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Abstract

In this paper, we prove that the 3-rank of the ideal class group of the
imaginary quadratic fieldQ(

√
4− 318n+3) is at least 3 for every positive integer

n.
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1 Introduction

In 1973, Craig [1] proved that there exist infinitely many imaginary quadratic fields
whose ideal class groups have 3-rank at least 3. After that Craig himself extended
such lower bound replaced by 4 ([2]). However, less is known about a parametric
family of such fields with high rank. On the other hand, one of the author showed in
[6] that the 3-rank of the ideal class group of imaginary quadratic fieldQ(

√
4− 36n+3)

is at least 2 for any positive integer n. The goal of the present paper is to prove that
the lower bound of 3-rank for such fields can be replaced by 3 when n is divisible by
3, that is,

Theorem 1. Let n be a positive integer. Then the 3-rank of the ideal class group
of Q(

√
4− 318n+3) is at least 3.

2 Proof of Theorem 1

For a positive integer n we consider two quadratic fields

k := Q(
√
4− 318n+3) and k′ := Q(

√
−3(4− 318n+3)).
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Denote the 3-rank of the ideal class group of k (resp. k′) and by r (resp. s). Then
it holds that r = s + 1 (cf. [6, Theorem 3]). Therefore it is sufficient to show that
s ≥ 2.

For an element α of a quadratic field k such that Nk(α) = m3 for some m ∈ Z,
define the cubic polynomial fα by

fα(X) = X3 − 3mX − Trk(α),

where Nk and Trk denote the norm map and the trace map of k/Q, respectively.
The following proposition, which combined [4, Lemma 1], [5, Proposition 6.5], [9,

Theorem 1] (see Proposition 2.2) and [8, Lemma 3.2], is one of the main ingredients
in the proof of our theorem.

Proposition 2.1. Let d be an integer with d ̸∈ Z2∪ (−3Z2) and put k = Q(
√
d) and

k′ = Q(
√
−3d). Let α and β be integers in k× whose norms are cubic in Z. Then

we have
(1) The polynomial fα is reducible over Q if and only if α is cubic in k.
(2) If fα is irreducible over Q, then the splitting field Eα of fα over Q is a cyclic cubic
extension of k′ unramified outside S and Eα has a cubic subfield K with v3(DK) ̸= 5,
where S is the set of all the prime divisors of 3 gcd(Nk(α),Trk(α)) and DK is the
discriminant of K.
(3) The splitting fields of fα and fβ over Q are distinct if and only if neither αβ
nor αβ is cubic in k, where α is the conjugate of α in k.

Next we extract some results from Llorente and Nart [9, Theorem 1].

Proposition 2.2. Suppose that the cubic polynomial

F (X) = X3 − aX − b, a, b ∈ Z,

is irreducible over Q, and that either vp(a) < 2 or vp(b) < 3 holds for every prime
p. Let θ be a root of F (X) = 0, and put K = Q(θ). Then we have
(1) The prime p ̸= 3 is totally ramified in K/Q if and only if 1 ≤ vp(b) ≤ vp(a).
(2) The prime 3 is totally ramified in K/Q if and only if one of the following
conditions holds:

(LN-i) 1 ≤ v3(b) ≤ v3(a);

(LN-ii) 3 | a, a ̸≡ 3 (mod 9), 3 ∤ b and b2 ̸≡ a+ 1 (mod 9);

(LN-iii) a ≡ 3 (mod 9), 3 ∤ b and b2 ̸≡ a+ 1 (mod 27).

Proof of Theorem 1. Define the elements α, β ∈ k = Q(
√
4− 318n+3) by

α :=
33n+1(36n+1 − 2) +

√
4− 318n+3

2
,

β :=
(310n+2 − 2 · 36n+1 + 2 · 34n+1 + 2 · 32n+1 + 2) + 3n(2 · 32n + 3)

√
4− 318n+3

2
,
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respectively. Then we have

Nk(α) = (36n+1 − 1)3,

Trk(α) = 33n+1(36n+1 − 2),

Nk(β) = (38n+1 + 36n+1 − 32n + 1)3,

Trk(β) = 310n+2 − 2 · 36n+1 + 2 · 34n+1 + 2 · 32n+1 + 2,

and so

fα(X) = X3 − 3(36n+1 − 1)X − 33n+1(36n+1 − 2),

fβ(X) = X3 − 3(38n+1 + 36n+1 − 32n + 1)X

− (310n+2 − 2 · 36n+1 + 2 · 34n+1 + 2 · 32n+1 + 2).

