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Abstract

A finite set X in a complex sphere is called a complex spherical 2-code if the number
of inner products between two distinct vectors in X is equal to 2. In this paper, we
characterize the tight complex spherical 2-codes by doubly regular tournaments or skew
Hadamard matrices. We also give certain maximal 2-codes relating to skew-symmetric
D-optimal designs. To prove them, we show the smallest embedding dimension of a
tournament into a complex sphere by the multiplicity of the smallest or second-smallest
eigenvalue of the Seidel matrix.

Key words: complex spherical s-code, doubly regular tournament, skew Hadamard matrix,
skew-symmetric D-optimal design, representable graph, main angle, main eigenvalue, graph
spectrum.

1 Introduction

Let X be a finite set of points on the complex unit sphere Ω(d) in Cd. The angle set A(X) is
defined to be

A(X) = {x∗y | x, y ∈ X,x ̸= y},

where x∗ is the transpose conjugate of a column vector x. A finite set X is called a complex
spherical s-code if |A(X)| = s and A(X) contains an imaginary number. The value s is called
the degree of X. For X,X ′ ⊂ Ω(d), we say that X is isomorphic to X ′ if there exists a unitary
transformation from X to X ′. An s-code X ⊂ Ω(d) is said to be largest if X has the largest
possible cardinality in all s-codes in Ω(d). One of major problems on s-codes is to classify
largest s-codes for given s and d.

We will survey Euclidean finite sets with only s distances. For X ⊂ Rd, we define

D(X) = {d(x, y) | x, y ∈ X,x ̸= y},

where d(x, y) is the Euclidean distance of x and y. A finite set X is called an s-distance set
if |D(X)| = s holds. We have an upper bound for the size of an s-distance set in Rd, namely
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|X| ≤
(
d+s
s

)
[2]. Clearly the largest 1-distance set in Rd is the regular simplex for any d.

Largest 2-distance sets in Rd are classified for d ≤ 7 [9, 11]. Largest s-distance sets in R2

are classified for s ≤ 5 [10, 19, 20]. The largest 3-distance set in R3 is the vertex set of the
icosahedron [21]. The classification of largest s-distance sets is still open for others (s, d). A
largest 2-distance set in R8 is given in [11], and it attains the upper bound.

A spherical s-distance set particularly deserves attention because of the connection to
association schemes or spherical t-designs (see [7, 1] for details). A subset X of Sd−1 is called
a spherical t-design if for any polynomial f in d variables of degree at most t, the following
equality holds:

1

|Sd−1|

∫
Sd−1

f(x)dx =
1

|X|
∑
x∈X

f(x),

where |Sd−1| is the volume of Sd−1. If a spherical t-design X of degree s satisfies t ≥ 2s− 2,
then X has the structure of a Q-polynomial association scheme [7]. The size of an s-distance
set in Sd−1 is smaller than or equal to

(
d+s−1

s

)
+
(
d+s−2
s−1

)
[7]. An s-distance set X is said to

be tight if X attains this bound. A tight s-distance set becomes a minimal spherical t-design
and satisfies t = 2s [7]. The classification of tight s-distance sets is one of the most interesting
problems, and this has been solved except for s = 2 [4]. A largest 2-distance set on Sd−1 is
determined for d ≤ 93 (d ̸= 46, 78) [13, 5]. A largest 3-distance set on Sd−1 is determined for
d = 2, 3, 8, 22 [21, 14].

A simple graph G = (V,E) is representable in Rd if there is an embedding σ : V → Rd

such that

d(σ(a), σ(b)) =

{
α if (a, b) ∈ E,

β otherwise,

for some α, β ∈ R. For a simple graph G, Roy [18] gave an explicit expression of the minimal
dimension d such that G is representable in Rd in terms of the multiplicity of the smallest or
second-smallest eigenvalue of A. This embedding of a graph is useful for the classification of
2-distance sets [9, 11].

Roy and Suda [17] gave the complex analogue of the spherical s-distance set theory.
Complex spherical s-codes are closely related to complex spherical designs or non-symmetric
association schemes. In this paper, we consider a complex spherical 2-code X ⊂ Ω(d). If X
satisfies A(X) ⊂ R, then the Gram matrix of X is real, and X can be embedded into Rd.
We may assume A(X) contains an imaginary number α, and A(X) = {α, α}, where α is the
conjugate of α. We have a natural upper bound [17]:

|X| ≤

{
2d+ 1 if d is odd,

2d if d is even.
(1.1)

A 2-code X is said to be tight if X attains the bound (1.1). This is known as the absolute
bound.

