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Abstract. In this paper we characterize “large” regular graphs using cer-
tain entries in the projection matrices onto the eigenspaces of the graph.
As a corollary of this result, we show that “large” association schemes
become P -polynomial association schemes. Our results are summarized
as follows. Let G = (V,E) be a connected k-regular graph with d + 1
distinct eigenvalues k = θ0 > θ1 > · · · > θd. Since the diameter of G is
at most d, we have the Moore bound

|V | ≤ M(k, d) = 1 + k

d−1∑
i=0

(k − 1)i.

Note that if |V | > M(k, d − 1) holds, the diameter of G is equal to d.
Let Ei be the orthogonal projection matrix onto the eigenspace corre-
sponding to θi. Let ∂(u, v) be the path distance of u, v ∈ V .

Theorem. Assume |V | > M(k, d − 1) holds. Then for x, y ∈ V with
∂(x, y) = d, the (x, y)-entry of Ei is equal to

− 1

|V |
∏

j=1,2,...,d,j ̸=i

θ0 − θj
θi − θj

.

If a symmetric association scheme X = (X, {Ri}di=0) has a relation Ri

such that the graph (X,Ri) satisfies the above condition, then X is P -
polynomial. Moreover we show the “dual” version of this theorem for
spherical sets and Q-polynomial association schemes.

1. Introduction

A symmetric association scheme of class d is a pair X = (X, {Ri}di=0), where
X is a finite set and {Ri}di=0 is a set of binary relations on X satisfying
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(1) R0 = {(x, x) | x ∈ X},
(2) X ×X =

∪d
i=0 Ri, and Ri ∩Rj is empty if i ̸= j,

(3) tRi = Ri for any i ∈ {0, 1, . . . , d}, where tRi = {(y, x) | (x, y) ∈ Ri},
(4) for any i, j, k ∈ {0, 1, . . . , d}, there exists an integer pkij such that for any

pair x, y ∈ X with (x, y) ∈ Rk, it holds that pkij = |{z ∈ X | (x, z) ∈
Ri, (z, y) ∈ Rj}|.

The i-th adjacency matrix Ai of X is the matrix indexed by X with the entry

(Ai)xy =

{
1 if (x, y) ∈ Ri,

0 otherwise.

The Bose–Mesner algebra A of X is the algebra generated by the adjacency
matrices A0, A1, . . . , Ad over the complex field C. Then {Ai}di=0 is a natu-
ral basis of A, and A is also closed under the Hadamard product, i.e., the
entry-wise matrix product. A has another remarkable basis which consists of
primitive idempotents E0, E1, . . . , Ed [2, Section II.3]. We define Pi(j), Qi(j)
by the following equalities:

Ai =
d∑

j=0

Pi(j)Ej , Ei =
1

|X|

d∑
j=0

Qi(j)Aj .

The values Pi(j), Qi(j) are called the parameters of an association scheme.
We use the notation ki = Pi(0) (degrees), and mi = Qi(0) (multiplicities) for
i = 0, 1, . . . , d.

A symmetric association scheme is called a P -polynomial scheme with
respect to the ordering A0, A1, . . . , Ad if there exists a polynomial vi of degree
i such that Ai = vi(A1) for each i ∈ {0, 1, . . . , d}. We say a symmetric asso-
ciation scheme is a P -polynomial scheme with respect to Ai if it has the P -
polynomial property with respect to some ordering A0, Ai, Ai2 , Ai3 , . . . , Aid .
A symmetric association scheme is called a Q-polynomial scheme with respect
to the ordering E0, E1, . . . , Ed if there exists a polynomial v∗i of degree i such
that Ei = v∗i (E

◦
1 ) for each i ∈ {0, 1, . . . , d}, where ◦ means the multiplicity is

the Hadamard product. Moreover a symmetric association scheme is called a
Q-polynomial scheme with respect to Ei if it has the Q-polynomial property
with respect to some ordering E0, Ei, Ei2 , Ei3 , . . . , Eid .

