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Introduction

For a triangle AABC on a plane, we know well the cosine and the sine formulae:

N a __ b _ ¢ _
a=b+c=2bccosA, == oTE = o

2R. (1)

On the other hand, for a spherical triangle 2ABC on a unit sphere, there are also the cosine and the sine formulae:

sinag _ sinb _ sinc (2)
sinA sinB sinC-

cos @ = cos bcos ¢ + sin bsin ccos A,

In the above formulae, we denote by a, b, ¢ the length of the edges BC, CA, AB, respectively, by A, B, C the inner angles at
the vertices A, B, C, respectively, and by R the radius of the circumcircle. Since every spherical triangle can be considered to
lie in a half sphere, these values must satisfy 0<a, b, ¢, A, B, C<wand 0<R< =7/2.

A question arises to the author. For plane triangles, there is a relation that @ / sin A = 2R. Then, for spherical triangles,
is f = sin a / sin A a function of R? — However, the answer is negative. Figure 1 and 2 show the trace of (R, f) for
spherical triangles which are generated at random. Spherical triangles of Figure 1 are generated to contain its circumcenter,

and those of Figure 2 not to contain it. We find from the figures that each trace is not a curve!
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NE
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Figure1: 0O EAABC Figure 2: O EAABC Figure 3

A further question arises to the author. What curves bound the traced areas? — On the question, Figure 3 shows the

graphs of the following functions:

fi(R) =2tan R(1 — %sinZR)g > £(R)=2sinR(1 — %stm ,

f:(R) =sin 2R, fi(R) =2tan R.

(3)

It seems that the traced area of Figure 1 is bounded by fi, /> and f3, and that of Figure 2 by f; and fi. The following are the an-

swer to the question.
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Theorem 1. If the circumcenter O € NABC, then the following hold:
(1) AR =SML < £(R) when 0 < sin'R = 22=2413

sin A
@ £(R) < ssllfll 4 < £.(R) when 22 ‘2% 13 o« Gper < 14 ‘ﬁ 5

(8) AR <0l < £(R) when =242 < iR =< 1.

Theorem 2. If the circumcenter O & 2ABC, then f3(R) < ssirrllfl < fi(R).

In the paper, we will prove the above theorems by applying the method of the maximum and minimum problem to a two-
variable function.

Proof of theorems

The following formula is the key to prove Theorems 1 and 2 :

(:11:1171?1) ‘= 4 tan’ R cos*(a/2) cos*(b/2) cos*(c/2) (4)

Proof of (4) . We denote by L, M, N the midpoints of the edges BC, CA, AB, respectively, and by ¢, 8, v the angles « BOL,
~ COM, £ AON, respectively. Since we have .« LOC =@, £ MOA =5 and £ NOB =7, we obtain thate + 8 +y =7x. By
applying the sine formula to three triangles AOBL, AO0CM and 2AOAN, we obtain that

sin(a/2) _ sin(b/2) _ sin(c/2) _ sinR (5)
sin & sin 3 sin v ’
A
N 0
a
R
B L C
B a/2 L
Figure 4 Figure 5

By using 8 =7 —y — a, we obtain that

sin’y — sina =sin’y( 1 —sin’e@) — (1 —sin®y) sin‘a
=sin’y cos’@ — (cosy sina)?

=sin’y cos’@ — (sinf3— siny cos@)?

= 2sinf3 siny cosa@ — sin’A. (6)
By using (6 ) and (5 ), we obtain that
_sin’8+sin’r+sin‘a _ @+ 77— P’
cosa 2sing siny 2qr (7)

where p=sin(a/2), g=sin(b/2), r=sin(c/2). By using (5) and (7 ), we obtain that



On a Relation between Sine Formula and Radii of Circumcircles for Spherical Triangles

2> _ Sin (a/Z) p°(2g7r)*
sin o= 1 —cos’ae  (2g7)°— (@F+7—p))?
- e (8)
2p2q2+2q272+272p2_p4_q4_7.4'
By using it, we obtain that
2D 4p°q*r
tan°R DT+ 20+ 2P — P — g — P — AP <9>

On the other hand, by using the cosine formula, we obtain that

( sina ) :_ sin®a _ sin“a - (sinb sinc)*
sinA 1—cos’A  (sinb sinc)?— (cosa—cosb cosc)?
40 -p") - 4¢°(1—¢") - 471 —7")
0P - 4FA-A -{0-20) - Q-2 1-29F
_ 6p'g 7 (1-p)A-¢) A7) (10)
2p2q2+2q27,2+272p2_p4_ q4_ 7_4_4p2q27.2-

By putting (9) to (10), we have proved (4 ). []

Proof of Theorem 1. We fix the radius R of the circumcircle, and put %= sin’R. Then the pair (@, 8) of the angles determines

the shape of the triangle. Since OE AABC, all of @, 8, v are acute or right. So we assume that the variables (a, B) vary in the
following domain:

