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1. Introduction

We consider a map associated with the simple genetic algorithm (SGA), in which the successive gen-
eration is reproduced through only the crossover (recombination) operations, without changing the length
of genomes, and no mutation occurs. In this situation, a deterministic map describes the evolution of
probability distributions of genomes, which induces a dynamics on a simplex.

In this note, we show that the Jacobian of the map associated with SGA is upper triangular matrix at
each vertices of the simplex, in a suitable order of genomes. As a result, we show that if the fitness function
has the maximum value at a unique genome, the vertex of the simplex corresponding to the genome is local

attractive point (Theorem 6.3), as expected.

2. Notations and definitions

Let ¥ ={0,1,...,1 — 1} be a set of alphabets for | > 2. A genome o = (0102 ---oy) with length N > 2
is an element of ¥V, Particularly we put 0 = (00---0) We fix the length N of genomes throughout the
paper. The fitness function is a positive function f : ¥V — (0,00). Each genome o € ¥ is taken as an
l-adic representation of a natural number v(o) = Zfil 0", which induces an order of genomes as o < T
if and only if v(o) < v(7).

A mask M is a proper subset ) # M G {1,...,N} of {1,...,N}. M stands for the set of all masks:
M={M|0+#MGE{1,...,N}}. The complement M of a mask M € M is given by M = {1,...,N}\ M.
For genomes 0,7 € ¥V, we define a set M(o,7) = {i € {1,...,N} | 0; = 7;}. Note that M(o,7) may be

{1,...,N} or (). For a genome ¢ € XV and a mask M € M, we define a set of genomes
[0l = {r € XN | 7, = 0; for all i € M}.
By definition, we see the followings.

Lemma 2.1. The statements i) T € [o]pr 1) o € [T)ar 4i2) [0 = [T]am w0) M C M(o,7) are equivalent to

each other.

When a function ¢ on 2% is given, we often use the abbreviation ¢([c]rs) = > refo]y @(7), for a genome

o and a mask M.

3. Selection and crossover

Our SGA evolves the population ratios of each genome deterministic way. Let p'(c) be the population
ratio of a genome o at time ¢. Then p' = (p'(0)),exn is a probability vector of genomes. The ¢-th generation
of genomes reproduces the next generation, where genomes with more larger fitness are likely to be selected,

as ‘parents’ of the next. The probability ¢’(c) to select a genome o at time ¢ is given by

(31> qt _ f(a)pt(a)

o St b
where S* = Y _ o~ f(7)p'(7) is the expectation value of f under the distribution p’. Note that q' =

(¢'(0))yexsn is a probability vector, and we define the selection map by Q(p') = q'.
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A pair of ‘parents’ reproduces ‘children’ through the crossover operation. Let o and 7 be selected genomes,
and M be a mask. The crossover o @y 7 € N of o and 7 through M is defined by

i, ifie M,
oPmMT= .
T;,  otherwise.

We see the following properties by definition.

Lemma 3.1. For genomes 0,7 € N and a mask M € M, we have
(1) o®uT=750.
(2) Vo' € [o]lm, VT €z, dOMT =0DMmT.
(3) Any genome o has a decomposition T ®p; 7' = o, where T € o]y and T € [o]y;.

Then the population ratio p'*! (o) of a genome o at time ¢ + 1 is given by

(3.2) o)== > 4 7)Prob(M) = > q'([o]m)q ([o]37) Prob(M),
MeM T 'enN MeM
TEMT =0

where Prob() is a suitable probability distribution on M. For simplicity, we adopt Prob(M) = 1/#M
throughout this paper. We define the crossover map by P(q') = p'*!.

Lemma 3.2. Let q = (q(0))xn be a probability vector. Then p = (p(o))xy = P(q) is also probability
vector.

