A Geometric Approach to Beatty Sequences in Higher Dimensions

Yukihiro HASHIMOTO

Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Introduction

In 1926, the following problem is proposed by Beatty[4], which has roots in astronomy. For a real number r, [r] stands for the greatest integer which does not exceed r, and we put $\{r\} = r - [r]$.

Problem 1.1. Let $\alpha, \beta > 1$ be irrational numbers with $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Show that the sequences $\mathbf{N}_{\alpha} = \{ [n\alpha] \mid n \in \mathbf{N} \}$ and $\mathbf{N}_{\beta} = \{ [n\beta] \mid n \in \mathbf{N} \}$ form a partition of \mathbf{N} , that is,

$$\mathbf{N} = \mathbf{N}_{\alpha} \cup \mathbf{N}_{\beta}, \ \mathbf{N}_{\alpha} \cap \mathbf{N}_{\beta} = \emptyset.$$

In other words, every natural number q is represented as either $q = [n\alpha]$ or $q = [n\beta]$. A lot of studies on the subject has been done, e.g., see the references in Stolarsky[16].

In this note, we consider the meaning of the equation

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1,$$

and give a geometric interpretation of the Beatty sequence, which tempts us to extend Beatty's statement in higher dimensions. Digressing from the original purpose, in the attempt to construct a Beatty-like sequence in 3-dimension, we obtain an asymptotic behaviour of

$$\left\{\frac{q}{\alpha}\right\} + \left\{\frac{q}{\beta}\right\} + \left\{\frac{q}{\gamma}\right\},\,$$

where α, β, γ are irrational number with $1/\alpha + 1/\beta + 1/\gamma = 1$ and β is sufficiently large (theorem 6.1).

2. Elementary proof

At first, we give an well-known proof for Beatty's original problem as follows.

Proof. Suppose that there exists a natural number $q \notin \mathbf{N}_{\alpha} \cup \mathbf{N}_{\beta}$. Then, we take $m, n \in \mathbf{N}$ such that

$$m\alpha < q < q + 1 < (m+1)\alpha$$
 and $n\beta < q < q + 1 < (n+1)\beta$,

and thus

$$m+n < q\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = q < (q+1)\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = q+1 < m+n+2,$$

hence m + n < q < m + n + 1, which contradict to the condition $q, m, n \in \mathbb{N}$.

Suppose there exist $m, n \in \mathbb{N}$ such that $q = [m\alpha] = [n\beta]$ holds. Then we have

$$q < m\alpha < q + 1$$
 and $q < n\beta < q + 1$,

hence

$$q = q\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) < m + n < (q+1)\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = q + 1,$$

getting a contradiction again.

3. A proof in terms of Sturmian word

Let $0 < \zeta < 1$ be an irrational number. It is well-known fact that the first difference

$$S(\zeta)_n = [(n+1)\zeta] - [n\zeta]$$

of the sequence \mathbf{N}_{ζ} gives a Sturmian word

$$S(\zeta) = S(\zeta)_1 S(\zeta)_2 S(\zeta)_3 \cdots$$

on alphabets $\{0,1\}$ (cf.[14]). (Note that $[(n+1)\zeta] - [n\zeta] \in \{0,1\}$ as $0 < \zeta < 1$.) For an infinite word σ on alphabets $\{0,1\}$, let $\overline{\sigma}$ be the *complement* of σ , defined by

$$\overline{\sigma}_n = 1 - \sigma_n$$

It is known that if σ is Sturmian, then the complement $\overline{\sigma}$ is also Sturmian, and every Sturmian word is represented as a first difference of a sequence \mathbf{N}_{ξ} of a suitable irrational number $0 < \xi < 1$. Moreover it is shown that $\zeta + \xi = 1$ (cf. Theorem 2.1.13, Corollary 2.2.19 and 2.2.20 of Lothaire[14]). The validity of the equation is equivalent to the Beatty's statement, as is shown below.

Lemma 3.1. Let $0 < \zeta < 1$ be an irrational number, and put $\xi = 1 - \zeta$. Then for any natural number q, we have

$$\{q\zeta\} + \{q\xi\} = 1$$
 and $[q\zeta] + [q\xi] = q - 1$.