We showed in [6] that the polynomial fα is irreducible over Q and the splitting field
Eα of fα over Q is an unramified cyclic cubic extension of k′. We will guarantee
the irreducibility of fβ at the next section. By putting t = 3n, one has Trk(β) =
9t10 − 6t6 + 6t4 + 6t2 + 2 and Nk(β) = m3, where m = 3t8 + 3t6 − t2 + 1. Due to
extended Euclidean algorithm as polynomials in t we have λ1m + λ2Trk(β) = 113,
where

λ1 = 486t8 + 360t6 − 501t4 − 195t2 + 919, λ2 = −162t6 − 282t4 − 61t2 + 206.

Proposition 2.1 shows that the splitting field Eβ of fβ over Q is an extension of k′

unramified outside 3 and 11. We easily verify that fβ does not satisfy the conditions
(LN-i), (LN-ii) and (LN-iii) in Proposition 2.2 (2). Thus the prime ideal of k′

above 3 does not ramify in Eβ/k
′. Let aβ and bβ be rational numbers such that

fβ(X) = X3 − aβX − bβ. Note that 35 ≡ 1 (mod 112). If n ≡ 0, 1, 2, 3, 4 (mod 5),
then m ≡ 6, 82, 77, 80, 2 (mod 112), respectively. Hence aβ is divisible by 11 if and
only if n ≡ 2 (mod 5), and then one has v11(aβ) = 1. When n ≡ 2 (mod 5), the
integer Trk(β) is divisible by 112, that is, v11(bβ) ≥ 2. Therefore, Proposition 2.2 (1)
verifies that Eβ/k

′ is unramified at every prime ideal above 11. Hence Eβ is an
unramified cyclic cubic extension of k′. Proposition 2.1 (1) and (3) mean that
Eα ̸= Eβ if and only if fαβ and fαβ are both irreducible over Q. The proof of
Theorem 1 is complete provided fβ, fαβ and fαβ are all irreducible over Q.

3 Irreducibility of the three polynomials

The goal of this section is to prove the following proposition.

Proposition 3.1. (1) The polynomial fβ is irreducible over Q.
(2) The polynomial fαβ is irreducible over Q.
(3) The polynomial fαβ is irreducible over Q.

The polynomial fβ is reducible over Q if and only if there exists a solution of
fβ(X) = 0 in Q. We will find all solutions of fβ(X) = 0 in Q3, the field of 3-adic
numbers, and verify that such solutions do not belong to Q. We put t = 3n and
d = 4− 27t18.
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Lemma 3.2. For n ≥ 2, the polynomial fβ has only one root θ in Q3, and it holds
that θ ≡ ρ(t) (mod 314n−4Z3), where ρ(T ) is a polynomial of the form

ρ(T ) = 2 +
2

3
T 4 +

10

9
T 6 +

4

3
T 8 +

19

81
T 10 − 83

243
T 12.

Let aβ and bβ be rational numbers such that fβ(X) = X3 − aβX − bβ. Due
to Cardano’s formula, all of the solutions of fβ(X) = 0 can be expressed by θi =
ζ i 3
√
ξ1 + ζ−i 3

√
ξ2 for i = 0, 1, 2, where ζ is a primitive third root of unity and

ξ1 =
bβ
2

+

√(
bβ
2

)2

−
(aβ
3

)3

=
Trk(β)

2
+

√(
Trk(β)

2

)2

−Nk(β) = β,

ξ2 =
bβ
2

−

√(
bβ
2

)2

−
(aβ
3

)3

=
Trk(β)

2
−

√(
Trk(β)

2

)2

−Nk(β) = β′.

Here β′ is the number such that β + β′ = bβ and ββ′ = (aβ/3)
3. We denote the

solution θ0 by θ. In this section we utilize Hensel’s lemma not only in Q3 but also
in Q[[T ]] frequently.

Lemma 3.3 (Hensel’s lemma [3, Theorem 7.3]). Let R be a ring complete under
an additive valuation v. Let F (X) ∈ R[X] and η0 ∈ R. Put w = v(F (η0)) and
w′ = v(F ′(η0)), where F ′ is the derivative of F . If w > 2w′, then there exists an
η ∈ R such that F (η) = 0 and v(η − η0) ≥ w − w′.