The P -polynomial schemes and Q-polynomial schemes are interpreted
as discrete cases of two-point homogeneous spaces and rank-1 symmetric
spaces, respectively [2, Section III.6], [5, Chapter 9]. Wang [16] showed that
compact two-point homogeneous spaces are compact rank-1 symmetric spaces
and vise versa. Bannai and Ito [2, Section III.6] conjectured that if class d is
sufficiently large, a primitive association scheme is P -polynomial if and only if
it is Q-polynomial. Here a symmetric association scheme (X, {Ri}di=0) is said
to be primitive if the graph (X,Ri) is connected for each i = 1, . . . , d. One of
the main contributions is a sufficient condition for association schemes to have
polynomial properties. Almost characterizations of the polynomial properties
are proved by the relationship among the parameters on the scheme, see
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[2, 3, 7, 9, 11, 10]. In this paper, we just focus on the size, and prove that a
sufficiently large association scheme has the polynomial property.

There are two upper bounds for the size of a symmetric association
scheme X = (X, {Ri}di=0). We have two interpretations of X as regular graphs
Ai with eigenvalues {Pi(j)}dj=0, and spherical sets Ei with inner products

{Qi(j)/|X|}dj=0. If Ai is connected, then Ai is of diameter at most d, and we
have the Moore bound. Namely if Pi(0) is distinct from Pi(1), Pi(2), . . . , Pi(d),
then we have

|X| ≤ M(ki, d) = 1 + ki

d−1∑
j=0

(ki − 1)j .

On the other hand, if the diagonal entries of Ei are distinct from the others,
Ei becomes the Gram matrix of some spherical finite set with at most d
distances between distinct points. We have an upper bound for the cardinality
of a spherical finite set with only s distances [6]. Namely if Qi(0) is distinct
from Qi(1), Qi(2), . . . , Qi(d), then

|X| ≤ N(mi, d) =

(
mi + d− 1

d

)
+

(
mi + d− 2

d− 1

)
.

In the present paper, we show the following:

(i) If Pi(0) is distinct from Pi(1), Pi(2), . . . , Pi(d) and |X| > M(ki, d − 1),
then (X, {Ri}di=0) has the P -polynomial property with respect to Ai.

(ii) If Qi(0) is distinct from Qi(1), Qi(2), . . . , Qi(d) and |X| > N(mi, d−1),
then (X, {Ri}di=0) has the Q-polynomial property with respect to Ei.

Though these sufficient conditions are fairly simple, there are many exam-
ples including strongly regular graphs, Johnson or Hamming schemes of suf-
ficiently large degree or multiplicity.

2. Regular graphs and P -polynomial schemes

Let G = (V,E) be a connected k-regular graph with at most d + 1 distinct
eigenvalues, and A the adjacency matrix. Since the diameter of G is at most
d, we have the Moore bound

|V | ≤ M(k, d) = 1 + k
d−1∑
j=0

(k − 1)j .

Let k = θ0 > θ1 > θ2 > · · · > θs be distinct eigenvalues of G, where s ≤ d. Let
Ei be the orthogonal projection matrix onto the eigenspace corresponding to
θi. In particular E0 = (1/|V |)J , where J is the all-ones matrix. Let ∂(x, y) be
the path distance of x ∈ V and y ∈ V . Let Ri = {(x, y) | x, y ∈ V, ∂(x, y) = i}
and Ri(x) = {y | y ∈ V, ∂(x, y) = i}. For each i ∈ {1, . . . , d}, we define

Ki =
∏

j=1,2,...,s,j ̸=i

θ0 − θj
θi − θj

.

We begin with the following result.
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Theorem 2.1. Let G = (V,E) be a connected k-regular graph with diameter
d. If G has precisely d + 1 distinct eigenvalues then, for (x, y) ∈ Rd, the
(x, y)-entry of Ei is −Ki/|V | for each i ∈ {1, 2, . . . , d}.

Proof. Define

fi(t) =
∏

j=1,2,...,d,j ̸=i

t− θj
θi − θj

for each i ∈ {1, 2, . . . , d}. Then we have

fi(A) =

d∑
j=0

fi(θj)Ej = KiE0 + Ei.