Proof. Note that by the irrationality of ζ and ξ , $0 < \{q\zeta\}, \{q\xi\} < 1$, thus $0 < \{q\zeta\} + \{q\xi\} < 2$. Since $\zeta + \xi = 1$, we have

$$q = q\zeta + q\xi = \{q\zeta\} + \{q\xi\} + [q\zeta] + [q\xi],$$

showing that $\{q\zeta\} + \{q\xi\}$ is a natural number. Hence $\{q\zeta\} + \{q\xi\} = 1$.

Proposition 3.2. Let $0 < \zeta < 1$ be an irrational number. Then

$$\overline{S(\zeta)} = S(1 - \zeta).$$

Proof. Set $\xi = 1 - \zeta$. It follows from Lemma 3.1 that

$$\begin{split} \overline{S(\zeta)}_q &= 1 - [(q+1)\zeta] + [q\zeta] \\ &= 1 - (q - [(q+1)\xi]) + (q-1 - [q\xi]) \\ &= [(q+1)\xi] - [q\xi] = S(\xi)_q. \end{split}$$

The following key lemma is shown by Stolarsky[16].

Lemma 3.3. Let $\alpha > 1$ be an irrational number. For any natural number q, there exists a natural number n such that $q = [n\alpha]$ if and only if

$$S\left(\frac{1}{\alpha}\right)_q = 1.$$

Proof. Suppose that

$$S\left(\frac{1}{\alpha}\right)_q = 1$$
, i.e., $\left[\frac{q+1}{\alpha}\right] = \left[\frac{q}{\alpha}\right] + 1$.

Then there exists a natural number n such as

$$\frac{q}{\alpha} < n < \frac{q+1}{\alpha}$$
, that is, $q < n\alpha < q+1$,

hence $q = [n\alpha]$. Since

$$\frac{q+1}{\alpha} - \frac{q}{\alpha} = \frac{1}{\alpha} < 1,$$

the converse is also shown by reversing the argument above.

Now we give an answer to Beatty's problem in a more constructive way. Let $\alpha, \beta > 1$ be irrational numbers with $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ (Here we call (α, β) a Beatty pair). By the definition of the complement of an infinite word and proposition 3.2, we see for any natural number q, either

$$S\left(\frac{1}{\alpha}\right)_q = 1 \text{ or } S\left(\frac{1}{\beta}\right)_q = \overline{S\left(\frac{1}{\alpha}\right)_q} = 1$$

holds, showing that there exists a natural number n such that either

$$q = [n\alpha]$$
 or $q = [n\beta]$

holds via lemma 3.3, hence the answer.

4. Geometric interpretation

There are various kind of studies to extend or generalize the Beatty's problem. Lambek and Moser[13] gave a solution to a quite large class of "Beatty-like" partitions of natural numbers. Angel[1] constructed Beatty-like partitions of natural numbers into more than two subsets. In this section, we propose a geometric interpretation of the Beatty's problem, which may allows us an extension of our argument to higher dimensions, as is discussed in the following section.

For a pair of non-negative integers (m, n), I(m, n) denotes a square in \mathbb{R}^2 ;

$$I(m,n) = \{(x,y) \mid m \le x \le m+1, \ n \le y \le n+1\}.$$

For a natural number q, π_q denotes a line $\{(x,y) \mid x+y=q\}$ in \mathbf{R}^2 . Take a Beatty pair (α,β) and put $\mathbf{v} = \left(\frac{1}{\alpha}, \frac{1}{\beta}\right)$. Then we consider a half line $L_{\mathbf{v}} = \{t\mathbf{v} \mid t>0\}$. Note that as (α,β) is a Beatty pair, we see

$$\frac{q}{\alpha} + \frac{q}{\beta} = q,$$

whence $L_{\boldsymbol{v}} \cap \pi_q = \{q\boldsymbol{v}\}$ for each $q \in \mathbf{N}$. Setting

$$\mathcal{I}_{\boldsymbol{v}} = \{(m, n) \in \mathbf{N}^2 \mid q\boldsymbol{v} \in I(m, n)^{\circ} \text{ for some } q \in \mathbf{N}\},$$

we have a following theorem: a geometric expression of the Beatty's statement.