Di={(e, 8 <€[0,7/2)" | a+pB=n/2}. an

By putting (5) to (4 ), and by using ¥ =7 — @ — 8, we obtain that

(%)2 ﬁ (1 - ksin*a) (1 — ksin’8) (1 — ksin®(a+8)). (12)

We can regard f=sin a/sinA as a function of (@, 8), and so we denote it by f(a, 8). So we can reduce the problem to that of
finding the maximum and the minimum of f(a, B) on D\

To do it, we partially differentiate (12) and obtain that

(f(OZ B)* ) =47k (1- kstB) g { (1—}3%) (1_}‘3%@) }
Zk (1-ksin’g) | (2= k) (sin2a+sin2(@+p) ) +k (sin2acos2(a+ ) +cos2arsin2(a+6) ) |
= 1_2]2 (1— ksin®B) {2(2— k)sin(2a+ B) cosB+ ksin2(2a+ B) }
:%‘i (1 - ksin’8)sin (2a + B) {2cosﬂ— k ( cosB— cos (2a+5)) }
= 78K (1 - ksin’B)sin 2+ B){cosB— ksin(a+ B)sina). (13)
Similarly, we obtain that
(% (f(a, B)2> =%§f(l — ksin’a) sin (a + 283) {cosa — ksin (@ + 8) sinB}. (14)

To get the maximum or the minimum of f (@, 8), we must find the points (a, 8) at which both (13) and (14) vanish. We ob-
tain the following four cases:



Kenzi ODANI

(i) sin(2a+B) =0, sin(@+28) =0.
(i) sin(2a+B) =0, cosa = ksin (@ + ) sinf.
(iii) cosB= ksin(a+ B)sina, sin(a+28) =0.
(iv) cosB= ksin(a+ B)sina, cosa = ksin (@ + ) sinp.
We can reduce the case ( i) to (@, 8) = (n/3, ©/3) at which f(@, 8) = fi(R). We can also reduce the cases (i ), (iii) and
(iv) respectively to (@, 8) = (A, —2A), (=24, A) and (A, A) at which f(a, 8) =1, where A=sin"'(1/y/2k). Remark
that, in the case, it is required that 1 /y/2k = 1, and so R = /4.
On the other hand, the function f(a, B) possibly takes the maximum or the minimum on the boundary of D;, which con-

sists of the following three line segments:

L={(e, 1/2) | 0=a=n/2}, L={(n/2,B) | 0=B=n/2},
(15)
L={(a,n/2—a) | 0=a=n/2}.

For (@, ©/2) €1, we can calculate as follows:
fla, n/2)*=4k(1 - ksin’e) (1— kcos’a) =4k(1—k +%k2 sin’ 2a). (16)

So the function f (@, 8) on I, takes the maximum f>(R) at (z/4, ©/2) and the minimum f;(R) at (0, 7/2) and (7/2, ©/2).
Similar conclusions hold on /; and .

Therefore we have three values fi (R), f2(R), f3(R) and 1 (only when R=r/4) as the candidates for the maximum and
the minimum. By comparing these values, we have proved the inequalities. Finally, we remark that, since each of (0, 7/2),
(n/2, w/2) and (r/2,0) can not make any triangles, the left inequalities of (2 ) and ( 3 ) must be strict. []
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Figure 6 Figure 7

Proof of Theorem 2. Since O ANABC, one of @, 8, 7 is obtuse, say, y=m— @ —B8=7/2. So we assume that the variables (a,

) vary in the following domain:
D.={(a, ) €0, n/2)* | a+B=n/2}. 17)

There are no points in D at which both (13) and (14) vanish. So the function f(a, ) must take the maximum and the mini-

mum on the boundary of D, which consists of the following three line segments:
L L={(a,0) | 0=a=nr/2}, 5={(0,8) | 0=p=n/2}. (18)

For (@, 0) € 1, we can calculate as follows:

fla, o>2:%<1— k sina)’. (19)
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So the function f(a, 8) on  takes the maximum f;(R) at (0, 0) and the minimum f; (R) at (7/2,0). A similar conclusion
holds on 5. Moreover, the function f(a, 8) on I; takes the maximum f2(R) at (7/4, ©/4) and the minimum £;(R) at (0, 7/2)
and (7/2,0).

Therefore we have three values f;(R), fi(R) and f;(R) as the candidates for the maximum and the minimum. By com-
paring these values, we have proved the inequalities. Finally, we remark that, since each of (0, 0), (z/2, 0) and (0, ©/2) can

not make any triangles, the right and the left inequalities must be strict. [ ]

References

[ 1] K. L. Nielsen and J. H. Vanlonkhuyzen, Plane and Spherical Trigonometry, Barnes & Noble, 1963. ISBN: 0389001287
[ 2] C.W.Hackley, Elements of Trigonometry, Plane and Spherical, Univ. of Michigan Library, 2001. ISBN: 1418114626
[ 3] P.R.Rider, Plane and Spherical Trigonometry, MacMillan, New York, 1942.
(Received September 17, 2009)



