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A Renormalization Approach to Level Statistics on 1-dimensional Rotations
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1. Introduction

In the papers [1] and [2], Bleher observed the nearest-neighbour spacing distribution of energy levels
for a 2-dimensional quantum harmonic oscillator with golden mean and generic ratio of frequencies.
The essential problem is the determination of the nearest-neighbour spacing distribution generated
by the points

(1.1) {{n7} [ n e N},

where v > 0 is an irrational number and {a} stands for the fractional part of a > 0.

In this note, we interpret (1.1) as an orbit of 1-dimensional shift z — = + v on R/Z. We see
that the nearest-neighbour spacing has a self-similar structure and its behaviour is determined by
a kind of a continued fractional expansion of the irrational number . In the observation of the
shift dynamics, we use a time-scale renormalization. As a result, we describe the nearest-neighbour
spacing distribution of the micro ensemble case (see [1]) for any irrational ratio of frequencies.

2. Notations and definitions

Let Z = {[0,a] | a > 0} be a set of intervals with 0 as the left end. For A € 7, |A| = a whenever
A=10,a]. For A; =[0,a;] €Z, i=1,...,n, we define a sum of intervals

Al A @A, ={0,a1],[ar,a1 +az],...,[a1+ -+ an_1,a1 + -+ an)}

We say A1 & Ay @ --- & A, gives a partition of B = [0,b] € T whenever b = ay + - -+ + a,, and we
denote
BFA®A @@ A,

Conversely, we denote the union of intervals in a partition A; & Ay @ --- B A, as
A1 A d - B A =[0,a1+as+ -+ a,).
We use an abbreviation for the k-times sum A@® ---® A of A € 7 as A®*. We denote S + a =
{s+a]|seS} forasubset S C R and a € R.
3. Renormalization of partitions
Let pg : x — x + &y be a shift map on R/Z, where 0 < 3 < 1 is an irrational number. We put
E_y =1[0,1], A¢=1[0,00), o0 =[|E-1|/do] = [1/0]

where |a| stands for the integer part of a > 0. Since €y = |E_1| — 0¢dg = 1 — 0y is positive by
definition of dy and g, we put Ey = [0, €] € Z. Then we see

Lemma 3.1. The orbit
po(0) = do, p5(0) = 280, ..., pg"(0) = o0do

defines the partition of E_1 as
E_ - AP @ E.
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Consider the iteration p; = pJ°*', which is a shift map on R/Z described as
pL:T— T+ 0,
where 0y = (09 4+ 1)dg — |E_1| = (00 + 1)dp — 1 = &y — €p. Putting
Ay =1[0,01], o1 = [|Eo|/d1] = |eo/01],
we see €; = |Ey| — 0101 = €9 — 0101 > 0 and we set B} = [0,¢] € Z.
Lemma 3.2. The orbit
p1 0 p3°(0) = 81 + a0do, P30 pdP(0) = 281 + 00bo, ..., p7' 0 pdP(0) = 0101 + dodo

gives the partition of Ey + pg°(0) = Ey + 0¢dy as

Eo + 0060 - (A @ Ey) + 0¢dp.
For each 0 < k <oy — 1, the orbit

p10pE(0) = &1 + ko, p3oph(0) =28, + kdo, ..., p]* T o pk(0) = (o1 + 1)1 + kdy

gives the partition of Ag + ph(0) = Ag + kdo as

Ao + ko H (AP @ By + k.

Proof. The first statement is straightforward. As dy = d; + €g, each point p; o pf(0) = &1 + kdp (0 <
k < o9 — 1) divides the interval [kdy, (k + 1)dg] = Ao + kdp = Ag + p(0) as

Ag + kop = (A1 @ Ep) + kop.
Hence the second one. OJ

We continue the process inductively. Being given an irrational number 0 < §y < 1, we put
o0 = |1/, €¢ =1 — 00dg, dy = ¢ and ey = 1. Then we define inductively

(31> 5n+1 = (Sn — €py Opyl1 = Iﬁn/(sn—i-lj , €Ept1 = €p — 0n+15n+1,
dn+1 [ On+1 + 1 On+1 dn

(3.2) <€n+l> - ( | (&

and

(3.3) Ani1 = [0,6041], Enp1 = [0, €ns1], posr = po.

Lemma 3.3. Forn >0, we have
Cpntl1 = (Un + 1)€n + Op—1€n—1 + -+ 0p€p.