Theorem 4.1. The map

$$\Omega_{\boldsymbol{v}}: \mathbf{N} \to \mathcal{I}_{\boldsymbol{v}}, \qquad \Omega_{\boldsymbol{v}}(q) = (m, n) \text{ if } q\boldsymbol{v} \in I(m, n)^{\circ}$$

is well defined and bijective. Moreover, when $\Omega_{\mathbf{v}}(q) = (m,n)$ we have

$$\Omega_{\boldsymbol{v}}(q+1) = \begin{cases} (m+1,n), & \text{if and only if} \quad S\left(\frac{1}{\alpha}\right)_q = 1, \\ (m,n+1), & \text{if and only if} \quad S\left(\frac{1}{\beta}\right)_q = 1. \end{cases}$$

Proof. Actually putting $m = [q/\alpha]$ and $n = [q/\beta]$, $m < q/\alpha < m+1$ and $n < q/\beta < n+1$ hold because of irrationality of α and β , and hence $q\mathbf{v} \in I(m,n)^{\circ}$. Since $I(m,n)^{\circ}$'s are disjoint, the open square $I(m,n)^{\circ}$ containing $q\mathbf{v}$ is unique, thus the map $\Omega_{\mathbf{v}}$ is well defined. As m+n < x+y < m+n+2 whenever $(x,y) \in I(m,n)^{\circ}$, we see $I(m,n)^{\circ} \cap \pi_q \neq \emptyset$ if and only if q=m+n+1. Then if we take a pair $(m,n) \in \mathcal{I}_{\mathbf{v}}$, $q\mathbf{v} \in I(m,n)^{\circ}$ if and only if q=m+n+1, hence the bijection.

If $\Omega_{\mathbf{v}}(q) = (m, n)$ and $\Omega_{\mathbf{v}}(q+1) = (m', n')$, we have q = m+n+1 and q+1 = m'+n'+1, hence m'+n'=m+n+1. Since $m'-m=[(q+1)/\alpha]-[q/\alpha]\geq 0$ and $n'-n=[(q+1)/\beta]-[q/\beta]\geq 0$, either

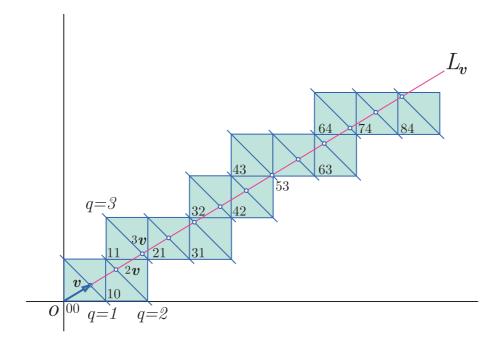


FIGURE 1. A geometric interpretation of the map Ω_v .

$$m'=m+1$$
 or $n'=n+1$ occurs. We also see $m'=m+1$ (resp. $n'=n+1$) is equivalent to $S\left(\frac{1}{\alpha}\right)_q=1$ (resp. $S\left(\frac{1}{\beta}\right)_q=1$), hence the statement.

In the figure 1, we see $\Omega_{\boldsymbol{v}}(1) = (0,0)$, $\Omega_{\boldsymbol{v}}(2) = (1,0)$, $\Omega_{\boldsymbol{v}}(3) = (1,1)$ and so on. Since the line $L_{\boldsymbol{v}}$ avoids integer points, a square that the line crosses should face next one with an edge, not a vertex, which indicates theorem 4.1.

5. An attempt to high dimensions

The essence of Theorem 4.1 is the following. Given a point $v \in \mathbf{R}^d \setminus \{\mathbf{0}\}$, let $\{\pi_q\}$ be a one parameter family of hyperplanes disjoint each other in \mathbf{R}^d , and a line $L_v = \{tv \mid t \in \mathbf{R}\}$ transverse to π_q 's, crossing π_q at qv for every $q \in \mathbf{Z}$. (more generally, one can consider a codimension-one foliation and a curve transverse to the foliation). Then, choose a lattice $\Lambda \subset \mathbf{R}^d$ with basis $\{z_1, z_2, \dots, z_d\}$, which fulfill the following conditions:

- (1) Let Λ_{π} be a sublattice generated by $\{z_1, z_2, \dots, z_{d-1}\}$. Then π_q is invariant under the action of Λ_{π} for each $q \in \mathbf{Z}$, and $\pi_q + z_d = \pi_{q+1}$.
- (2) There exists a tiling \mathcal{T}_q on each π_q (preferably a regular tiling), compatible with the Λ -action; for any two tiles $T \in \mathcal{T}_q$ and $T' \in \mathcal{T}_{q'}$, there exists a lattice point $\mathbf{w} \in \Lambda_{\pi}$ such that $T' = T + \mathbf{w} + (q' q)\mathbf{z}_d$, and $T + \mathbf{w} \in \bigcup_{q \in \mathbf{Z}} \mathcal{T}_q$ for any tile $T \in \bigcup_{q \in \mathbf{Z}} \mathcal{T}_q$ and $\mathbf{w} \in \Lambda$.
- (3) There exists a coding of tiles into Λ , that is, an injection $\Gamma: \bigcup_{q \in \mathbb{Z}} \mathcal{I}_q \to \Lambda$ compatible with the Λ -action;

$$\Gamma(T + \boldsymbol{w}) = \Gamma(T) + \boldsymbol{w}$$

holds for any tile $T \in \bigcup_{q \in \mathbb{Z}} \mathcal{T}_q$ and $\mathbf{w} \in \Lambda$.

(4) The crossing point $q\mathbf{v} \in \pi_q \cap L_{\mathbf{v}}$ is contained in the interior of a unique tile $T_q \in \bigcup_{p \in \mathbf{Z}} \mathcal{T}_p$ for every $q \in \mathbf{Z}$.

It comes from conditions (3) and (4) that we can define an injective map

$$\Omega_v : \mathbf{N} \ni q \mapsto \Gamma(T_q) \in \Lambda.$$

Let $E = \{e_1, e_2, \dots, e_d\}$ be a set of basis of Λ , which may differ from the original one $\{z_1, z_2, \dots, z_d\}$, and $(p_1, p_2, \dots, p_d)_E$ be an abbreviation of $\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_d \mathbf{e}_d \in \Lambda$. Then we define a *Hamming distance* d_E in Λ with respect to E by

$$d_E(\mathbf{p}, \mathbf{q}) = \#\{i = 1, 2, \dots, d \mid p_i \neq q_i\}$$

for $\mathbf{p} = (p_1, p_2, \dots, p_d)_E$ and $\mathbf{q} = (q_1, q_2, \dots, q_d)_E$. Here we come to a geometric reconstruction of the "Beatty-like" partition of natural numbers:

Definition 5.1. The map Ω_v is called Beatty with respect to basis E if

$$d_E(\Omega_{\boldsymbol{v}}(q),\Omega_{\boldsymbol{v}}(q+1))=1$$

holds for every $q \in \mathbf{Z}$.

Indeed, whenever $\Omega_{\boldsymbol{v}}$ is Beatty, the subsets

 $\mathbf{N}_i = \{q \in \mathbf{N} \mid i$ -'s coordinate of $\Omega_v(q)$ and $\Omega_v(q+1)$ with respect to E are different

give a partition of natural numbers into d parts.

5.1. On the original Beatty sequence. Let (α, β) be a Beatty pair in section 3 and set $\mathbf{v} = \left(\frac{1}{\alpha}, \frac{1}{\beta}\right)$. For any $q \in \mathbf{Z}$, we put $\pi_q = \{(x, y) \in \mathbf{R} \mid x + y = q\}$. Then we see $L_{\mathbf{v}} \cap \pi_q = \{q\mathbf{v}\}$. We take the lattice $\Lambda = \mathbf{Z}\mathbf{e}_1 \oplus \mathbf{Z}\mathbf{e}_2$ with basis $E = \{\mathbf{e}_1 = (1, 0), \ \mathbf{e}_2 = (0, 1)\}$. Each π_q is invariant under the action of the sublattice $\Lambda_{\pi} = \mathbf{Z}\mathbf{z}_1$, and $\pi_q + \mathbf{z}_2 = \pi_{q+1}$, where we put $\mathbf{z}_1 = \mathbf{e}_1 - \mathbf{e}_2$ and $\mathbf{z}_2 = \mathbf{e}_2$. The tiles of the tiling \mathcal{T}_q on π_q are given as the line segments T(m, q - m - 1) connecting (m, q - m) and (m + 1, q - m - 1) $(m \in \mathbf{Z})$. In terms of section 4, $T(m, q - m - 1) = I(m, q - m - 1) \cap \pi_q$. As

