On Ulam's Floating Body Problem of Two Dimension

Kenzi ODANI
Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1 Introduction

S. M. Ulam posed a problem: If a body of uniform density floats in water in equilibrium in every direction, must it be a sphere? See [3] for detail. The problem is still open. However, in two dimensional case of the problem, Auerbach [1] gives a counter-example.

Theorem 1. ([1]) There is a non-circular figure $D \subset \mathbb{R}^{2}$ of density $\rho=1 / 2$ which floats in equilibrium in every direction.
Before we state our result, we define some terminology of two-dimensional floating bodies. Consider a figure $D \subset \mathbb{R}^{2}$ whose perimeter ∂D is a simple closed curve, and take a number $0<\rho<1$. For a given angle $0 \leqq \theta \leqq 2 \pi$, there is a directed line L_{θ} of slope angle θ which divides the area of D in the ratio $\rho: 1-\rho$. In this paper, we assume the following three conditions:
(C 1) ∂D is of class C^{1}.
(C 2) L_{θ} meets ∂D at exactly two points, say, P and Q.
(C 3) Neither the tangent at P nor at Q is not parallel to the line $P Q$.
We call ρ the density of D, and the segment $P Q$ the water line of slope angle θ. We denote by D_{u} and D_{a} the divided figures of area ratio $\rho: 1-\rho$. We call D_{u} and D_{a} the underwater and abovewater parts of D, respectively. We denote by G_{u} and G_{a} the centroids of D_{u} and D_{a}, respectively. We say that D floats in equilibrium in direction $\mathbf{e}_{2}(\theta)=(-\sin \theta, \cos \theta)$ if the line $G_{u} G_{a}$ is parallel to $\mathbf{e}_{2}(\theta)$.

If the figure D of density ρ floats in equilibrium in every direction, we call $D \subset \mathrm{R}^{2}$ an Auerbach figure of an Auerbach density ρ. It is known that, if $D \subset \mathbb{R}^{2}$ is an Auerbach figure, then the water surface divides ∂D in constant ratio, say, $\sigma: 1-\sigma$. See (ii) of Corollary 7. We call σ the perimetral density of the Auerbach figure D.

If D is an Auerbach figure of density $\rho=1 / 2$, then the water lines L_{θ} and $L_{\theta+\pi}$ are the same but opposite directed lines. Thus it is of perimetral density $\sigma=1 / 2$. In the proof of Theorem 1 , the condition $\rho=1 / 2$ is essential. It is dificult to make an Auerbach figures of density $\rho \neq 1 / 2$. So a question arises: Is there a non-circular Auerbach figure of density $\rho \neq 1 / 2$?

Recently, Wegner [7] gave a positive answer to this question. Wegner's examples exhibit more interesting fact. That is, for given integer $p \geqq 3$, one of his examples has $(p-2)$ different Auerbach densities. So one Auerbach figure can have many perimetral densities.

On the other hand, Bracho, Montejano and Oliberos [2] gave a following result.

Theorem 2. ([2]) If there is an Auerbach figure $D \subset \mathrm{R}_{2}$ of perimetral density $\sigma=1 / 3$ or $1 / 4$, then it is a circle.

The purpose of this paper is to prove the following theorem.

Theorem 3. (1) If an Auerbach figure $D \subset \mathbb{R}^{2}$ has three perimetral densities σ_{1}, σ_{2} and σ_{3}, and if $\sigma_{1}+\sigma_{2}+\sigma_{3}=1$, then it is a circle. (These σ_{i} 's are not necessarily different.)
(2) If an Auerbach figure $D \subset \mathbb{R}^{2}$ has four perimetral densities $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and σ_{4}, and if $\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}=1$, then it is a circle. (These σ_{i}^{\prime} 's are not necessarily different.)

The above theorem is a generalization of Theorem 2. Certainly, putting $\sigma_{1}=\sigma_{2}=\sigma_{3}=1 / 3$ gives the $1 / 3$ case of Theorem 2 , and putting $\sigma_{1}=\sigma_{2}=\sigma_{3}=\sigma_{4}=1 / 4$ gives the $1 / 4$ case of Theorem 2.

2 Auerbach Figures

In this section, we give a short survey of Auerbach figures.