A tournament is a directed graph obtained by assigning a direction for each edge in an
undirected complete graph. Formally, a tournament is a pair (V,E) such that the vertex set
V is a finite set and the edge set E ⊂ V × V satisfies E ∩ ET = ∅ and E ∪ ET ∪ {(x, x) |
x ∈ V } = V × V , where ET := {(x, y) | (y, x) ∈ E}. A complex spherical 2-code X has the
structure of a tournament (X,E), where E = {(x, y) ∈ X × X | x∗y = α}. A tournament
(V,E) is representable in Ω(d) if there exists a mapping φ from V to Ω(d) such that for all
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distinct x, y ∈ V ,

φ(x)∗φ(y) =

{
α if (x, y) ∈ E,

α if (y, x) ∈ E,

where α is an imaginary number with Im(α) > 0. Such a mapping φ is said to be a represen-
tation of a tournament. We identify a representation with the image of the representation.
Two tournaments G = (V,E), G′ = (V ′, E′) are isomorphic if there is a bijection from V to
V ′ such that (x, y) ∈ E if and only if (f(x), f(y)) ∈ E′. For two tournaments G and G′, if
G is not isomorphic to G′, then a representation of G is not isomorphic to that of G′. Let
Rep(G) denote the smallest d such that G is representable in Ω(d). The Seidel matrix of G is
defined to be

√
−1(A−AT ), where A is the adjacency matrix of G. In Section 3, we determine

Rep(G) by the multiplicity of the smallest or second-smallest eigenvalue of the Seidel matrix
of G.

A tournament G is said to be doubly regular if the number of the neighbors of a vertex
does not depend on the choice of the vertex and the number of the common neighbors of a
pair of distinct vertices does not depend on the choice of the pair. An n× n (±1)-matrix of
H is called a skew Hadamard matrix if H +HT = 2I and HHT = nI, where I is the identity
matrix. Let X ⊂ Ω(d) be a 2-code, and A the adjacency matrix of the tournament obtained
from X. It is known that the existence of a doubly regular tournament of 4d + 3 vertices is
equivalent to that of a skew Hadamard matrix of order 4d+ 4 [16]. In Section 4, we give the
following characterizations of tight 2-codes and 2-codes with n = 2d where d is odd.

(1) For odd d, X is a tight complex 2-code if and only if A is the adjacency matrix of a
doubly regular tournament.

(2) For even d, X is a tight complex 2-code if and only if I +A−AT is a skew Hadamard
matrix.

(3) For odd d, X is a complex 2-code with n = 2d if and only if either A is the adjacency
matrix of an induced subgraph of a doubly regular tournament by deleting a vertex, or
its Seidel matrix S satisfies that S2 is permutationally similar to(

kI + lJ 0
0 kI + lJ

)
,

for some positive integers k, l.

We note that the last case in (3) includes skew-symmetric D-optimal designs [8, 23]. The
table of the number of non-isomorphic tight 2-codes in Ω(d) for d ≤ 14 is obtained by a
computer calculation based on Theorem 3.2 in [3].

2 Results on main eigenvalues

In this section we give results on main eigenvalues of a Hermitian matrix which will be used
later. Let H be a Hermitian matrix of size n with s distinct eigenvalues τ1 < · · · < τs. Let
Ei be the orthogonal projection matrix onto the eigenspace corresponding to τi. The main
angle βi of τi is defined to be the value

βi =
1√
n

√
(Ei · j)∗(Ei · j),
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where j is the all-ones vector. It is clear that 0 ≤ βi ≤ 1 and
∑s

i=1 β
2
i = 1.

Let J denote the all-ones matrix.

Lemma 2.1 ([15]). Let H be a Hermitian matrix of size n with s distinct eigenvalues τ1 <
· · · < τs. Let βi be the main angle of τi. Let M = H + aJ , where a is a complex number.
Then

PM (x) = PH(x)
(
1 + a

s∑
i=1

nβ2
i

τi − x

)
,

where PM is the characteristic polynomial of matrix M .

An eigenvalue τi is said to be main if βi ̸= 0.