$$T(m', q' - m') = T(m, q - m) + (m' - m)z_1 + (q' - q)z_2$$

and $T(m,n) + (a,b)_E = T(m+a,n+b)$, the tiling is compatible with the Λ -action. We define the coding map Γ with respect to E by $\Gamma(T(m,n)) = (m,n)_E$. Obviously we see

$$\Gamma(T(m,n) + (a,b)_E) = \Gamma(T(m+a,b+n)) = (m,n)_E + (a,b)_E = \Gamma(T(m,n)) + (a,b)_E,$$

hence Γ is compatible with the Λ -action. The irrationality of α and β shows $qv \notin \mathbf{Z}^2$ for any $q \in \mathbf{Z} \setminus \{0\}$. Moreover we see

$$q\mathbf{v} \in T\left(\left[\frac{q}{\alpha}\right], \left[\frac{q}{\beta}\right]\right)^{\circ},$$

then $\Omega_{\boldsymbol{v}}$ is defined by

$$\Omega_{\boldsymbol{v}}(q) = \left(\left[\frac{q}{\alpha} \right], \left[\frac{q}{\beta} \right] \right),$$

coincident with the map $\Omega_{\boldsymbol{v}}$ in theorem 4.1, which shows $\Omega_{\boldsymbol{v}}$ is Beatty.

Note that the orthogonal projection of unit squares $\{I(m, q-m-1)\}$ onto π_q induces the tiling \mathcal{T}_q , which gives an implication for the extension to higher dimensions.

5.2. An attempt in 3-dimension. We try to execute the geometric idea stated above in 3-dimension, taking standard lattice \mathbb{Z}^3 . Let $\alpha, \beta, \gamma > 0$ be irrational numbers such that any two of their reciplocals are rational independent, satisfying

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$$

Following the case of 2-dimension, we call the triplet (α, β, γ) Beatty, and we put $\mathbf{v} = \left(\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}\right)$. The family of planes in \mathbf{R}^3 are given by $\pi_q = \{(x, y, z) \in \mathbf{R}^3 \mid x + y + z = q\}$. Then the line $L_{\mathbf{v}} = \{t\mathbf{v} \mid t \in \mathbf{R}\}$ crosses each π_q at $q\mathbf{v}$. We adopt the lattice

$$\Lambda = \mathbf{Z} e_1 \oplus \mathbf{Z} e_2 \oplus \mathbf{Z} e_3$$

with basis $E = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$. Putting $z_1 = e_1 - e_3, z_2 = e_2 - e_3$ and $z_3 = e_3$, the sublattice $\Lambda_{\pi} = \mathbf{Z}z_1 \oplus \mathbf{Z}z_2$ conserves each π_q , and $\pi_q + z_3 = \pi_{q+1}$.

The tiling \mathcal{T}_q is obtained as follows. For each lattice point $(a, b, c)_E \in \Lambda$ with a + b + c = q - 1, we define a tile $T(a, b, c) \in \mathcal{T}_q$ as an orthogonal projection of the cube

$$I(a,b,c) = \{(a+x,b+y,c+z) \in \mathbf{R}^3 \mid (x,y,z) \in [0,1]^3\}$$

onto π_q , which is nothing but a hexagon tile.

Lemma 5.2. The set

$$\mathcal{T}_q = \{ T(a, b, c) \mid a, b, c \in \mathbf{Z} \text{ and } a + b + c = q - 1 \}$$

is a tiling on π_q compatible with the Λ -action.

Proof. Suppose two tiles T(a,b,c) and T(a',b',c') in \mathcal{T}_q have a common internal point (x,y,z). Then there are s>0 and t>0 such that $(x+s,y+s,z+s)\in I(a,b,c)^\circ$ and $(x+t,y+t,z+t)\in I(a',b',c')^\circ$ hold. Suppose s< t, then a< x+s< x+t< a'+1, hence $a\leq a'$. Similarly $b\leq b'$ and $c\leq c'$. Then a'+b'+c'>a+b+c whenever $(a',b',c')\neq (a,b,c)$, which contradict to a+b+c=a'+b'+c'=q-1. Thus $T(a,b,c)^\circ$'s are disjoint each other.