Theorem 4. ([1], [7]) If a figure $D \subset \mathrm{R}^{2}$ is Auerbach, then the water line is of constant length.
Theorem 5. If a figure $D \subset \mathbb{R}^{2}$ is Auerbach, and if $P Q$ is the water line of slope angle θ, then there is a 2π-periodic function f of class C^{2} such that the position vectors of P and Q are given by

$$
\begin{equation*}
\mathbf{p}(\theta)=f(\theta) \mathbf{e}_{2}(\theta)+\left(f^{\prime}(\theta)-1\right) \mathbf{e}_{1}(\theta) ; \quad \mathbf{q}(\theta)=-f(\theta) \mathbf{e}_{2}(\theta)+\left(f^{\prime}(\theta)+l\right) \mathbf{e}_{1}(\theta) \tag{1}
\end{equation*}
$$

where $\mathbf{e}_{1}(\theta)=(\cos \theta, \cos \theta), \mathbf{e}_{2}(\theta)(-\sin \theta, \cos \theta)$, and l is half the length of $P Q$.
Proof. Assume that D is an Auerbatch figure. Since $\left\{\mathbf{e}_{1}(\theta), \mathbf{e}_{2}(\theta)\right\}$ is a basis of \mathbb{R}^{2}, we can represent the position vectors of the points P and Q as follows:

$$
\begin{equation*}
\mathbf{p}(\theta)=-f(\theta) \mathbf{e}_{2}(\theta)+g(\theta) \mathbf{e}_{1}(\theta), \quad \mathbf{q}(\theta)=-f(\theta) \mathbf{e}_{2}(\theta)+(g(\theta)+2 l) \mathbf{e}_{1}(\theta) . \tag{2}
\end{equation*}
$$

Suppose that the chord $P^{*} Q^{*}$ of C is the water line of slope angle $\theta+h$. Then the position vector of the intersection H of the chords $P Q$ and $P^{*} Q^{*}$ are given by

$$
\begin{equation*}
\overrightarrow{O H}=-f(\theta) \mathbf{e}_{2}(\theta)+\lambda \mathbf{e}_{1}(\theta)=-f(\theta+h) \mathbf{e}_{2}(\theta+h)+\mu \mathbf{e}_{1}(\theta+h) . \tag{3}
\end{equation*}
$$

By taking the inner product of (3) and $\mathbf{e}_{2}(\theta+h)$, we have that $f(\theta+h)=\lambda \sin h+f(\theta) \cos h$. Thus we obtain that

$$
\begin{equation*}
f^{\prime}(\theta)=\frac{f(\theta+h)-f(\theta)}{h}+o(1)=\lambda \frac{\sin h}{h}-f(\theta) \frac{1-\cos h}{h}+o(1)=\lambda+o(1) . \tag{4}
\end{equation*}
$$

We can evaluate the areas of the sectors $H P P^{*}$ and $H Q Q^{*}$ by

$$
\begin{equation*}
\frac{1}{2} H P^{2} h+o(h)=\frac{1}{2}\left|g(\theta)-f^{\prime}(\theta)\right|^{2} h+o(h), \quad \frac{1}{2} H Q^{2} h+o(h)=\frac{1}{2}\left|g(\theta)-f^{\prime}(\theta)+2 l\right|^{2} h+o(h), \tag{5}
\end{equation*}
$$

respectively. Since these two areas are equal, we obtain that $\mathrm{g}(\theta)=f^{\prime}(\theta)-l$. Hence we have proved (1). By taking the inner product of (1) and $\mathbf{e}_{1}(\theta)$, we have that $f^{\prime}(\theta)=\mathbf{p}(\theta) \cdot \mathbf{e}_{1}(\theta)+l$. Thus the function $f(\theta)$ is of class C^{2}.

The following result is a "proof" of Theorem 1.

Corollary 6. If a function f satisfies $f(\theta+\pi)=-f(\theta)$ for every θ, and if the closed curve given by $\mathbf{p}(\theta)$ of Equation (1) is simple, then it surrounds an Auerbach figure of density $\mathrm{P}=1 / 2$.

Proof. Since $\mathbf{p}(\theta+\pi)=\mathbf{q}(\theta)$, two position vectors $\mathbf{p}(\theta)$ and $\mathbf{q}(\theta)$ draw a same closed curve. Thus it surround an Auerbach figure. Moreover, if the water line rotates by π, the underwater and abovewater parts change these roles. Thus these areas are equal. Hence we obtain that $\rho=1 / 2$.

Example. Put $f(\theta)=-k \cos 3 \theta$ in Equation (1). Then, by Corollary 6, the curve surrounds an Auerbach figures of density $1 / 2$. The figures of $k / l=0.03$ and $k / l=0.1$ are drawn as follows:

The following result gives geometric properties of Auerbach figures.
Corollary 7. If a figure $D \subset \mathrm{R}^{2}$ is Auerbach, and if $P Q$ is the water line of slope angle θ, then:
(i) The vectors $\mathbf{p}^{\prime}(\theta)$ and $\mathbf{q}^{\prime}(\theta)$ are symmetric with respect to the line $P Q$.
(ii) The arc $P Q$ of ∂D is of constant length.