Since d ≡ 22 (mod 27), Hensel’s lemma implies that
√
d ∈ Q3 and

√
d ≡ ±2

(mod 27). For n ≥ 2, we have β ≡ β′ ≡ 13 (mod 27). It follows from Hensel’s
lemma that 3

√
β, 3

√
β′ ∈ Q3. This shows that θ ∈ Q3. Because of the binomial

coefficient 1/3Cj appearing below, it is complicated to approximate values in Q3

each time the computation proceeds. To evade such complications, we replace the
calculating ring with Q[[T ]], the ring of formal power series over Q, in lifting t to
T . After approximating θ in Q[[T ]], we substitute t for T of the approximation and
measure its precision by Hensel’s lemma. For a number z ∈ Q3 with expression as a
formal power series in t over Q, let L(z, T ) ∈ Q[[T ]] be a lift for z, that is, L(z, t) = z.
We will find a polynomial ρ(T ) such that ρ(T ) ≡ L(θ, T ) (mod T 14). Here the scale
of T 14 is sufficient to prove Proposition 3.1 (1). Since L(d, T ) = 4 − 27T 18 ≡ 22

(mod T 14), we may have L(
√
d, T ) ≡ 2 (mod T 14). Then it satisfies that

L(β, T ) ≡ 1 + 3T + 3T 2 + 2T 3 + 3T 4 − 3T 6 +
9

2
T 10 (mod T 14),

L(β′, T ) ≡ 1− 3T + 3T 2 − 2T 3 + 3T 4 − 3T 6 +
9

2
T 10 (mod T 14).

The following lemma is convenient to solve a third root in Q[[T ]]. Let g ∈ Q[[T ]]
with g ≡ 0 (mod T ). For a positive integer l, we define B(g)l ∈ Q[T ] of degree less
than l such that

B(g)l ≡
l−1∑
j=0

1/3Cjg
j (mod T l),

where 1/3Cj are the binomial coefficients, that is, 1/3Cj = Γ(4/3)/(Γ(j+1)Γ(4/3−j))
for the Gamma function Γ.
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Lemma 3.4 ([7, Chap. IV.1]). The sequence {B(g)l} converges in Q[[T ]], and the
limit B(g) = lim

l→∞
B(g)l satisfies that B(g)3 = 1+ g and B(g) ≡ B(g)l (mod T l) for

every l.

The following finite sequence {Hj} is a practical tool to calculate B(g)l. Fix a
positive integer l. We define polynomials H1, H2, . . . , Hl of degree less than l by the
initial term H1 = 1 and the recurrence relation Hj ≡ 1 + 1/3Dl−jgHj−1 (mod T l)
for 2 ≤ j ≤ l, where 1/3Dl−j = 1/3Cl−j+1/1/3Cl−j = (1/3− l + j)/(l − j + 1).

Lemma 3.5. We have Hl = B(g)l.

Proof. By the definition of Hj, the term Hl is congruent to

1 +
1/3C1

1/3C0

gHl−1 ≡ 1 +
1/3C1

1/3C0

g(1 +
1/3C2

1/3C1

g(· · · (1 + 1/3Cl−1

1/3Cl−2

gH1) · · · )) (mod T l),

which agrees with the definition of B(g)l.

Remark 3.6. The sequence {Hj}lj=1 is different from {B(g)j}lj=1 when g ̸≡ 0
(mod T l) and l ≥ 3. Indeed, one has H2 ≡ 1 + 1/3Dl−2g ̸≡ 1 + 1/3C1g ≡ B(g)2
(mod T l) for 1/3Dl−2 = (1/3− l + 2)/(l − 1) ̸= 1/3 = 1/3C1.

By Lemma 3.5, one computes that

B(L(β, T )− 1)14 = 1 + T +
1

3
T 3 +

1

3
T 4 − T 5 +

5

9
T 6 − 4

9
T 7 +

2

3
T 8 − 4

81
T 9

+
19

162
T 10 − 2

9
T 11 − 83

486
T 12 +

107

243
T 13,

B(L(β′, T )− 1)14 = 1− T − 1

3
T 3 +

1

3
T 4 + T 5 +

5

9
T 6 +

4

9
T 7 +

2

3
T 8 +

4

81
T 9

+
19

162
T 10 +

2

9
T 11 − 83

486
T 12 − 107

243
T 13.

Thus we have

L(θ, T ) = L( 3
√

β, T ) + L( 3
√
β′, T )