For any point $(x,y,z) \in \pi_q$, it is seen that $(x,y,z) \in I([x],[y],[z])$, and that, say when $x \in \mathbf{Z}$, $(x,y,z) \in I([x],[y],[z]) \cap I([x]-1,[y],[z])$ holds. Putting $\rho = \{x\} + \{y\} + \{z\}$, we see $\rho = q - ([x]+[y]+[z]) \in \mathbf{Z}$ and $0 \le \rho < 3$, hence $\rho = 0,1,2$. $\rho = 0$ means $x,y,z \in \mathbf{Z}$, then (x,y,z) is also contained in I([x]-1,[y],[z]) with [x]-1+[y]+[z]=q-1. I([x],[y],[z]) itself satisfies [x]+[y]+[z]=q-1 when $\rho = 1$. In the case of $\rho = 2$, suppose $x \ge y \ge z$. Then we can take t such that x+t=[x]+1, $y+t \le [y]+1$ and $z+t \le [z]+1$, hence (x+t,y+t,z+t) is contained in I([x]+1,[y],[z]) with [x]+1+[y]+[z]=q-1. Consequently, \mathcal{T}_q covers π_q . Therefore \mathcal{T}_q is a tiling on π_q . The compatibility comes from the definition of \mathcal{T}_q .

The coding $\Gamma: \bigcup_{q \in \mathbf{Z}} \mathcal{T}_q \to \Lambda$ is given by

$$\Gamma(T(a, b, c)) = (a, b, c)_E,$$

compatible with the Λ -action obviously. By the assumption of the Beatty triplet, qv is contained in the interior of a tile. Then we can define injective map $\Omega_v : \mathbf{N} \to \Lambda$ by

(5.1)
$$\Omega_{\boldsymbol{v}}(q) = (a, b, c)_E,$$

where $q\mathbf{v} \in T(a, b, c)^{\circ}$ with a + b + c = q - 1.

Unfortunately one will see that Ω_v is not Beatty. For sufficiently large q, there are tiles $T(a,b,c) \in \mathcal{T}_q$ and $T(a-1,b+1,c+1) \in \mathcal{T}_{q+1}$ with $b>c>a\geq 1$, which are connected at one vertex only. As is mentioned in the next section, the sequence $\{(\{q/\alpha\},\{q/\beta\},\{q/\gamma\})\}$ is densely distributed on a tile T(0,0,0). Then

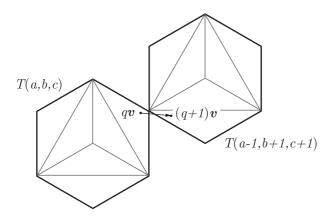


FIGURE 2. The case of the hamming distance 3.

for any Beatty triplet (α, β, γ) with $\beta < \gamma < \alpha$, one finds a number q such that $q\mathbf{v} \in T(a, b, c)$ and $(q+1)\mathbf{v} \in T(a-1, b+1, c+1)$, hence

$$d_E(\Omega_{\mathbf{v}}(q), \Omega_{\mathbf{v}}(q+1)) = 3$$

(see figure 2).

6. An asymptotic behaviour

Let (α, β, γ) be a Beatty triplet. We observe an asymptotic behaviour of $\rho_q = \{q/\alpha\} + \{q/\beta\} + \{q/\gamma\}$ when $\beta \to \infty$. We have seen that $\rho_q = 1$ or 2 in the previous section. As α and β are rationally independent, it is shown that the sequence $\{(q/\alpha, q/\beta)\}_{q \in \mathbb{N}}$ is uniformly distributed in $[0, 1]^2$ by Weyl's theorem[17][10]. Therefore

$$\lim_{N\to\infty}\frac{\#\{1\leq q\leq N\ |\ \rho_q=1\}}{N}=\lim_{N\to\infty}\frac{\#\{1\leq q\leq N\ |\ \rho_q=2\}}{N}=\frac{1}{2}$$

holds. Moreover we see the following asymptotic behaviour.