Proof. By differentiating (1), we have that

$$
\begin{equation*}
\mathbf{p}^{\prime}(\theta)=s(\theta) \mathbf{e}_{1}(\theta)-l \mathbf{e}_{2}(\theta), \quad \mathbf{q}^{\prime}(\theta)=s(\theta) \mathbf{e}_{1}(\theta)+l \mathbf{e}_{2}(\theta), \tag{6}
\end{equation*}
$$

where $s(\theta)=f(\theta)+f^{\prime \prime}(\theta)$. Since the line $P Q$ is parallel to the vector $\mathbf{e}_{1}(\theta)$, we have proved (i).
(ii) By (6), we have that $\left|\mathbf{p}^{\prime}(\theta)\right|=\left|\mathbf{q}^{\prime}(\theta)\right|=\sqrt{s(\theta)^{2}+l^{2}}$. This implies that the points P and Q move at the same speed along ∂D. Thus we have proved (ii).

Remark. By integrating (6), we have that

$$
\begin{equation*}
\mathbf{p}(\theta)=\mathbf{c}+\int_{0}^{\theta} s(\phi) \mathbf{e}_{1}(\phi) d \phi-l \mathbf{e}_{1}(\theta), \quad \mathbf{q}(\theta)=\mathbf{c}+\int_{0}^{\theta} s(\phi) \mathbf{e}_{1}(\phi) d \phi+l \mathbf{e}_{1}(\theta) \tag{7}
\end{equation*}
$$

where \mathbf{c} is a constant vector. These formulas are same as those given in Section 2 of [7].

3 Proof of Theorem 3

Proof of Theorem 3. (i) Let P_{1}, P_{2} and P_{3} be three points of ∂D such that for each $i=1,2,3$, the line $P_{i} P_{i+1}$ can be a water surface of perimetral density σ_{i}. (The indices are taken cyclic in modulo 3.) For each $i=1,2,3$, we denote by $\mathbf{p}_{i}(\theta)$ the position vector of P_{i}, by x_{i} the angle $\angle P_{i-1} P_{i} P_{i+1}$ and by α_{i} the angle between $\mathbf{p}_{i}^{\prime}(\theta)$ and $P_{i} P_{i+1}$. By (i) of Corollary 7 , the angle between $P_{i-1} P_{i}$ and $\mathbf{p}_{i}^{\prime}(\theta)$ is equal to α_{i}. So we obtain that $x_{1}+\alpha_{3}+\alpha_{1}=\pi, x_{2}+\alpha_{1}+\alpha_{2}=\pi$ and $x_{3}+\alpha_{2}+\alpha_{3}=\pi$. Since $x_{1}+x_{2}+x_{3}$ $=\pi$, we have that $\alpha_{1}+\alpha_{2}+\alpha_{3}=\pi$. See Figure 2. So we obtain that $\alpha_{1}=x_{3}$. By the converse of Alternate Segment Theorem, \mathbf{p}_{1}^{\prime} (θ) tangents to the circumcircle of the triangle $P_{1} P_{2} P_{3}$. Thus P_{1} varies on the circumcircle. Hence D is a circle.
(ii) Let P_{1}, P_{2}, P_{3} and P_{4} be four points of ∂D such that for each $i=1,2,3,4$, the line $P_{i} P_{i+1}$ can be a water surface of perimetral density $\sigma_{i .}$ (The indices are taken cyclic in modulo 4.) By the same notation and argument used in (i) of this theorem, we otain that $x_{1}+\alpha_{4}+\alpha_{1}=\pi, x_{2}+\alpha_{1}+\alpha_{2}=\pi, x_{3}+\alpha_{2}+\alpha_{3}=\pi$ and $x_{4}+\alpha_{3}+\alpha_{4}=\pi$. See Figure 2. Since $x_{1}+x_{2}+x_{3}+x_{4}=2 \pi$, we have that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=\pi$. So we obtain that $x_{1}+x_{3}=\pi$. By the converse of Inscribed Quadrangle Theorem, the quadrangle $P_{1} P_{2} P_{3} P_{4}$ inscribes to a circle. Thus $P_{3} P_{1}$ is of constant length, and therefore, it can be a water line of perimetral density $\sigma_{3}+$ σ_{4}. Hence, by (i) of this theorem, D is a circle.

References

[1] H. Auerbach, Sur un problème de M. Ulam concernant l'équilibre des corps flottants, Studia Math. 7 (1938), 121-142.
[2] J. Bracho, L. Montejano, D. Oliveros, Carrousels, Zindler curves and the floating body problem, Period. Math. Hungar. 49 (2004), 9-23. http://www.matem.unam.mx/roli/investigacion/articulos/CarrouP.pdf
[3] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
[4] K. J. Falconer, Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly 90 (1983), 690-693.
[5] L. Montejano, On a problem of Ulam concerning a characterization of the sphere, Stud. Appl. Math. 53 (1974), 243-48.
[6] K. Odani, A simple proof of a characterization theorem of the sphere, Bull. Aichi Univ. Ed. Natur. Sci. 57 (2007), 1-2.
http://auemath.aichi-edu.ac.jp//kodani/article/bullaue57.pdf
[7] F. Wegner, Floating bodies of equilibrium, Stud. Appl. Math. 111 (2003), 167-183.