Theorem 2.2. Let H be a Hermitian matrix of size n, and M = H + aJ , where a is a real
number. Let τ1 < τ2 < · · · < τr be the distinct main eigenvalues of H, and βi the main angle
of τi. Let µ1 < µ2 < · · · < µs be the distinct main eigenvalues of M . Then r = s holds, and

f(x) =

r∏
i=1

(µi − x) =

r∏
i=1

(τi − x)(1 + a

r∑
j=1

nβ2
j

τj − x
). (2.1)

Moreover, if a > 0, then τ1 < µ1 < τ2 < · · · < τr < µr, and if a < 0, then µ1 < τ1 < µ2 <
· · · < µr < τr.

Proof. By Lemma 2.1, we have the equality

s∏
i=1

(µi − x) =

r∏
i=1

(τi − x)(1 + a

r∑
j=1

nβ2
j

τj − x
). (2.2)

By comparing the degrees of the polynomials in both sides, we obtain s = r.
Let f(x) be the polynomial in (2.2). It is easily shown that for a > 0,

f(τi) > 0, if i ≡ 1 mod 2,

f(τi) < 0, if i ≡ 0 mod 2,

lim
x→∞

f(x) < 0, if r ≡ 1 mod 2,

lim
x→∞

f(x) > 0, if r ≡ 0 mod 2.

This implies that τ1 < µ1 < τ2 < · · · < τr < µr. By the same manner for H = M − aJ with
a < 0, we can show µ1 < τ1 < µ2 · · · < µr < τr.

3 Representations of a tournament

In this section, we determine Rep(G) by the multiplicity of the smallest or second-smallest
eigenvalue of the Seidel matrix of G. Let G = (V,E) be a tournament with n vertices. The
adjacency matrix A of G is the matrix indexed by the vertex set V , with entries given by

Axy =

{
1 if (x, y) ∈ E,

0 otherwise.
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The Gram matrix of a representation of G, with adjacency matrix A, can be expressed by

αA+ αAT − τI,

where α is an imaginary number, and τ is a negative real number. Note that τ should be
the smallest eigenvalue of αA + αAT to minimize the rank. To determine Rep(G), we will
consider α for which the multiplicity of the smallest eigenvalue of αA+ αAT is maximum.

Theorem 3.1. Let G be a tournament with n vertices, and A the adjacency matrix. Let
τ1 < τ2 < · · · < τs be the distinct eigenvalues of S =

√
−1(A− AT ), βi the main angle of τi,

and mi the multiplicity of τi. Let α be the angle with Im(α) > 0 of the representation of G in
Ω(Rep(G)). Then the following hold.

(1) If β1 = 0, then Rep(G) = n − m1 − 1, and α = (1 − c1
√
−1)/(1 + c1τ1), where c1 =∑s

i=2 nβ
2
i /(τi − τ1).

(2) If β1 ̸= 0, and m1 > 1, then Rep(G) = n−m1, and α = −
√
−1/τ1.

(3) If m1 = 1, β2 = 0, and c2 < 0, then Rep(G) = n−m2 − 1, and α = (1− c2
√
−1)/(1 +

c2τ2), where c2 = nβ2
1/(τ1 − τ2) +

∑s
i=3 nβ

2
i /(τi − τ2).

(4) Otherwise Rep(G) = n− 1.

Proof. For α′ = a+
√
−1 with a ∈ R, we have

α′A+ α′AT = aJ +
√
−1(A−AT )− aI.

The multiplicity of the smallest eigenvalue of α′A+α′AT is equal to that ofM = aJ+
√
−1(A−

AT ). We would like to find a ∈ R such that the multiplicity of the smallest eigenvalue of M
is maximum. Let τk1 < · · · < τkr be the distinct main eigenvalues of S, and µl1 < · · · < µlr

those of M . Let f(x) be the polynomial defined as in Theorem 2.2.
(1) By β1 = 0, we have τ1 < τk1 . We would like to find a ∈ R such that µl1 = τ1.

For such a, the multiplicity of the smallest eigenvalue τ1 of M is maximum, and equal to
m1 + 1. By Theorem 2.2, µl1 = τ1 if and only if f(τ1) = 0, namely, a = −1/c1. Therefore
Rep(G) = n−m1−1 for a = −1/c1. By rescaling the diagonal entries of α′A+α′AT −(τ1−a)I
to 1, we obtain α = (1− c1

√
−1)/(1 + c1τ1).