Theorem 6.1. Put

$$x_n = \frac{1}{N} \# \{ 1 \le q \le n \mid \rho_q = 1 \} \text{ and } y_n = \frac{1}{N} \# \{ 1 \le q \le n \mid \rho_q = 2 \},$$

where $N = [\beta]$. If β is sufficiently large, $x = x_n - \frac{l}{2}$ and $y = y_n - \frac{l}{2}$ satisfy

(6.1)
$$y^2 + 2(x-1)y + x^2 = 0, \quad 0 \le x \le \frac{1}{2}$$

asymptotically for $[l\beta] < n \le [(l+1)\beta]$ and $l = 0, 1, 2 \dots$

Proof. As $\rho_q = 1$ or 2, $\{q/\alpha\} + \{q/\beta\} > 1$ implies $\rho_q = 2$. Conversely, if $\rho_q = 2$, then $2 - \{q/\alpha\} - \{q/\beta\} = \{q/\gamma\} < 1$, hence $\{q/\alpha\} + \{q/\beta\} > 1$. Thus $\rho_q = 2$ if and only if $\{q/\alpha\} + \{q/\beta\} > 1$. According to Weyl's theorem, (or a direct observation of the 1-dimensional irrational rotation dynamics[12]), we can take $\{q/\alpha\}$ for a random variable X distributed as uniformly on [0,1]. In other words, for each q, we give the probability (or weight) Prob(X < c) = c to the event $\{q/\alpha\} < c$. Thus for each $q \le N$, the event $\{q/\alpha\} > 1 - \{q/\beta\} = 1 - q/\beta$ has the probability

$$Prob\left(X > 1 - \frac{q}{\beta}\right) = \frac{q}{\beta},$$

and hence we have

(6.2)
$$y_n = \frac{1}{N} \# \{ 1 \le q \le n \mid \rho_q = 2 \}$$

$$\sim \frac{1}{N} \sum_{q=1}^n Prob\left(X > 1 - \frac{q}{\beta}\right) = \frac{1}{N} \sum_{q=1}^n \frac{q}{\beta} = \frac{n(n+1)}{2\beta N},$$

when $N = [\beta]$ is sufficiently large. As $x_n + y_n = n/N$, we also have

$$x_n \sim \frac{n}{N} - \frac{n(n+1)}{2\beta N}.$$

Putting $t = n/N \sim (n+1)/\beta$, we come to

$$x_n \sim t - \frac{t^2}{2}$$
 and $y_n \sim \frac{t^2}{2}$.

By eliminating the variable t, we obtain (6.1). For the general $[k\beta] < q \le [(k+1)\beta]$, we just modify the probability of the event $\{q/\alpha\} > 1 - \{q/\beta\}$ as

$$Prob\left(X > 1 - \left\{\frac{q}{\beta}\right\}\right) = \frac{q}{\beta} - \left\lceil\frac{q}{\beta}\right\rceil.$$

Since $k\beta < q < (k+1)\beta$, we have $[q/\beta] = k$. Thus for $[l\beta] < n \le [(l+1)\beta]$, we have

$$\begin{split} \frac{1}{N} \sum_{q=1}^{n} \left[\frac{q}{\beta} \right] &= \frac{1}{N} \left(\sum_{q=[l\beta]+1}^{n} l + \sum_{k=0}^{l-1} \sum_{q=[k\beta]+1}^{[(k+1)\beta]} k \right) \\ &= \frac{n - [l\beta]}{N} l + \frac{[l\beta]}{N} (l-1) - \sum_{k=1}^{l-1} \frac{[k\beta]}{N} = \frac{n}{N} l - \sum_{k=1}^{l} \frac{[k\beta]}{N} \\ &\sim lt - \sum_{k=1}^{l} k = lt - \frac{1}{2} l(l+1). \end{split}$$

Hence

$$y_n \sim \frac{1}{2}t^2 - lt + \frac{1}{2}l(l+1) = \frac{1}{2}(t-l)^2 + \frac{l}{2}.$$

As $x_n + y_n = t$, we have

$$y_n - \frac{l}{2} \sim \frac{1}{2}(x_n + y_n - l)^2 = \frac{1}{2}\left(x_n - \frac{l}{2} + y_n - \frac{l}{2}\right)^2.$$

Putting $x = x_n - l/2$ and $y = y_n - l/2$, we obtain (6.1).

