrence formula
(5.8), we insert Bi,n = Ann!1/p and divide both hand sides by n!1/p.

An = b1
(n − 1)!1/p
n!1/p

An−1 + b2
∑

�+m=n−2
A�Am

�!1/pm!1/p

n!1/p
+ b3(n − p + 1)

(n − p)!1/p
n!1/p

An−p

≤ b1An−1 + b2
∑

�+m=n−2
A�Am + b3An−p,

where A−k = 0 if k > 0 and bi are some constants. We consider the following recurrence formula for {Cn}.

(5.9) Cn = b1Cn−1 + b2
∑

�+m=n−2
C�Cm + b3Cn−p, C0 = Bi,0,
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where C−k = 0 if k > 0. Then we can see that Cn ≥ An = Bi,n/n!1/p and the generating function of {Cn}
is holomorphic in a neighborhood of the origin. Therefore we obtain Bi,n ≤ Cnn!1/p ≤ CKnn!1/p by some
positive constants C and K.

Now, we can prove Proposition 7 by Lemma 8 immediately as follows. For i ≥ 2,

(5.10) |Wi(ξ)| ≤
∑
n≥0
|wni (ξ)| ≤ C

∑
n≥0

(K|ξ|)nn!1/p
Γ((1 + n)/ki)

eδ|ξ|
κi
.

Since by Stirling’s formula we have

n!1/p

Γ((1 + n)/ki)
≤ ckn

Γ(1 + n/κ̃i)
,

with some positive constants c and k, where κ̃i = (k−1i − p−1)−1(≤ κi), we obtain the desired exponential
estimate.

(5.11) |Wi(ξ)| ≤ C̃
∑
n≥0

(K̃|ξ|)n
Γ(1 + n/κ̃i)

eδ|ξ|
κi ≤ C1 exp(K1|ξ|κ̃i + δ|ξ|κi).

We can prove the estimates for the case i = 0, 1 similarly. We omit the detail.
Finally, we have to show thatWi(ξ) is a unique analytic solution of (4.4, 4.5)-(i) in U(r) := U�i ∩{|ξ| ≤ r},

where U�i is a closed subsector of S
�
i for some r small. As we proved Proposition 4, we can prove the

uniqueness of solution of (4.4, 4.5)-(i) on U(r) by proving that Ti is a contraction map on a proper Banach
space if r is chosen sufficiently small. Hence the proof of Proposition 5 is finished.
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