(2) Since β1 ̸= 0, we have τ1 = τk1 ̸= µl1 by Theorem 2.2. Therefore, if a ̸= 0, the
multiplicity of the smallest eigenvalue of M is at most m1−1. Thus, for a = 0, the multiplicity
of the smallest eigenvalue of M is maximum, and equal to m1. Hence Rep(G) = n−m1, and
α = −

√
−1/τ1.

(3) By c2 < 0, we have β1 > 0 and τ1 is a main eigenvalue. We would like to find a ∈ R such
that µl1 = τ2. For such a, the multiplicity of the smallest eigenvalue τ2 of M is maximal, and
it is m2 +1. By Theorem 2.2, µl1 = τ2 if and only if f(τ2) = 0 and a > 0, namely, a = −1/c2
and c2 < 0. Therefore we obtain Rep(G) = n−m2 − 1, and α = (1− c2

√
−1)/(1 + c2τ2).

(4) If a = 0 and m1 = 1, then the multiplicity of the smallest eigenvalue of M is clearly 1.
Suppose β1 ̸= 0, m1 = 1, β2 = 0, and c2 ≥ 0. If a > 0 holds, then µl1 < τ2 by f(τ2) < 0

and limx→−∞ f(x) > 0. If a < 0 holds, then µl1 < τ1 by Theorem 2.2. The multiplicity of
the smallest eigenvalue µl1 of M is 1.

Suppose β1 ̸= 0, m1 = 1, β2 ̸= 0. Then for any a ̸= 0, the multiplicity of the smallest
eigenvalue µl1 of M is 1 by Theorem 2.2.

From the above facts, Rep(G) = n− 1 follows.
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Note that the conditions (1)–(4) in Theorem 3.1 are disjoint. A tournament which satisfies
the condition (i) in Theorem 3.1 is said to be of Type (i) for i = 1, . . . , 4. There is a tournament
of each type. Lemmas 4.3, 4.4, and Remark 4.9 give examples of Type (1), (2), and (3),
respectively.

4 Tight complex spherical 2-codes

In this section, we give bounds on complex spherical 2-codes. We also characterize the tight
2-codes and 2-codes in Ω(d) with n = 2d vertices, where d is odd in terms of doubly regular
tournaments, skew Hadamard matrix and some skew symmetric (0,±1)-matrices including
skew-symmetric D-optimal designs as an application of Theorem 3.1.

Let X be a finite subset in Ω(d) of size n with degree 2, and let A be the adjacency matrix
of X. Example 6.3 in [17] shows that the following are equivalent:

(1) |X| = 2d+ 1.

(2) {I,A, J − A − I} forms the set of adjacency matrices of a non-symmetric association
scheme of class 2.

Theorem 4.1. Let X be a finite subset in Ω(d) of size n with degree 2, and let A be the
adjacency matrix of X. If d is odd, |X| ≤ 2d+ 1 holds. Equality holds if and only if A is the
adjacency matrix of a doubly regular tournament.

Proof. The absolute bound (1.1) shows that |X| ≤ 2d + 1 holds. Example 6.3 in [17] shows
that equality holds if and only if {I, A, J−A−I} forms the set of adjacency matrices of a non-
symmetric association scheme of class 2. The latter condition is equivalent to the condition
that A is the adjacency matrix of a doubly regular tournament.

To prove Theorems 4.7, 4.8, we need the following lemmas.

Lemma 4.2. There exists no tournament A of Type (1) with n = 2d vertices and the spectrum
{(−θ)d−1, 02, (θ)d−1} where 0 < θ.

Proof. Suppose that there exists such a tournament with Seidel matrix S. It holds that
Sj = 0 because β1 = β3 = 0 and the remaining eigenvalues are all 0. However it does not
happen because n = 2d.

Lemma 4.3. Let d be an integer at least 3. Let A be the adjacency matrix of a tournament of
Type (1) with n = 2d vertices and the spectrum {(−θ)d−1, (−ϕ)1, (ϕ)1, (θ)d−1} where 0 < ϕ <
θ. Then d is odd and A is the adjacency matrix of an induced subgraph of a doubly regular
tournament by deleting a vertex.

Proof. Since the entries of S2 are integers, the eigenvalues of S2 are algebraic integers. There-
fore θ2 and ϕ2 are integer because their multiplicities 2d− 2 and 2 are different. From taking
the trace of S2, it follows that the possibility of (θ2, ϕ2) is (2d+ 1, 1) or (2d, d).