Proof. The recurrence relation (3.2) shows e,.1 = e, + d, and d,, = (0, + 1)dp_1 + open_1 =
Onen +dp1 = 0pnen + opn_t1p_1 +dp—o =+ =0one, + -+ opeg. Hence the assertion. OJ

Lemma 3.4. For any natural number 0 < N < e, 11, we have a unique expression
(34) N:hn'6n+hn_1'en_1+"'+h0'60
with the conditions

(3.5) he €Z, 0<h,<o,+1 and hy-e,+---+hy-eg <egxy1 forall k=0,1,... n.
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Proof. We apply the greedy algorithm to N as follows. It follows from (3.2) that egy1 = dy + e, =
(oper + di—1) + ex = (0k + 1)ex + di_1, hence (of + 1)ex < exr1 < (0% + 2)ex. We choose n with
en < N < e,y and put h, = |[N/e,|. As R,_1 = N — hye, < e, by definition of h,, again we put
hpo1=|Rn-1/en1] and R, o = R,,_1 — hy_1€,1 < e,_1. Inductively we define hy, = | Ry/ex| and
Riy_1 = Ry — hpey, < e.. We see hy = |Ry/ex] < |exr1/ex] =or+1and hy e+ -+ hg-eg < exi1
by the construction. Without loss of generality, we assume that N has another expression N =
R, -en+hl,_|-en_1+---+ h{-eo fulfilling the conditions (3.5) and h], # h,. If hl, > h,, + 1, we have
a contradiction

hien <hl,-e,+h, 1 en1+-+hy-eo
=hp-ent+hn1-€ 1+ +ho-eo < (h,+ e, <hle,.

The similar argument shows a contradiction in the case h], + 1 < h,,, hence the uniqueness. ]

We note that the expression (3.4) brings the equation p)Y = p/» o pZ’fl o---0ppo: particularly we

have p)'(0) = hnd, + hy 10,1 + -+ + hodo. If a natural number N has the greedy expansion (3.4),
we set

1

g(N) = (hn, b1, .-, ho).
As e; = 0g + 1 by definition, we note 0 < hg < 0y < €.

Lemma 3.5. We have
pzn (¢} pzzal O---0 ng(O) == 0n5n + O-n—lén—l + -+ 0'050 =1- €n

and

iakék =1, hence i 010k = €.
k=0

k=n+1

Proof. The recurrence relation (3.1) shows the second equation of the first statement. The second
statement is shown as lim,, . €, = 0. O

Lemma 3.6. Let g(N) = (hy, hy-1,...,ho) be the greedy expansion of a natural number N with
en < N < e,i1. Then one of the followings holds:

(1) 1 < h, <oy,
(2) hpy=0,+1 and hy_1€p1 + -+ hoeg < €, — €,_1.
Conversely, if a greedy expansion (hy, ..., ho) of N satisfies either the condition (1) or (2), e, < N <

€nt1 holds.

Proof. As hy,_1e,_1 4+ -+ + hoey < e, by the condition (3.5), h,, > 1 is necessary. If h, < o, we see
N =hpe, + hp16n 1+ -+ hoeg < open + €, < €p11
by the lemma 3.3 and 3.4. If h,,_1e,_1 + -+ + hoey < €, — €,_1 = d,,_1 and h,, = 0, + 1, also the
lemma 3.3 shows
N = (o, + 1e, + hy1€,-1+ -+ hoeg
<(op+1)e, + e, —en
=(op+ e, + (op_1+1)en 1+ 016024+ 0060 — €1 = €nt1.

We note that #{N | e, < N < e,y and 1 < h, < o0,} =one, and #{N |e, < N < e,1 and h, 1€, 1+
<o+ hoeg < dy—1} = dp—1. Then the total number of N in the case (1) and (2) is o,e, + dpo1 =
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on(en_1+dn_1)+dy1=(0,+1)dy_1+ 0pe,_1 = d,. Thus either the condition (1) or (2) holds for
any natural number N with e,, < N < e,11. O

Theorem 3.7. Let
(3.6) 0,1]FA @ - ® A, 1
be the partition defined by the orbit

po(0), A5(0), -\ g™ H(0).
Let Iy, be the natural number such that [Ay @ - -- & Ag_1] = [0, p(0)] and put ly = 0. Then we have

p Ay, if by < epir — e = dy,
g E,, otherwise,

and hence we see #{k | Ay = A} =d,, and #{k | Ay = E,} = e,.

Proof. We prove the theorem by induction on n. It follows from the lemma 3.1 that the theorem holds
for n = 0. Suppose that the theorem holds for n. Let [0,1] F Ag@---® A, 1 be the partition defined
by points po(0), p2(0), ..., pi~1(0). Then, the new e,4y — €, = d,, points pi*(0), ..., pc" ' (0)
defines the refinement [0,1] - By @ --- @ B, 1.

