On Ulam's Floating Body Problem of Two Dimension

Kenzi ODANI

Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1 Introduction

S. M. Ulam posed a problem: If a body of uniform density floats in water in equilibrium in every direction, must it be a sphere? See [3] for detail. The problem is still open. However, in two dimensional case of the problem, Auerbach [1] gives a counter-example.

Theorem 1. ([1]) *There is a non-circular figure* $D \subseteq \mathbb{R}^2$ *of density* $\rho = 1/2$ *which floats in equilibrium in every direction.*

Before we state our result, we define some terminology of two-dimensional floating bodies. Consider a figure $D \subset \mathbb{R}^2$ whose perimeter ∂D is a simple closed curve, and take a number $0 < \rho < 1$. For a given angle $0 \leq \theta \leq 2\pi$, there is a directed line L_{θ} of slope angle θ which divides the area of D in the ratio $\rho : 1 - \rho$. In this paper, we assume the following three conditions:

(C1) ∂D is of class C^1 .

- (C 2) L_{θ} meets ∂D at exactly two points, say, P and Q.
- (C 3) Neither the tangent at P nor at Q is not parallel to the line PQ.

We call ρ the *density* of D, and the segment PQ the *water line* of slope angle θ . We denote by D_u and D_a the divided figures of area ratio $\rho : 1 - \rho$. We call D_u and D_a the *underwater and abovewater* parts of D, respectively. We denote by G_u and G_a the centroids of D_u and D_a , respectively. We say that D floats in equilibrium in direction $\mathbf{e}_2(\theta) = (-\sin\theta, \cos\theta)$ if the line G_uG_a is parallel to $\mathbf{e}_2(\theta)$.

If the figure *D* of density ρ floats in equilibrium in every direction, we call $D \subset \mathbb{R}^2$ an Auerbach figure of an Auerbach density ρ . It is known that, if $D \subset \mathbb{R}^2$ is an Auerbach figure, then the water surface divides ∂D in constant ratio, say, $\sigma : 1 - \sigma$. See (ii) of Corollary 7. We call σ the perimetral density of the Auerbach figure *D*.

If *D* is an Auerbach figure of density $\rho = 1/2$, then the water lines L_{θ} and $L_{\theta+\pi}$ are the same but opposite directed lines. Thus it is of perimetral density $\sigma = 1/2$. In the proof of Theorem 1, the condition $\rho = 1/2$ is essential. It is dificult to make an Auerbach figures of density $\rho \neq 1/2$. So a question arises: *Is there a non-circular Auerbach figure of density* $\rho \neq 1/2$?

Recently, Wegner [7] gave a positive answer to this question. Wegner's examples exhibit more interesting fact. That is, for given integer $p \ge 3$, one of his examples has (p-2) different Auerbach densities. So one Auerbach figure can have many perimetral densities.

On the other hand, Bracho, Montejano and Oliberos [2] gave a following result.

Theorem 2. ([2]) If there is an Auerbach figure $D \subseteq \mathbb{R}_2$ of perimetral density $\sigma = 1/3$ or 1/4, then it is a circle.

The purpose of this paper is to prove the following theorem.

Theorem 3. (1) If an Auerbach figure $D \subseteq \mathbb{R}^2$ has three perimetral densities σ_1 , σ_2 and σ_3 , and if $\sigma_1 + \sigma_2 + \sigma_3 = 1$, then it is a circle. (These σ_i 's are not necessarily different.)

(2) If an Auerbach figure $D \subseteq \mathbb{R}^2$ has four perimetral densities σ_1 , σ_2 , σ_3 and σ_4 , and if $\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 = 1$, then it is a circle. (These σ_i 's are not necessarily different.)

The above theorem is a generalization of Theorem 2. Certainly, putting $\sigma_1 = \sigma_2 = \sigma_3 = 1/3$ gives the 1/3 case of Theorem 2, and putting $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4 = 1/4$ gives the 1/4 case of Theorem 2.

2 Auerbach Figures

In this section, we give a short survey of Auerbach figures.

Kenzi ODANI

Theorem 4. ([1], [7]) If a figure $D \subseteq \mathbb{R}^2$ is Auerbach, then the water line is of constant length.