Because the degree of fi(t) is d−1 and G is of diameter d, the (x, y)-entry of
fi(A) is equal to 0 for (x, y) ∈ Rd. Therefore the (x, y)-entry of Ei is equal
to −Ki/|V | for each i ∈ {1, 2, . . . , d}. □

We now use the Moore bound to show that a large connected regular
graph satisfies the assumption of Theorem 2.1.

Theorem 2.2. Let G = (V,E) be a connected k-regular graph with at most
d + 1 distinct eigenvalues. Assume |V | > M(k, d − 1) holds. Then we have
the following.

(1) G is of diameter d.
(2) G has d+ 1 distinct eigenvalues.
(3) For (x, y) ∈ Rd, the (x, y)-entry of Ei is −Ki/|V | for each i ∈ {1, . . . , d}.
(4) For each x ∈ V , the number of entries −Ki/|V | in the x-th row of Ei

is at least |V | −M(k, d− 1).

Proof. (1): The diameter of G is at most d because G has at most d + 1
distinct eigenvalues. If the diameter of G is smaller than d, then we have
|V | ≤ M(k, d− 1), a contradiction. Therefore the diameter of G is d.

(2): From (1), G has at least d+1 distinct eigenvalues. Therefore G has
exactly d+ 1 distinct eigenvalues.

(3): This follows immediately from (1), (2), and Theorem 2.1.

(4): For each x ∈ V , we have |
∪d−1

i=0 Ri(x)| ≤ M(k, d − 1). Therefore
|Rd(x)| ≥ |V | − M(k, d − 1) holds. This implies that the number of entries
−Ki/|V | in the x-th row of Ei is at least |V | −M(k, d− 1). □

We apply the above theorem to symmetric association schemes. First
we recall the following easy fact.

Lemma 2.3 ([8, Lemma 3.2, page 229] or [11, Lemma 3.2]). Let X = (X, {Ri}di=0)
be a symmetric association scheme of class d. Suppose that Pj(0) is distinct
from Pj(i) for i = 1, . . . , d. Then (X,Rj) has diameter d if and only if X is
P -polynomial with respect to Aj

By Theorem 2.2 and Lemma 2.3, we immediately obtain the follow-
ing theorem which shows the P -polynomial property of a large association
scheme.
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Theorem 2.4. Let X = (X, {Ri}di=0) be a symmetric association scheme. Sup-
pose Pj(0) is distinct from Pj(1), . . . , Pj(d). If |X| > M(kj , d−1) holds, then
X is a P -polynomial association scheme with respect to Aj.

We also remark that Theorem 2.1, together with Lemma 2.3, gener-
alizes the implication (1) ⇒ (2) of the following known characterization of
P -polynomial association schemes.

Theorem 2.5 ([11, 12]). Let X = (X, {Ri}di=0) be a symmetric association
scheme of class d. Suppose that Pj(0), Pj(1), . . . , Pj(d) are mutually distinct.
Then the following are equivalent:

(1) X is a P -polynomial association scheme with respect to Aj.
(2) There exists l ∈ {0, 1, . . . , d} such that for each h ∈ {1, 2, . . . , d},∏

i=1,2,...,d,i ̸=h

Pj(0)− Pj(i)

Pj(h)− Pj(i)
= −Qh(l).

Moreover if (2) holds, then Al is the d-th matrix with respect to the resulting
polynomial ordering.

Though the condition in Theorem 2.4 is fairly simple, there are many
examples.

Example 2.6. Every connected strongly regular graph with v vertices satisfies
the assumption in Theorem 2.4 because v > M(k, 1) = 1 + k.

Example 2.7. Let G be a connected regular graph of girth g, with d + 1
distinct eigenvalues, and v vertices, which satisfies g ≥ 2d − 1. It is known
that G is distance-regular [14, 1]. We have the lower bound v ≥ M(k, d− 1)
from the assumption of girth [15]. If G attains this bound, then G is a Moore
graph with only d distinct eigenvalues. Therefore v > M(k, d− 1) holds, and
G satisfies the condition in Theorem 2.4. Known examples are listed in [14].
For instance, a Moore graph satisfies g ≥ 2d− 1.