Proof. It follows from lemma 2.1 that a mask M € M induces an equivalence relation on the set £V of
genomes by o ~ s 7 if and only if [o]y; = [7]as. Let Ry be a complete system of representatives under the

relation ~ 7, giving a decomposition SV = Il,er,, [0]a. By definition, we also see BV = II ¢y, [T]37 and

T oallrm) =Y an) =1

T€Elo|Mm TeLN

hence

Then

ocexN ocexN MeM MeMoeRy T€[0) 0
1 1
=M q([o]m) q([7lap) = M > q(0) =1
MeMoER N TE€[o|Mm MeM gexN

Summing up, the evolution of population ratios of genomes under our SGA is described by a map Po (@ :
A — A on a simplex A = {p € R | Zliiﬂ’i =1, p; > 0}.

4. Analysis of selection map @

Let e, be a probability vector (ex(7)),exn = (dor)rexn supported on a unique genome o, corresponding

to a vertex of the simplex A.

Lemma 4.1. A probability vector p € A is a fived point of the selection map Q if and only if the fitness
function f is constant on the support of p, that is, f(o) = f(7) for any genomes o and T with p(c) # 0 and
p(T) # 0. In particular, e, is a fized point of Q for any genome p.

Proof. Q(p) = p means f(o)p(o) = Sp(c) (where S = > f(7)p(7)), hence f(c) = S whenever p(c) # 0.
Conversely suppose f has constant value ¢ on the support of p € A. Then S =)"_f(7)p(t) =c¢> . p(1) =c

and hence Q(p) = (f(0)p(0)/S)sn = (cp(0)/c)sn = p- O



On a Jacobi Matrix Associated with a Simple Genetic Algorithm

Proposition 4.2. For probability vectors p = (py)sv and q = (¢-)sv = Q(p),

dqr - f U)

8po_ - S (60'7' qT)?
where S = f(T)pr. In particular, the evaluation at e, equals

0qr f(o)
4.1 = B
( ) Ops ep f(p) ( g )
for any genome p € TN,
Proof. A direct calculus gives
0 f(T)pT 1 f(O’) f(T)p‘r 0qr f(U)
—— :_507' = e & — = 50'7'_ :—:_507 T

Note that S = f(p) and ¢, = 6, at p = e,. O

5. Analysis of crossover map P
Lemma 5.1. e, is a fized point of the crossover map P for any genome p.

Proof. As one see [7]ys N[7]y; = {7} by definition for any genome 7 and mask M, the 7-component of P(e,)

equals

#./\/l Z eo([7In) - ep([7lap) = #/\/l Z Opr = Opr = €p(T).

MeM MeM

Proposition 5.2. For probability vectors q = (¢;)sv and p = (pr)sv = P(q),

Op- 2
620 = #—M Z a([r]zz)-

In particular, the evaluation at e, equals

9pr

(5.1) oo

T M e M| M(p,7) S M C M(o,7)}

#M

€,

for any genome p € BN,

Proof. Tt follows from lemma 2.1 that

0 _ Ja([rlzp), if and only if M C M(o,7),
%immmwmﬁ—tmﬁ7ﬁwmmﬂmgM&ﬂ

Thus we see

opr- 1 2
o — Yy Z a([r]zp) + Z q(rlm) | = M Z q([7lz7)
MeM _ MeM MeM
MCM(o,T) MCM(o,T) MCM(o,7)
by replacing the variable M to M in the second term of the middle equality. In the case of q = e,, we see

wmm—{Li“emw

0, otherwise.

By lemma 2.1, p € [7]3; means M C M(p,7), that is, M(p,7) C M. Hence

apT 2 ( C M(o,1
E 1 MeM| M 3 = M b= ’ '
€p M MeM #M #{ | (p ) ( )}
W T)CMCM/(o,7)
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6. Jacobian of map Po Q)

Recall that our SGA map P o @ fixes e, for any genome p by lemma 4.1 and 5.1.