Theorem 5. If a figure $D \subseteq \mathbb{R}^2$ is Auerbach, and if PQ is the water line of slope angle θ , then there is a 2π -periodic function *f* of class C^2 such that the position vectors of P and Q are given by

 $\mathbf{p}(\theta) = f(\theta) \ \mathbf{e}_2(\theta) + (f'(\theta) - 1) \mathbf{e}_1(\theta); \qquad \mathbf{q}(\theta) = -f(\theta) \mathbf{e}_2(\theta) + (f'(\theta) + l) \mathbf{e}_1(\theta)$ (1) where $\mathbf{e}_1(\theta) = (\cos\theta, \cos\theta), \mathbf{e}_2(\theta) (-\sin\theta, \cos\theta), \text{ and } l \text{ is half the length of } PQ.$

Proof. Assume that *D* is an Auerbatch figure. Since $\{\mathbf{e}_1(\theta), \mathbf{e}_2(\theta)\}\$ is a basis of \mathbb{R}^2 , we can represent the position vectors of the points *P* and *Q* as follows:

$$\mathbf{p}(\theta) = -f(\theta)\mathbf{e}_2(\theta) + g(\theta)\mathbf{e}_1(\theta), \qquad \mathbf{q}(\theta) = -f(\theta)\mathbf{e}_2(\theta) + (g(\theta) + 2l)\mathbf{e}_1(\theta).$$
(2)

Suppose that the chord P^*Q^* of *C* is the water line of slope angle $\theta + h$. Then the position vector of the intersection *H* of the chords *PQ* and P^*Q^* are given by

$$OH = -f(\theta)\mathbf{e}_2(\theta) + \lambda \mathbf{e}_1(\theta) = -f(\theta+h)\mathbf{e}_2(\theta+h) + \mu \mathbf{e}_1(\theta+h).$$
(3)

By taking the inner product of (3) and $\mathbf{e}_2(\theta + h)$, we have that $f(\theta + h) = \lambda \sinh f(\theta) \cosh h$. Thus we obtain that

$$f'(\theta) = \frac{f(\theta+h) - f(\theta)}{h} + o(1) = \lambda \frac{\sin h}{h} - f(\theta) \frac{1 - \cos h}{h} + o(1) = \lambda + o(1).$$

$$(4)$$

We can evaluate the areas of the sectors HPP^* and HQQ^* by

$$\frac{1}{2}HP^{2}h + o(h) = \frac{1}{2}|g(\theta) - f'(\theta)|^{2}h + o(h), \qquad \frac{1}{2}HQ^{2}h + o(h) = \frac{1}{2}|g(\theta) - f'(\theta) + 2l|^{2}h + o(h), \qquad (5)$$

respectively. Since these two areas are equal, we obtain that $g(\theta) = f'(\theta) - l$. Hence we have proved (1). By taking the inner product of (1) and $\mathbf{e}_1(\theta)$, we have that $f'(\theta) = \mathbf{p}(\theta) \cdot \mathbf{e}_1(\theta) + l$. Thus the function $f(\theta)$ is of class C^2 .

The following result is a "proof" of Theorem 1.

Corollary 6. If a function f satisfies $f(\theta + \pi) = -f(\theta)$ for every θ , and if the closed curve given by $\mathbf{p}(\theta)$ of Equation (1) is simple, then it surrounds an Auerbach figure of density $\mathbf{P} = 1/2$.

Proof. Since $\mathbf{p}(\theta + \pi) = \mathbf{q}(\theta)$, two position vectors $\mathbf{p}(\theta)$ and $\mathbf{q}(\theta)$ draw a same closed curve. Thus it surrounds an Auerbach figure. Moreover, if the water line rotates by π , the underwater and abovewater parts change these roles. Thus these areas are equal. Hence we obtain that $\rho = 1/2$. \Box

Example. Put $f(\theta) = -k \cos 3\theta$ in Equation (1). Then, by Corollary 6, the curve surrounds an Auerbach figures of density 1/2. The figures of k/l = 0.03 and k/l = 0.1 are drawn as follows:

The following result gives geometric properties of Auerbach figures.

Corollary 7. If a figure $D \subseteq \mathbb{R}^2$ is Auerbach, and if PQ is the water line of slope angle θ , then:

- (i) The vectors $\mathbf{p}'(\theta)$ and $\mathbf{q}'(\theta)$ are symmetric with respect to the line PQ.
- (ii) The arc PQ of ∂D is of constant length.

Proof. By differentiating (1), we have that

$$\mathbf{p}'(\theta) = s(\theta) \mathbf{e}_1(\theta) - l \mathbf{e}_2(\theta), \qquad \mathbf{q}'(\theta) = s(\theta) \mathbf{e}_1(\theta) + l \mathbf{e}_2(\theta), \tag{6}$$

where $s(\theta) = f(\theta) + f''(\theta)$. Since the line PQ is parallel to the vector $\mathbf{e}_1(\theta)$, we have proved (i).