= B(L(β, T )− 1) +B(L(β′, T )− 1) ≡ ρ(T ) (mod T 14),

where

ρ(T ) = 2 +
2

3
T 4 +

10

9
T 6 +

4

3
T 8 +

19

81
T 10 − 83

243
T 12.

Proof of Lemma 3.2. The number θ = θ0 is a root of fβ in Q3. It follows from
θ0 + θ1 + θ2 = 0 that θ1 ∈ Q3 if and only if θ2 ∈ Q3. The discriminant disc(fβ) of
fβ satisfies that v3(disc(fβ)) = 2n + 5 ≡ 1 (mod 2). This means that Q3(θ0, θ1, θ2)
has a ramified quadratic field and θ1, θ2 ̸∈ Q3. Thus θ is only one root of fβ over
Q3. Let us measure the distance between θ and ρ(t) in Q3. The direct computation
yields that

fβ(ρ(t)) = −17t14/32 + 97t16/34 + · · · − 571787t36/315

≡ −17 · 314n−2 (mod 316n−4Z)

for n ≥ 2. This shows that v3(fβ(ρ(t))) = 14n − 2. On the other hand, one has
f ′
β(ρ(t)) ≡ 3 · 22 − 3 ≡ 9 (mod 27) and v3(f

′
β(ρ(t))) = 2. Hensel’s lemma implies

that θ ≡ ρ(t) (mod 314n−4).
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Proof of Proposition 3.1 (1). Assume n ≥ 2. By Lemma 3.2, there exists a 3-adic
integer δ such that θ = ρ(t) + 314n−4δ. It follows from fβ(ρ(t)) ̸= 0 that δ ̸= 0. Now
suppose that fβ is reducible over Q. Then θ belongs to Z, and so does 314n−4δ for
ρ(t) ∈ Z. By δ ∈ Z3, we have δ ∈ Z. It is well-known that every root of fβ in Q
is an integer dividing the constant term −bβ of fβ. In particular, |θ| is not greater
than |bβ|, where | | is the absolute value in R. However, it holds that

|θ| − |bβ| ≥
|δ|
81

t14 − |ρ(t)| − |bβ|

>
1

81
t14 − 83

243
t12 − 10(t10 + t8 + t6 + t4 + t2 + 1)

>
1

81
t14 − t12 =

t12(t+ 9)(t− 9)

81
≥ 0

for t ≥ 9. This is a contradiction. Hence fβ is irreducible over Q if n ≥ 2. For n = 1,
we have fβ(X) ≡ X3 −X − 4 (mod 13), which is irreducible over F13. Therefore fβ
is irreducible over Q for every n ≥ 1.

Let us analyze the second fαβ. For

αβ = (−t(27t20 + 27t14 − 27t10 − 27t8 + 18t6 + 18t4 + 2t2 − 6)

+ (9t12 + 18t10 − 9t6 − 6t4 + 3t2 + 1)
√
4− 27t18)/2

and Nk(αβ) = (3t6 − 1)3(3t8 + 3t6 − t2 + 1)3, we have

fαβ(X) = X3 − 3(3t6 − 1)(3t8 + 3t6 − t2 + 1)X

+ t(27t20 + 27t14 − 27t10 − 27t8 + 18t6 + 18t4 + 2t2 − 6)

= X3 − aαβX − bαβ.

Lemma 3.7. For n ≥ 2 the polynomial fαβ(X) has only one root θ in Q3, and it
holds that θ ≡ ρ(t) (mod 325n−10Z3), where

ρ(T ) = 2T − 4

3
T 3 − 2T 5 − 32

9
T 7 − 179

81
T 9 +

2

9
T 11 +

184

243
T 13

− 115

729
T 15 +

143

243
T 17 − 12755

6561
T 19 +

23227

19683
T 21 +

6752

6561
T 23 ∈ Q[T ].

Proof. Let θ0, θ1, θ2 be the roots of fαβ as that of fβ. Then one sees that θ0 ∈ Q3.

For L(d, T ) ≡ (2−27T 18/4)2 (mod T 25), we may have that L(
√
d, T ) ≡ 2−27T 18/4

(mod T 25). Note that 3
√
−1− g = − 3

√
1 + g. Computing the lift L(θ0, T ) of θ0 in

the same way as that for fβ, one sees that L(θ0, T ) ≡ ρ(T ) (mod T 25). The direct
calculation implies that

fαβ(ρ(t)) = 52636t25/39 + 5688712t27/312 − · · ·+ 307820331008t69/324

≡ 52636 · 325n−9 (mod 327n−12)

for n ≥ 2. Thus it holds that v3(fαβ(ρ(t))) = 25n − 9. Since f ′
αβ(ρ(t)) ≡ 3 · 02 +

3 ≡ 3 (mod 9), one has v3(f
′
αβ(ρ(t))) = 1. Hensel’s lemma shows that θ0 ≡ ρ(t)

(mod 325n−10). Since v3(disc(fαβ)) = 3 ≡ 1 (mod 2), there exists at most one root
of fαβ in Q3. Thus fαβ has only one root in Q3.

