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Abstract

It is known that a singular system of linear ordinary differential equations in a complex plane is
reducible into a single equation by a meromorphic transformation of unknown functions by using
Deligne’s cyclic vector. In this paper we characterize the case when it is possible by a holomorphic
transformation.

1 Introduction

Let C be the set of complex numbers or the complex variable z. We denote by C{z} and K{z} the
set of holomorphic functions and meromorphic functions at the origin of C, respectively.
Let a singular N-system at z = 0 of linear ordinary differential equations be given by

(1.1) L (z, i) i(z) = zdizﬁ(z) — A(2)u(z) =0,

where A(z) = (a;;(2)) € My(C{z}), the set of N x N matrices with entries in C{z}. Here we assume
that A(0) # 0, which means the system (1.1) is a singular system of first kind.

By using Deligne’s cyclic vector [Del, Lemma 1.3], we can find a matrix P(z) € GLn(K{z}),
the set of invertible matrices with entries in K{z}, such that by a change of unknown functions
(z) = P(z)9(z) the system (1.1) is reduced into the following form

0 1 0o .- 0
0 1 ... 0 v1
(1 2) d —’( . . . . . . —'( = __ U2
. zdzvz)— : . .. .. : v(z), U= :
0 v
an(z) an—1(z) - a2(2) ai(z) N

We call such a matrix P(z) a transformation matrix.
We note that this system is equivalent with the following single equation for the first component
v1(z) of ¥(z2),

(1.3) No(2) = aj(2)dN Fui(z), 6= e
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Such a reduction of a system into a single equation makes it possible to convert the study of
properties of solutions for systems to those for single equations (cf. [Mal], [Sib] and [Hsi-Sib]).

For example we note that, by the above change of the unknown functions, in the reduced system
(1.2) the coefficients {a;(z)} are expected to be meromorphic functions, but the fact that the system
(1.1) is regular singular at z = 0 and hence a single equation (1.3) is regular singular at z = 0 implies
that {a;(z)} are all holomorphic at z = 0 (compare the characterization of regular singularity for
single equations in [Cod-Lev, Chapter 4, Theorems 5.1 and 5.2] and for systems in [Kit]). Whereas
the transformation matrix P(z) can not be taken in GLx(C{z}), in general (cf. [Hsi-Sib, Lemma
XIII, 5-1]). By their proof we know that the assumption A(z) € My(C{z}) can be replaced by
A(z) € MN(K{z}) to obtain a transformation matrix P(z) € GLy(K{z}).

In this paper we characterize the case when the transformation matrix P(z) is taken in GLy(C{z}),
which is stated as follows.

Theorem 1. In order that the transformation matriz P(z) is taken in GLy(C{z}) in the above
reduction, it is necessary and sufficient that the eigenspaces of A(0) are all one dimension, that is, the
minimal polynomial of A(0) is nothing but the characteristic polynomial of A(0).

Before we proceed to the proof, we give a brief summary for construction of the transformation

matrix P(z). Let
£(zL) =Ly
“dz) T Tz :

be the transposed operator of L(z,d/dz). A vector function ¢(z) € K{z}" is called a cyclic vector of
L(z,d/dz) if

(1.4) Q(2) = (q(2), £4(2), -, LN d(2)) € GLy(K{z}),

where (d@i,--- ,dy) denotes the matrix with j-th column vector @;. The existence of a cyclic vector
q(z) € K{z} or Q(z) € GLy(K{z}) is assured for every L£(z,d/dz) even when A(z) € My(K{z})
by P. Deligne [Del] (cf. [Hsi-Sib]). Then the transformation matrix P(z) is obtained by P(z) = *Q(z).

Our purpose is to find a condition under which we assure that P(z) € GLy(C{z}). This means
that Q(0) € GLn(C). By restricting the relation (1.4) at z = 0, we get

(1.5) Q(0) = ((0), *A(0)(0), - - - ,*A(0)" ' 7(0)) € GLN(C).

Conversely, if a vector ¢y € CV satisfies this relation we see that ¢p is also a cyclic vector of L(z,d/dz).
We call again such a constant vector gy a cyclic vector of *A(0).
Thus, Theorem 1 is reduced to the following,

Theorem 2. For a constant matriz A € My(C), a cyclic vector p € CN exists if and only if all
eigenspaces of A are one dimension.

Theorem 2 is proved only by an elementary theory of matrices, but in the procedure we meet a
generalized form of Vandermonde’s determinant which seems to be interesting.

2 Proof of Theorem 2

For disjoint eigenvalues {\; };‘?:1 of A, we denote each eigenspace by E()\;) and we put n; = dim E()\;).
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Proof of Necessity.
The condition that dim E(\;) = 1 for all j is equivalent that the Jordan canonical form of A has
only one Jordan cell J(\;) for each eigenvalue ;. We take the Jordan canonical form of the form.

A0 0
1 A 0 -+ 0
0 0 1 X

where A ~ B means the equivalence of two matrices A and B, and Diag[Jy, - - -
diagonal matrix with i-th diagonal block J;.

, Ji;| denotes the block

We show that it is impossible to exist a cyclic vector p € CV if dim F()\j,) > 2 for Jjo. Say jo = 1.
We assume that A is already a Jordan canonical form and {J;(\)}_, (¢ > 2) are the Jordan cells
associated with A\;. We put Ji(>\1) S Mml((C) (m1 + o4+ my < N) or p = ($1,1‘2, s ,xN) eCN
we put

o0
Arp=1 (k=>0).
Ne

Then we have #{" = 2\, &) =2, A ... (Vk > 0). This shows that det(5, Ap, - , AN~1p) #
0 is impossible for every '€ CV, since the first row vector and the (mj + 1)-th row vector are parallel.