Note that the accuracy of (6.2) depends on the discrepancy of the sequence $\{q/\alpha\}$. The figure 3 illustrates the asymptotic behaviour of (x_n, y_n) , where we take $\alpha = \sqrt{2}$ and $\beta = \sqrt{100001}$.

7. Concluding remarks

This study is motivated by an attempt to extend the previous study[12] to higher dimensions; a renormalization approach to the irrational rotation dynamics on $\mathbb{R}^d/\mathbb{Z}^d$, where we are to seek a natural generalization of Sturmian words over more than two alphabets, or a natural extension of the continued fractional expansion in high dimensions. On the other hand, the complexity of words generated by the billiard map in a cube has been analyzed in the pioneering research by Arnoux, Mauduit, Shiokawa and Tamura[2][3]. There are large amount of researches on combinatorics of words associated with billiard maps in high-dimensional polyhedra, called billiard words, e.g. Bedaride[5][6], Borel[9], where the words appear as cutting sequences, different from our approach. Finally we remark that, as another direction of generalization of the Beatty sequence, Berthé and Vuillon[7] has proposed the two-dimensional Beatty sequence, given as a double sequence. They define it by approximation of a plane by the integer lattice \mathbb{Z}^3 instead of our line L_v .

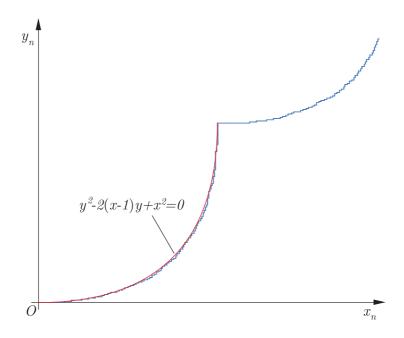


FIGURE 3. The behaviour of (x_n, y_n) and its asymptotic curve for $\alpha = \sqrt{2}$ and $\beta = \sqrt{100001}$.

References

- [1] M. Angel, Partitions of the natural numbers, Canad. Math. Bull. 7, pp 219-236, 1964.
- [2] P. Arnoux, C. Mauduit, I. Shiokawa and J. Tamura, Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France 122, pp 1-12, 1994.
- [3] P. Arnoux, C. Mauduit, I. Shiokawa and J. Tamura, Rausy's conjecture on billiards in the cube, Tokyo J. Math. 17, pp 211-218, 1994.
- [4] S. Beatty, Problem 3173, Amer. Math. Monthly 33, pp 159, 1926.
- [5] N. Bedaride, Billiard complexity in rational polyhedra, Regular and chaotic dynamics 8, pp 97-104, 2002.
- [6] N. Bedaride, Directional complexity of the hypercubic billiard, Discr. Math. 309, pp 2053-2066, 2009.
- [7] V. Berthé and L. Vuillon, Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discr. Math. 223, pp 27-53, 2000.
- [8] P. Bleher, The energy level spacing for two harmonic oscillators with golden mean ratio of frequencies, J. Stat. Phys. 61, pp 869-876, 1990.
- [9] J. P. Borel, A geometrical characterization of factors of multidimensional Billiard words and some applications, Theor. Comp. Sci. 380, pp 286-303, 2007.
- [10] J. Cassels, An Introduction to Diophantine Approximation, Cambridge, 1957.
- [11] K. Dajani and C. Kraaikamp, *Ergodic theory of numbers*, Carus Mathematical Monographs 29, Mathematical Association of America, 2002.
- [12] Y. Hashimoto, A renormalization approach to level statistics on 1-dimensional rotations, Bull. of Aichi Univ. of Education, Natural Science 58, pp 5-11, 2009.
- [13] J. Lambek and L. Moser, Inverse and complementary sequence of natural numbers, Amer. Math. Monthly 61, pp 454-458, 1954
- [14] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of mathematics and its applications 90, Cambridge University Press, 2002.
- [15] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8, pp 477-493,
- [16] K. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19, pp 473-482, 1976.
- [17] H. Weyl, Über die Gleichverteilungv on Zahlen modulo Eins, Math. Ann. 77, pp 313-352, 1916.

(Received September 14, 2010)