A Simple Proof of a Characterization Theorem of the Sphere

Kenzi ODANI
Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

S. M. Ulam posed a problem which states: "If a body rests in equilibrium in every direction on a flat horizontal surface, must it be a sphere?" See [1] for detail. In 1974, L.Montejano [2] solved it as follows.

Theorem. If a body $D \subset \mathbb{R}^{3}$ rests in equilibrium in every direction, then its convex hull $C(D)$ must be a sphere. (If a planar body $D \subset \mathbb{R}^{2}$ rests in equilibrium in every direction, then $C(D)$ must be a circle.)

In this note, we give a simple proof of the 2 -dimensional case of the above theorem. The reader can prove the 3 dimensional case in the same way.

Let $D \subset \mathbb{R}^{2}$ be a connected closed region. Then, by the definition, the centroid G of D is an interior point of the convex hull $C(D)$ of D. For every unit vector \vec{u}, there is a line l orthogonal to \vec{u} such that $l \cap D \neq \emptyset$ and

$$
\begin{equation*}
\overrightarrow{P Q} \cdot \vec{u} \leqq 0 \text { for every } P \in l, Q \in D \tag{1}
\end{equation*}
$$

Figure 1 shows the situation. We call l the supporting line of D with respect to the direction \vec{u}. Let P be the foot of the perpendicular from G to l. We say that D rests in equilibrium in a direction \vec{u} if $P \in C(D)$. Figure 2 shows a planar body D which does not rest in equilibrium in the downward direction.

Figure 1

Figure 2

Proof of Theorem in 2-Dimensional Case. Since G is an interior point of the convex set $C(D)$, every half line from G meets the boundarya $C(D)$ at exactly one point. So we can represent the closed curveд $C(D)$ by the polar equation $r=r(\theta)$ with G as the origin. Take two arguments θ_{0}, θ_{1}, and the corresponding points $P_{0}, P_{1} \in \partial C(D)$, that is,

$$
\begin{equation*}
\overrightarrow{G P}_{i}=r\left(\theta_{i}\right) \vec{u}_{i}, \quad \vec{u}_{i}=\left(\cos \theta_{i}, \sin \theta_{i}\right), \quad i=0,1 . \tag{2}
\end{equation*}
$$

Let l_{0} be the supporting line of D with respect to the direction \vec{u}_{0}. Since D rests in equilibrium in the direction \vec{u}_{0}, we obtain that $P_{0} \in l_{0}$. Applying (1) to P_{0}, P_{1}, we obtain that

$$
\begin{equation*}
\overrightarrow{P_{0} \vec{P}_{1}} \cdot \vec{u}_{0}=r\left(\theta_{1}\right) \cos h-r\left(\theta_{0}\right) \leqq 0 \tag{3}
\end{equation*}
$$

where $h=\theta_{1}-\theta_{0}$. Changing the role of P_{0} and P_{1}, we obtain that

$$
\begin{equation*}
r\left(\theta_{0}\right) \cos h-r\left(\theta_{1}\right) \leqq 0 \tag{4}
\end{equation*}
$$

Combining (3) and (4), we obtain that

$$
\begin{equation*}
-r\left(\theta_{0}\right)(1-\cos h) \leqq r\left(\theta_{1}\right)-r\left(\theta_{0}\right) \leqq r\left(\theta_{1}\right)(1-\cos h) . \tag{5}
\end{equation*}
$$

Dividing it by h , and tending $\mathrm{h} \rightarrow 0$, we obtain that $r^{\prime}(\theta)=0$ for every θ. Hence $r(\theta)$ must be a constant.

References

[1] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.
[2] L. Montejano, On a problem of Ulam concerning a characterization of the sphere, Stud. Appl. Math. 53 (1974), 243. 248.
(Received September 18, 2007)