Example 2.8. Infinite families of distance-regular graphs of diameter d with
unbounded degree k satisfy the condition in Theorem 2.4 for sufficiently large
k. Indeed the number of the vertices can be expressed by the polynomial∑d

i=0 vi(k) in k of degree d. For example, the Johnson scheme J(n, 3) satisfies
the condition for every n ≥ 51, and the Hamming scheme H(3, q) satisfies
the condition for every q ≥ 7.

3. Spherical sets and Q-polynomial schemes

The dual results of those in Section 2 will be obtained in this section. Let
A(X) = {⟨x, y⟩ | x, y ∈ X,x ̸= y} for X in the unit sphere Sm−1, where
⟨x, y⟩ is the usual inner product of x and y. Let X be a finite subset in
Sm−1 which satisfies |A(X)| ≤ d, where d is not as in the previous section.
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Let θ∗1 > · · · > θ∗s be the elements in A(X), and θ∗0 = 1, where s ≤ d and
θ∗0 > θ∗1 > · · · > θ∗s . Then we have the absolute bound [6]:

|X| ≤ N(m, d) =

(
m+ d− 1

d

)
+

(
m+ d− 2

d− 1

)
.

We can obtain the graph Gi = (X,Ri), where Ri = {(x, y) | x, y ∈ X, ⟨x, y⟩ =
θ∗i } for each i ∈ {1, 2, . . . , d}. Let Ai be the adjacency matrix of Gi. For each
i ∈ {1, 2, . . . , d}, we define

K∗
i =

∏
j=1,2,...,s,j ̸=i

θ∗0 − θ∗j
θ∗i − θ∗j

.

We say an n× n matrix E is Schur-connected if there is a polynomial q such
that q(E◦) has rank n [8], where ◦ means the Hadamard product. Note that
the Gram matrix M of a finite set X in Sm−1 is Schur-connected by taking
q(x) as the annihilator

∏
α∈A(X)(x − α). The Schur-diameter of E is the

least integer d such that q(E◦) has rank n for some polynomial q of degree d
[8]. If the Schur-diameter of M is d, then |A(X)| ≥ d. Let Pi(S

m−1) denote
the linear space of the restrictions of polynomials of degree at most i, in m
variables, to Sm−1.

We begin with the following result.

Theorem 3.1. Let X be a finite set in Sm−1 which satisfies that the Schur-
diameter of the Gram matrix M is equal to d. If |A(X)| = d then −K∗

i is an
eigenvalue of Ai for each i ∈ {1, 2, . . . , d}. Moreover the multiplicity of −K∗

i

is at least |X| −N(m, d− 1).

Proof. Define

f∗
i (t) =

∏
j=1,2,...,d,j ̸=i

t− θ∗j
θ∗i − θ∗j

for each i ∈ {1, 2, . . . , d}. Note that every diagonal entry of M is 1. Then we
have

f∗
i (M

◦) = K∗
i I +Ai. (3.1)

For each x ∈ X and m variables ξ = (ξ1, . . . , ξm), we consider a polynomial
f∗
i (⟨x, ξ⟩). By Lemma 2.2 in [13], the rank of K∗

i I + Ai = (f∗
i (⟨x, y⟩))x,y∈X

is bounded above by N(m, d − 1) = dimPd−1(S
m−1). Therefore the matrix

(3.1) has eigenvalue zero with multiplicity at least |X| −N(m, d − 1). Thus
Ai has the eigenvalue −K∗

i with multiplicity at least |X| −N(m, d− 1). □

We use the absolute bound to show that a large spherical set satisfies
the assumption of Theorem 3.1.

Theorem 3.2. Let X be a finite set in Sm−1 which satisfies |A(X)| ≤ d.
Assume |X| > N(m, d− 1) holds. Then we have the following.