In the case A, = E,_1, it is possible to divide the interval A, + pk(0) = [p%(0), pi** (0)] by the
new points p, o pi¥(0), ..., p7* o pk (0), which define the partition Ay, - A% @ E, because of €,_; =
0nOn + €,. It follows from the lemma 3.6 that the exponential of the point pi» o p(0) = pp" ' (0)
(1 < h, <o,) satisfies e, < hpe, + 1l < €41

In the case A, = A,_y, it is possible to divide the interval Aj, + pl(0) = [p%(0), p**(0)] by the
new points p, o pif(0), ..., po o pi(0), which define the partition Ay - A"+ @ E, because of
A, =[A, ® E,]. Asl; < epy1 — en, again the lemma 3.6 shows that the exponential of the point
plm o i (0) = it (0) (1 < by, < 0, + 1) satisfies e, < hpen + i < €.

As the numbers of the points dividing the interval of type E,_; and A,_; are 0,e,_1 and (o, +
1)d,,—1 respectively, there appears o,e,_1+ (0, +1)d,_1 = d,, points in the construction above, which
means all the points p&*(0), ..., po*' " (0) are used to determine the refinement By & - - - & Be, . -1
By way of the construction, we see #{k | By = A,} = (0, + 1)d,_1 + open1 = d, and #{k | By, =
E.} =d,_1+e,_1 = e,. Let my be the natural number such that [By @ -+ @ Bg_1] = [0, pg'*(0)]. If
By, = Ay, 0,05 (0)] = [Bo@ -+~ @© By = [Bo® - @ By1 & A,] means py ' (0) = p,, 0 pg™*(0) and
hence my, + e, = my1 < €,41. Thus my < e,41 — e,, which complete the proof. O

Remark. Our discussion works even if o,, = 0 occurs for some (infinitely many) n. Thus there is
no restriction to the irrational number 0 < dy < 1.

4. Continued fractional expansion and level statistics

Given an irrational number 0 < J§y < 1, the recurrence relation (3.1) give rise to a continued
fractional expansion. It follows from the relation ¢, | = 0,0, + €, and d,, = 0,41 + €, that

€n—1 + €n + €n + 1
=0p T = = 0On = On )
5n €n + 5n+1 1
1+

En/ 6n+1
from which we have a continued fractional expansion
r 1 1 1 1 1 1
P Rt PR (S
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The number of intervals A,’s and E,’s in the partition (3.6) is controlled by o,’s. Therefore we
obtain the nearest-neighbour spacing distribution generated by the 1-dimensional rotation py.

Proposition 4.1. Let

1 1 1 1 1

60 0+1+01+1+Ug+

be a continued fractional expansion of a real number 0 < &y < 1, and define e,’s, d,’s, d,’s and
€,’s by (3.1) and (3.2). For a natural number e, < N < e,i1, of which the greedy expansion
is g(N) = (hp,hn_1,...,ho), the orbit 0,p0(0),...,p5 (0) generates the nearest-neighbour spacing
distribution as follows:

(4.1)

number of spacing

length of spacing || the case M + 1 < d,_1 | the case M + 1 > d,_4
On N —e,+1 N—e,+1
On—1— (hy — 1)d, dp 1 — M —1 0
On—1 — hpop M+1+4e, dp1+e, —M—1
On—1— (hy +1)6, 0 M+1—d,

where M = N — hype,.

Proof. We recall the construction of the partition in the theorem 3.7. As the points po(0), ..., p5 ' (0)
define the partition

0,1]FA & B Ae, 1
constructed by the intervals A, _; and E,_;, the rest points p5"(0),..., p{ (0) generate N — e, + 1
intervals coincide with A,,.

Let us consider the case 0 < k < M. We note h,e, + k < N. Moreover, if k < d,,_;, we see that
pi(0) is the left edge of an interval A;() coincide with A,,_, and thus the points p, o pg(0), ..., pimo
pE(0) gives the refinement

Ajy B A" &[0, 6,-1 — habn).
If d, 1 <k < e,, we see that p§(0) is the left edge of an interval Ajy coincide with E,_;, and thus
we have the refinement

Aj(k) F A?h" D [O, €n_1 — hno }
Similar argument holds in the case M < k < e,. We note (h,, — 1)e, + k < N < hye, + k. Thus for