(ii) By (6), we have that $|\mathbf{p}'(\theta)| = |\mathbf{q}'(\theta)| = \sqrt{s(\theta)^2 + l^2}$. This implies that the points P and Q move at the same speed along ∂D . Thus we have proved (ii).

Remark. By integrating (6), we have that $\mathbf{p}(\theta) = \mathbf{c} + \int_0^\theta s(\phi) \, \mathbf{e}_1(\phi) \, d\phi - l \, \mathbf{e}_1(\theta), \qquad \mathbf{q}(\theta) = \mathbf{c} + \int_0^\theta s(\phi) \, \mathbf{e}_1(\phi) \, d\phi + l \, \mathbf{e}_1(\theta)$ where **c** is a constant vector. These formulas are same as those given in Section 2 of [7]. (7)

Proof of Theorem 3 3

Proof of Theorem 3. (i) Let P_1, P_2 and P_3 be three points of ∂D such that for each i = 1, 2, 3, the line $P_i P_{i+1}$ can be a water surface of perimetral density σ_i . (The indices are taken cyclic in modulo 3.) For each i = 1, 2, 3, we denote by $\mathbf{p}_i(\theta)$ the position vector of P_i , by x_i the angle $\angle P_{i-1} P_i P_{i+1}$ and by α_i the angle between $\mathbf{p}'_i(\theta)$ and $P_i P_{i+1}$. By (i) of Corollary 7, the angle between $P_{i-1}P_i$ and $\mathbf{p}'_i(\theta)$ is equal to α_i . So we obtain that $x_1 + \alpha_3 + \alpha_1 = \pi$, $x_2 + \alpha_1 + \alpha_2 = \pi$ and $x_3 + \alpha_2 + \alpha_3 = \pi$. Since $x_1 + x_2 + x_3 = \pi$. $=\pi$, we have that $\alpha_1 + \alpha_2 + \alpha_3 = \pi$. See Figure 2. So we obtain that $\alpha_1 = x_3$. By the converse of Alternate Segment Theorem, \mathbf{p}'_1 (θ) tangents to the circumcircle of the triangle $P_1 P_2 P_3$. Thus P_1 varies on the circumcircle. Hence D is a circle.

(ii) Let P_1, P_2, P_3 and P_4 be four points of ∂D such that for each i = 1, 2, 3, 4, the line $P_i P_{i+1}$ can be a water surface of perimetral density σ_i . (The indices are taken cyclic in modulo 4.) By the same notation and argument used in (i) of this theorem, we otain that $x_1 + \alpha_4 + \alpha_1 = \pi$, $x_2 + \alpha_1 + \alpha_2 = \pi$, $x_3 + \alpha_2 + \alpha_3 = \pi$ and $x_4 + \alpha_3 + \alpha_4 = \pi$. See Figure 2. Since $x_1 + x_2 + x_3 + x_4 = 2\pi$, we have that $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = \pi$. So we obtain that $x_1 + x_3 = \pi$. By the converse of Inscribed Quadrangle Theorem, the quadrangle $P_1P_2P_3P_4$ inscribes to a circle. Thus P_3P_1 is of constant length, and therefore, it can be a water line of perimetral density σ_3 + $\sigma_{4.}$ Hence, by (i) of this theorem, D is a circle.

References

- [1] H. Auerbach, Sur un problème de M. Ulam concernant l'équilibre des corps flottants, Studia Math. 7 (1938), 121-142.
- [2] J. Bracho, L. Montejano, D. Oliveros, Carrousels, Zindler curves and the floating body problem, Period. Math. Hungar. 49 (2004), 9-23. http://www.matem.unam.mx/roli/investigacion/articulos/CarrouP.pdf
- [3] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
- [4] K. J. Falconer, Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly 90 (1983), 690-693.
- [5] L. Montejano, On a problem of Ulam concerning a characterization of the sphere, Stud. Appl. Math. 53 (1974), 243-48.
- [6] K. Odani, A simple proof of a characterization theorem of the sphere, Bull. Aichi Univ. Ed. Natur. Sci. 57 (2007), 1-2.

Kenzi ODANI

http://auemath.aichi-edu.ac.jp/~kodani/article/bullaue57.pdf

[7] F. Wegner, Floating bodies of equilibrium, Stud. Appl. Math. 111 (2003), 167-183.

 $({\it Received September 17, 2008})$