(1) The Schur-diameter of the Gram matrix M of X is equal to d.
(2) X has d inner products, namely |A(X)| = d.
(3) −K∗

i is an eigenvalue of Ai for each i ∈ {1, 2, . . . , d}.
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(4) The multiplicity of −K∗
i is at least |X| −N(m, d− 1).

Proof. (1): Since |A(X)| ≤ d holds, the Schur-diameter of M is at most
d. If the Schur-diameter of M is less than d, then there exists a polyno-
mial q(x) of degree less than d such that the rank of q(M◦) is |X|. Since
q(⟨x, ξ⟩) ∈ Pd−1(S

m−1) for x ∈ Sm−1, in variables ξ = (ξ1, . . . , ξm), we have
|X| ≤ N(m, d− 1) = dimPd−1(S

m−1) by Lemma 2.2 in [13], a contradiction.
Therefore the Schur-diameter of the Gram matrix M of X is equal to d.

(2): From (1), we have |A(X)| ≥ d, hence |A(X)| = d.
(3),(4): These follow immediately from (1), (2), and Theorem 3.1. □

We apply the above theorems to symmetric association schemes. First
we recall the following fact.

Lemma 3.3 ([10, Lemma 2.2]). Let X = (X, {Ri}di=0) be a symmetric as-
sociation scheme of class d. Suppose that Qj(0) is distinct from Qj(i) for
i = 1, . . . , d. Then Ej has Schur-diameter d if and only if X is Q-polynomial
with respect to Ej.

By Theorem 3.2 and Lemma 3.3, we immediately obtain the follow-
ing theorem which shows the Q-polynomial property of a large symmetric
association scheme.

Theorem 3.4. Let X = (X, {Ri}di=0) be a symmetric association scheme. As-
sume Qj(0) is distinct from Qj(1), . . . , Qj(d). If |X| > N(mj , d− 1), then X
is a Q-polynomial scheme with respect to Ej.

We also remark that Theorem 3.1, together with Lemma 3.3, gener-
alizes the implication (1) ⇒ (2) of the following known characterization of
Q-polynomial association schemes.

Theorem 3.5 ([10, 12]). Let X = (X, {Ri}di=0) be a symmetric association
scheme of class d. Suppose that Qj(0), Qj(1), . . . , Qj(d) are mutually distinct.
Then the following are equivalent:

(1) X is a Q-polynomial association scheme with respect to Ej.
(2) There exists l ∈ {0, 1, . . . , d} such that for each h ∈ {1, 2, . . . , d},∏

i=1,2,...,d,i ̸=h

Qj(0)−Qj(i)

Qj(h)−Qj(i)
= −Ph(l).

Moreover if (2) holds, then El is the d-th matrix with respect to the resulting
polynomial ordering.

The following are examples satisfying the condition in Theorem 3.4.

Example 3.6. Every connected strongly regular graph with v vertices satisfies
the assumption in Theorem 3.4 because v > N(m1, 1) = 1 +m1.

Example 3.7. LetX ⊂ Sm−1 be a spherical t-design [6] with d distances which
satisfies t ≥ 2d−2. Then the setX has the structure of a Q-polynomial associ-
ation scheme [6]. From the inequality t ≥ 2d−2, we have |X| ≥ N(m, d−1) [6],
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which is called an absolute bound for spherical designs. If |X| = N(m, d− 1)
holds, then X has only d − 1 distances [6]. Thus |X| > N(m, d − 1) holds.
The association scheme obtained from X satisfies the assumption in The-
orem 3.4. Known examples are listed in [4]. For instance, a tight spherical
design satisfies t ≥ 2d− 2.

Example 3.8. Infinite families of Q-polynomial association schemes with un-
bounded multiplicity m1 satisfy the condition in Theorem 3.4 for sufficiently
large m1. Indeed the number of the vertices can be expressed by the poly-

nomial
∑d

i=0 v
∗
i (|X|m1) in m1 of degree d. For example, the Johnson scheme

J(n, 3) satisfies the condition for every n ≥ 7, and the Hamming scheme
H(3, q) satisfies the condition for every q ≥ 4.
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