6



Proof of Proposition 3.1 (2). Assume n ≥ 6. Suppose that fαβ is reducible over
Q. In the same way as in the proof for fβ, it follows from Lemma 3.7 that θ =
ρ(t) + δt253−10 for some δ ∈ Z. Then it holds that

|θ| − |bαβ| ≥
|δ|
310

t25 − |ρ(t)| − |bαβ|

>
1

310
t25 − 6752

6561
t23 − 30(t21 + t19 + · · ·+ t3 + t)

>
1

310
t25 − 32t23 =

t23(t+ 36)(t− 36)

310
≥ 0

for t ≥ 36. This is contrary to the fact that |θ| ≤ |bαβ|. Hence fαβ is irreducible
over Q for n ≥ 6. When n = 1, 2, 3, 4, 5, the polynomials fαβ(X) are congruent to
X3 − 2X − 3 (mod 13), X3 −X − 2 (mod 5), X3 − 10X − 7 (mod 13), X3 −X − 3
(mod 5), X3 − 3X − 1 (mod 11), respectively. Since they are irreducible over such
finite fields, and so are over Q. Therefore fαβ is irreducible over Q for any n ≥ 1.

Let us study the third fαβ. For

αβ = (t(27t20 + 81t18 − 27t14 + 27t10 + 27t8 − 18t6 − 18t4 − 10t2 − 6)

+ (9t12 + 9t10 − 3t6 − 12t4 − 3t2 − 1)
√
4− 27t18)/2

and Nk(αβ) = (3t6 − 1)3(3t8 + 3t6 − t2 + 1)3, we have

fαβ(X) = X3 − 3(3t6 − 1)3(3t8 + 3t6 − t2 + 1)X

− t(27t20 + 81t18 − 27t14 + 27t10 + 27t8 − 18t6 − 18t4 − 10t2 − 6)

= X3 − aαβX − bαβ.

Lemma 3.8. For n ≥ 2 the polynomial fαβ(X) has only one root θ in Q3, and it
holds that θ ≡ ρ(t) (mod 325n−10Z3), where

ρ(T ) = −2T − 8

3
T 3 + 2T 5 +

20

9
T 7 − 55

81
T 9 − 26

9
T 11 − 352

243
T 13

+
829

729
T 15 − 353

243
T 17 +

16364

6561
T 19 +

20606

19683
T 21 +

601

6561
T 23 ∈ Q[T ].

Proof. Computing L(θ0, T ) of θ0 ∈ Q3 for fαβ in the same way as for fαβ, we have
L(θ0, T ) ≡ ρ(T ) (mod T 25). The direct computation yields that

fαβ(ρ(t)) = −23497t25/39 − 895510t27/312 + · · ·+ 217081801t69/324

≡ −23497 · 325n−9 (mod 327n−12)

for n ≥ 2. One has f ′
αβ(ρ(t)) ≡ 3 (mod 9). By v3(fαβ(ρ(t))) = 25n − 9 and

v3(f
′
αβ(ρ(t))) = 1, Hensel’s lemma implies that θ ≡ ρ(t) (mod 325n−10). It follows

from v3(disc(fαβ)) = 3 ≡ 1 (mod 2) that fαβ has only one root θ0 in Q3.

Proof of Proposition 3.1 (3). Assume n ≥ 4. Suppose that fαβ is reducible over Q.
In the same way as in the proof for fαβ, by Lemma 3.8 we have θ = ρ(t) + δt253−10
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for some δ ∈ Z. Then it holds that

|θ| − |bαβ| ≥
|δ|
310

t25 − |ρ(t)| − |bαβ|

>
1

310
t25 − 601

6561
t23 − 84(t21 + t19 + · · ·+ t3 + t)

>
1

310
t25 − 1

32
t23 =

t23(t+ 34)(t− 34)

310
≥ 0

for t ≥ 34. This conflicts with the fact that |θ| ≤ |bαβ|. Hence fαβ is irreducible
over Q provided n ≥ 4. For n = 1, 2, 3, the polynomials fαβ(X) are congruent to
X3−26X−19 (mod 31), X3−X−2 (mod 5), X3−5X−6 (mod 11), respectively.
Since they are irreducible over such finite fields, and so are over Q. Therefore fαβ
is irreducible over Q for arbitrary n ≥ 1.
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