(Q.E.D.)

Proof of Sufficiency.
We may assume that the matrix A is already a Jordan canonical form (2.1). Then we shall prove
that a vector p given below becomes a cyclic vector of A,

(22) ﬁ: €1 + €n1+1 4+ €n1+“‘+nk—1+17

z
where €; = *(0,---,0,1,0,---,0) and n] denotes the size of Jordan cell J(\;) with ny +no+---+ny =
N. Now let us prove that det (p, Ap, .- AN ) # 0. By an easy calculation we see that

M()\l;nl X N)
N . 12 M(/\Q;ng X N)
(23) (pa Apv T 7AN 117) = : )
M()\k;nk X N)
where the n x N matrix M (\;n x N) is defined by
1 N A\ ... .. ANV—2 AV-1
0 1 2\ -+ o (N=2)AV3 (N-1)ANV-2
(2.4) M\nxN)y:=[0 0 1 e N oOAVTH N OV
0 --- -+ 0 1 N_1Cp AN
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where (7,7) entry ¢;;(A) (1 <i<n, 1 <j < N)is written by binomial coefficients,
(2.5) Cij()\) = jflcifl)\jii, Cij()\) =0if ¢ > 7.

Here we understand that ;_;C;—qy = 0 if ¢ > j. When k = 1, we have det M(A\;; N x N) =1,
and there is nothing to prove. In the following we assume that k& > 2. Note that if n; = 1 for all j,
then the matrix (2.3) is nothing but Vandermonde’s matrix. By this reason, we call the matrix (2.3)
a generalized Vandermonde’s matrix. For the generalized Vandermonde’s determinant, we can prove

Lemma 1 (Generalized Vandermonde’s determinant) The determinant of generalized Vander-
monde’s matriz (2.3) is obtained by

M(/\l;nl X N)
M(Xo;ng X N
(2.6) qop | 22N IT Oy — a0,
: 1<i<j<k
M()\k,nk X N)

Thus the sufficiency is reduced to prove the formula (2.6), which will be proved in the next section.

(Q.E.D.)

3 Proof of Lemma 1

The formula (2.6) is proved by reducing the sizes {n;} and the numbers of eigenvalues {);}. In fact,
the following sub-lemma makes it possible.

Sub-Lemma. It holds that

M(/\l;nlxN) M()\l;’rll—1><(N—1))
M(Xo;ng x N M(Xo;ng x (N —1
N T g e | MO D)

1<j<k

(3.1) det

M(Ak;ﬁkXN) M()\kénk%(N_l))

Proof. We apply the following matrix of size N from the right to the matrix (2.3).

[1 -\ 0 0 - 0]
o 1 -x 0 - 0
0 O 1 =X - 0
(3.2) . . .
0 -+ .- 0 1 =)\
o - 0 0 1]

Then the block M(A1;n; x N) is changed into

(3.3)
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In fact, it is sufficient to notice the following relation of binomial coefficients,
(3.4) j-1Ci—1 = j 201+ j2Ci—2, ie, ;20 2=; 101 —;20;1.

Next we examine how the block M (Ag;n2 x N) is changed.
1) The first row vector becomes

(L, = A, -, A = A2, ---) =(1,0, -+, 0)+
-+ ()\2 - )\1) (07 17 )‘27 )\%7 e 7)\9[_2)'
2) The second row vector becomes
(01,200 — A1,3M3 — 200X, -+ ;101N — joCiN, A
:<03 ]-7 AQ? /\%) e ’)\éV—Q) + (/\2 - A1) (07 Oa 13 2/\27 Tty (N - 2)Aé\7—3)7

since ]‘7101 —];201 = 3;200 =1.
3) Generally, (i,j) entry becomes

cij(A2) — cij—1(A2) A = j710¢71)\%7i - j720i71>\%7i71/\1
= ;20 o X"+ (A2 — A1) X j—ZCi—l)\%_Z_l
= ¢i—1,j-1(A2) + (A2 — A)eij-1(A2).

These observations show that the block M (Aa;n2 x N) is changed into

(3.5) [eq, M(Maino x (N — 1))} ,
where
Ao — M\ 0
. 1 Ao — A\ - 0
M(Ag;m2 X (N —1)) = . ) . ) M (A2;m2 X (N —1)).
0 1 X=X\

Since the other blocks M(A;;n; x N) (i > 3) are changed into matrices like (3.5), we get the
formula (3.1) by expanding the determinant for the changed matrix by the first row.
(Q.E.D.)
References

[Cod-Lev] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill
Book Company, Inc., 1955.

[Del] P. Deligne, Equations différentielles a point singuliers régquliers, Lecture Notes in Math. No.
163, Springer-Verlag, New York, 1970.

[Hsi-Sib] P.-F. Hsieh an Y. Sibuya, Basic Theory of Ordinary Differential Equations, Springer-Verlag,
New York, 1999.

[Kit] K. Kitagawa, L’irregularité en un point singulier d’un systémes d’équations différentielles linéaires
d’ordre 1, J. Math. Kyoto Univ., Vol. 23 (1983), 427 - 440.



Masatake MIYAKE - Kunio ICHINOBE - Hiroshi SUZUKI

[Mal] B. Malgrange, Sur les points singuliers des équations différentielles, Enseign. Math.,20 (1974),
147 - 176.

[Sib] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Con-
tinuation, Translations of Math. Monographs 82, American Mathematical Society, Providence, RI,

1990.
(Received September 14, 2010)