(
each case k < d,_; and d,,_; < k < e,, the points p,, o pt(0),..., phn~1
(

Ajoy ATV @10,6,-1 — (i — 1)30]

o pk(0) derive the refinement

and
Ajy F AP 0 10,6, 1 — (hy — 1)6,)]

respectively. The observation above shows that the numbers of intervals [0, 6,1 — hypd,], [0,€,-1 —
hnon), [0, 0,1 — (h,—1)d,] and [0, €,_1 — (h,, —1)d,,] equal to min{M +1,d,, 1}, max{M+1—d, 1,0},
max{d,_1 — M — 1,0} and min{e,, — M — 1,e,,_1} respectively. Finally we note €, 1 — (h,, — 1)J,, =
Opn—1 — hpo, and €,_1 — hy,0, = 0,_1 — (hyp, + 1)0,, because of 6,1 = €,_1 + Op. O

We apply the proposition to the simple case g, = ¢ for all n. The continued fractional expansion
(4.1) leads to the quadratic relation

(4.2) 00? =1 — 00,
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which derives §,, = §(06%)" and €, = (06%)""!, because of the recurrence relation (3.1). Meanwhile

we see
o+1 o\ 1 1 o6 a 0 1 od
1 1) " 13002\s —1)\o g)\s 1

where a = (1 +6)/6 > 1 and 3 = 06® < 1, which are the roots of the quadratic equation \* — (o +
2)A + 1 = 0. With the help of the relation (4.2), we have

1
dn\ _ _o” 57 o%0%y"
€n 1 + 0'(52

1+ 6%y
where v = 3/a < 1. Thus we obtain
dp 1 n— dyy 1
(4.3) nh—>nc’>1<>a =5 and nh—>ngc eenl = nlggo dnl == 15_5 = 06

Following Bleher’s observation [1], we regard a large natural number e,, < N < e,,41 as an internally
dividing point N = ze, 11 + (1 — x)e, = €, + xd, (0 <z < 1). Then (4.3) shows

which means that the coefficient h,, of the highest term in the greedy expansion g(N) = (h,, hy_1, . ..
, ho) is asymptotically determined by h,, ~ |14+ x/d] = |2/d] + 1 < o + 1 because of the property
(3.5) of the greedy expansion. Putting M = N — h,e,, we have

M e 1) 1) T ) T
—=1-h,—=~1l—-hy——=——(14+=—=h,) = -,
N N 5t 5+x< *5 ) 5+x{5}
Cn—1 o el Cn—1 053 and dn—l o Cn—1 dn—l 0-52
N N e, 0+ x N N e O0+z

as n — o0o. Thus the inequality M + 1 < d,,_; asymptotically corresponds to

2
5—?—x{§} < (;fm’

{%} < 0.

Summing up, with the help of the proposition 4.1, we have the following.

which leads to

Proposition 4.2. Let o be a natural number and 0 < § < 1 be a root of the quadratic equation
06* =1 —00.

Take a real number 0 < x < 1 and put h = |z/0| + 1. For N = e, + xd,, as n — oo, the orbit

00(0), p2(0), ..., p5(0) derives asymptotically the nearest-neighbour spacing distribution as following
table:
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length. of spacing probability
(scaling factor: 8(cd2)") || the case {%} <08 | the case {%} > 06
! e e
%—h+2 gijﬁ—{ﬁy 5 0 x
gl s (oo {5h) | 5 (e on = {5})
5 : s ({51 )

where we rescale the length of the spacing by the factor 6(od?)™.
0

Bleher [1] has considered the case o = 1, that is, the case ¢ being the golden mean. In the case,
we see d, = fonio and e, = fo,41 where f,’s stand for the Fibonacci numbers, f; = fo = 1 and
fote = for1 + foo Wesee h = |x/6] +1 =1o0r 2as 1/2 < § < 1. The restriction § < z < 1
means {z/0} = x/6 — 1, hence h = 2 and {z/0} —d = (x —1)/§ < 0, that is, {z/d} < ¢, using the
relation 6 = 1 — §. Up to the scaling factor, there appears spacings with length 1,1/6 and 6. The
restriction 0 < z < ¢ means {z/0} = x/d and hence h = 1. The condition {x/d} < ¢ is equivalent to
x < §2. We see the length of the spacings are 1,1/6%,1/§ and ¢ in this case. As a result, we obtain
the following table, reproducing the micro ensemble case of Bleher’s result.

length of spacing probability
(scaling factor: §2"*1) || the case x < 6% | the case x > §*
. x x
o0+ o0+
1 1—0—x
= _ 0
02 0+
1 P4 1—z
0 0+ 0+
—1
5 0 M
0+
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