For the first case, A is the adjacency matrix of an induced subgraph of a doubly regular
tournament by deleting a vertex [15, Theorem 1.1]. Thus n+ 1 = 2d+ 1 must be congruent
to 3 modulo 4, which implies that d is odd.

For the second case, consider θ2I − S2. Since θ2I − S2 is positive semidefinite and the
diagonal entries are all 1, the absolute value of an off-diagonal entry of this matrix must be at
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most 1. In fact they must be zero because the size of the matrix θ2I − S2 is even. Therefore
S2 = (θ2 − 1)I, which contradicts the fact that S2 has the other eigenvalue ϕ2.

Lemma 4.4. Let A be the adjacency matrix of a tournament of Type (2) with n = 2d vertices
and the spectrum {(−θ)d, (θ)d} where 0 < θ. Then d is even and I + A − AT is a skew
Hadamard matrix.

Proof. The fact that I +A−AT is a skew Hadamard matrix follows from direct calculation,
and thus d must be even.

Lemma 4.5. Let A be the adjacency matrix of a tournament of Type (3) with the spectrum
{(−θ)1, (−ϕ)d−1, (ϕ)d−1, (θ)1} where 0 < ϕ < θ. Then d is odd and the Seidel matrix S
satisfies that S2 is permutaionally similar to(

kI + lJ 0
0 kI + lJ

)
, (4.1)

for some positive integers k, l.

Proof. By the condition of Type (3), β2 = β3 = 0 and β1 = β4 = 1/
√
2 hold. Consider the

eigenspaces of S2 − ϕ2I. The main angle condition of S implies that the all-ones vector is
an eigenvector of S2 − ϕ2I corresponding to the eigenvalue θ2 − ϕ2. Since the multiplicity of
θ2 − ϕ2 is two, let x be the remaining normalized real eigenvector orthogonal to j. Then it
holds that

S2 = ϕ2I + (θ2 − ϕ2)((1/n)J + xxT ).

Comparing the diagonal entries, we observe that n− 1 = ϕ2 + (θ2 − ϕ2)(1/n+ x2i ) for each i,
where xi is the i-th entry of x. This implies that x2i is independent of the choice of i. Since
the vector x is normalized, we obtain xi = ±1/

√
n. The assumption that x is orthogonal to

the all-ones vector shows that each ±1/
√
n appears in the entries of x exactly same times.

After some permutation of entries, we may assume that the first half entries of x are 1/
√
n

which means S2 has the form

S2 =

(
ϕ2I + 2(θ2−ϕ2)

n J 0

0 ϕ2I + 2(θ2−ϕ2)
n J

)
.

Since a vector S(j+
√
nx) is written as a linear combination of j, x and S =

√
−1(2A−J+I),

we have

A

(
j
0

)
=

(
aj
bj

)
for some a, b. Letting A1 be the principal submatrix of A lying the first d rows and columns,
then A1j = aj, namely A1 is the adjacency matrix of a regular tournament of order d. This
implies d must be odd.

Lemma 4.6. Let X be a finite subset in Ω(d) with degree 2 and size n = 2d. The possibilities
of the spectrum of S =

√
−1(A−AT ) are as follows:

(i) X is of Type (1) with the spectrum {(−θ)d−1, 02, (θ)d−1}.
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(ii) X is of Type (1) with the spectrum {(−θ)d−1, (−ϕ)1, (ϕ)1, (θ)d−1} with 0 < ϕ < θ.

(iii) X is of Type (2) with the spectrum {(−θ)d, (θ)d}.

(iv) X is of Type (3) with the spectrum {(−θ)1, (−ϕ)d−1, (ϕ)d−1, (θ)1} with 0 < ϕ < θ.

Proof. Follows from Theorem 3.1.

Theorem 4.7. Let X be a finite subset of Ω(d) of size n with degree 2, and let A be the
adjacency matrix of X. If d is even, |X| ≤ 2d holds. Equality holds if and only if I +A−AT

is a skew Hadamard matrix.

Proof. A necessary condition for the existence of doubly regular tournaments is |X| ≡ 3
(mod 4), namely d is odd. Therefore if d is even then |X| < 2d+ 1, that is, |X| ≤ 2d holds.

Let H be a skew Hadamard matrix of size n. Then n must be a multiple of 4. Define S =√
−1(H−I) andA = 1

2(−
√
−1S+J−I). Then the spectrum of S is {(−

√
n− 1)n/2, (

√
n− 1)n/2}.