Proposition 6.1. For a probability vector p = (py)sn, we put p' = (pl)yn = PoQ(p). Then

opy f(r")pr f(m)px
—#MSZZ 2 S (5‘”_5*)'

0
Po T€XN  MeM ' elrlyr
MCM(m,T)

In particular, the evaluation at ep equals

flo)
f(p)

A’

Sor| = M € M| M(p.) € M € M(o.m)H(1 = 8)

(6.1)

#M

€ep

for any genome p € BN,

Proof. A combination of proposition 4.2 and 5.2 shows the first assertion. It follows from (4.1) and (5.1)
that

" (o)
%ep EZZ:N #{MEM | M(p’ )QMQM(W7T)}'W(6(7#_6PW)
noticing that {M € M | M(p,7) € M C M(m,7)} = 0 whenever 7 = p,
__2 flo) |
T H#Mfp) Z #{M € M| M(p,7) S M C M(7,7)} - 6on
ﬂ#p
2 f(o)

T AEM f(p>#{M€M | M(p,7) C M C M(0,7)} (1= 6po).

O
Thus we obtain the Jacobi matrix of the SGA map P o @ explicitly. The following is a key lemma to
observe the behavior of P o @ at a vertex e, of the simplex A.

Lemma 6.2. For any genomes o and T with 0 < o < 7, M(7,0) € M(7,0) holds.

Proof. Suppose that 0 < o < 7 and M(7,0) C M(7,0). Then for any i € M (7,0) C M(7,0), it holds 7; =0
and hence o; # 7; = 0. Take j = max M(7,0), then ¢; > 7; = 0, which implies v(c) > v(7) while ¢ < 7.

Hence a contradiction. O

Theorem 6.3. Take probability vectors p = (py)sv and p' = (p.)sy = P o Q(p). Then

a /
(1) apT = 0 holds for any genomes o and T with 0 < o < 7. Therefore the Jacobi matriz D(P o Q)
Po |e
at 0 2.2 upper triangular.

(2) If a fitness function f takes a unique maximum value at 0, then 0 is a local attractive point.

Proof. The assertion (1) is a direct result of (6.1) and lemma 6.2. In the case o0 = 7, as M(7,7) = M, we

have 57 )
P T
——# M e M| M(p,7) C M}1—dg;)——.
6}97 e #M { | (p ) }( 0 )f<0)
The right hand side equals 0 when 7 = 0, while 7 # 0, we see M (7,0) # () and hence

#{M e M | M0 c My < M
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As f takes a unique maximum, f(0) > f(7) holds for any genome 7. Then we have

op., f(7)

0< < —L <1,
~ Ops eoif(o)

that is, all diagonal elements of upper triangular matrix D(P o Q) at eg, which are to be eigen values of

D(P o @), are non-negative and smaller than 1. Therefore e is locally attractive. O
Note that we lose no generality to set 0 a unique maximum of a fitness function f, whenever f has a

maximum value on a unique genome.

EXAMPLE. In the case ¥ = {0,1} and N = 2, the set of genomes is 2 = {00,01,10,11} and the set of

masks is M = {{0},{1}}. The order of genomes is defined by 00 < 01 < 10 < 11. Given a fitness function

f, the selection and crossover maps are described as

) fgoogpoo EQOO + %1%%%0 T Q10§

_ J(01)por ;o _ | (goo + qo01)(qo1 + q11

a=QP) S| f(10)pio | P =Pla) = (q10 + ¢11)(q00 + q10)
f(11)pn (q10 + q11)(qo1 + q11)

where S = f(00)poo + f(01)po1 + f(10)p10 + f(11)p11. Then Jacobi matrices of P and @ at egg = (1,0,0,0)

are given as

0 —f(01) —f(10) —f(11) 2110
1 o fon) 0 0 o101
DQ‘eoo_f(OO) 0 0 f(lO) 0 ’ DP|900_ 0 0 1 1
0 0 0 f(11) 0000
hence
X 0 }JE(O;) —f(10) *?{(1)1)
. 0 01 0 11
D(P o Q)leo = fooy (o o0 f(1o)  f(11)

0 0 0 0
One see that e is a local attractive point provided that f takes a unique maximum value at 00.

7. Concluding remarks

We see the SGA map fixes each vertex of the simplex A, however another fixed points might exist. Indeed
one see that a probability vector p = (I7V)xn (I equals a cardinality of ©%) is a fixed point of P, thus
a fixed point of P o Q when the fitness function f is constant on A. One also see that P o P = P when
¥ ={0,1} and N = 2.
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