Thus A is of Type (2) and the minimum embedding dimension is d = n/2. Therefore n = 2d.
Let X be a finite subset of Ω(d) with degree 2 and size n = 2d. First we consider the case

d = 2. In this case, the classification of tournaments of order 4 is given [12] and the list of A
are

(a)


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 with Rep(G) = 3, (b)


0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0

 with Rep(G) = 2,

(c)


0 0 1 1
1 0 1 0
0 0 0 1
0 1 0 0

 with Rep(G) = 3, (d)


0 0 1 1
1 0 0 1
0 1 0 1
0 0 0 0

 with Rep(G) = 2.

The tournaments (b) and (d) satisfy n = 2d, and in these cases, I + A − AT is a skew
Hadamard matrix.

Next we consider the case where d ≥ 4. By Lemmas 4.2–4.6 and the assumption that d is
even, I +A−AT is a skew Hadamard matrix as desired.

Theorem 4.8. Let d be an odd integer at least 3. Let X be a finite subset of Ω(d) of size n
with degree 2, and let A be the adjacency matrix of the tournament obtained from X. The
finite subset X has the size n = 2d if and only if one of the following occurs:

(i) A is the adjacency matrix of an induced subgraph of a doubly regular tournament by
deleting a vertex.

(ii) the Seidel matrix S satisfies that S2 is permutaionally similar to(
kI + lJ 0

0 kI + lJ

)
, (4.2)

for some positive integers k, l.
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Proof. Let A be the adjacency matrix of an induced subgraph of a doubly regular tournament
by deleting a vertex. From Theorem 1.1 and Remark 2.8 in [15] A is of Type (1) and the
minimum embedding dimension is d = n/2. Therefore n = 2d.

Let S be the Seidel matrix which satisfies (4.2). By the block form of S2, the eigenvalues
S2 are k + ld, k with multiplicities 2, 2d − 2 respectively. Thus the eigenvalues of S are
±
√
k + ld,±

√
k with multiplicities 1, d−1 respectively. The eigenvectors of S2 corresponding

to k + ld are the all-ones vector and the (±1)-vector with the first d entries equal to 1 and
the last d entries equal to −1. This implies that main angles of S corresponding to ±

√
k are

0. Thus the adjacency matrix of S is of Type (3) and the minimum embedding dimension
d = n/2. Therefore n = 2d.

Let X be a finite subset in Ω(d) with degree 2 and size n = 2d. By Lemmas 4.2–4.6 and
the assumption that d is odd, either A is the adjacency matrix of an induced subgraph of
a doubly regular tournament by deleting a vertex or the Seidel matrix S satisfies that S2 is
permutaionally similar to (4.2) as desired.

Remark 4.9. Chadjipantelis and Kounias [6, Theorem] showed that supplementary difference
sets construct (±1)-matrix S satisfying (4.2).

For the Seidel matrix S satisfying (4.2) with (k, l) = (n − 3, 2),
√
−1S + I is known

as the D-optimal designs [8, 23]. Let A1, A2 be the adjacency matrices of doubly regular
tournaments of same order. Then a tournament of the adjacency matrix(

A1 J
0 A2

)
satisfies (4.2) for (k, l) = (d, d− 1). For d = 2, this example corresponds to a skew D-optimal
design.

When d is odd, the number of tight 2-codes in Ω(d) is equal to that of doubly regular
tournaments of order 2d+ 1. When d is even, the number of tight 2-codes in Ω(d) is that of
tournaments in the switching classe of the tournament obtained by adding one vertex with
no outward edges and all possible inward edges to a doubly regular tournament. If we use a
computer, the number of non-isomorphic tournaments in a switching class can be calculated
by Theorem 3.2 in [3]. Therefore if doubly regular tournaments are classified, then we can
determine the number of tight 2-codes. Doubly regular tournaments have been classified for
order at most 27 [22], and we can find the catalogue in [12]. Note that non-isomorphic doubly
regular tournaments may be in the same switching class. By using a computer calculation
based on Theorem 3.2 in [3], we can give the number of tight 2-codes as Table 1.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|X| 3 4 7 8 11 12 15 16 19 20 23 24 27 28
# 1 2 1 4 1 8 2 240 2 8956 37 11339044 722 9897616700

Table 1: Tight complex 2-code X in Ω(d)
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