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A fractal set associated with the Collatz problem
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1. Introduction

In 1930’s, Lothar Collatz had great interest in representation of integer functions by directed graphs. He proposed the fol-
lowing, known as the Hasse-Collatz-Syracuse problem:
Problem 1. 1. For a natural number n € N, let us consider the function
3n+1, ifn=1(mod?2),
Fln)= nl2, ¥ n=0(mod2).
Then for each n, there exists a finite k such that f* (n)=fofo---of (n)=1
k-times
Our interest in the dynamics of the Collatz procedure. In this note, we observe a graph of the function f. With the help of
the binary embedding of natural numbers into [0, 1], we obtain a Cantor set & associated with the Collatz procedure with
Hausdorff dimension one (Theorem 2.3, 3. 1 and Proposition 4. 1). The set & is generated by an iterated functional system,

which satisfies strongly separation condition.
2 . Binary embedding of natural numbers and a graph of Collatz procedure

Definition 2. 1. Let n = ai -2 +aiw-1-2"""+---+ao be a binary expansion of a natural number n. The binary embedding 8

of n is given by

B (n)="G+ G5+ oy,

By definition, 8 : N— [0, 1) is one-to-one and N is densely embedded into [0, 1].

Let N, be the set of odd natural numbers {22 —1 | n € N}. Note that N,, is densely embedded into [1/2,1) by 8.
Definition 2. 2. The reduction of the Collatz procedure f is the map H : No — N such that for n € N,

H(n)=k,

where k<€ Noyand 3n+ 1 =k - 2" for some v < N.

The exponent ¥ is given by 2-adic valuation v2 of 3n+1, v2(3n+1)= —v,

Let us consider the graph € ={(8 (n),8oH (n))| n € Nus} (See figure 1 ). By definitions of 8 and H, € < [ 1 /2,1]%

One see that € has a natural decomposition. Consider the subsets of €,

Then the graph € is decomposed as follows.
Theorem 2. 3.

where A: R* — R is given by
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Figure 1. The graph of H

To show Theorem 2. 3, we need
Lemma 2. 4. Fora, k, n € N such that a < 2*

genva)=20 g )
Particularly,
i (4n+1)=%+%.

Proof. letn=m -2 +m-1-2"""++no and @ = ar 2" +an-1-2""'+---+no(h <k) be binary expansions respectively.

Then we have

,8(2’*n+a)—b’(ﬁ n,-~2”’”+ﬁa/-2/>

i=0

= 12 ni 27kl 1211 aj 2707 = B (M)

+ .
i=0 =0 2k Ala)
Lemma2.5. Forn € Nw, H(dn+1)=H (n).

Proof. Since 3(4n+1)+1 = 22(3n+1), it follows from the definition of H .

Lemma 2. 6.

Noo = LJ A*({8k+ 11k e Noju{dk+3 |k € No}),
k=0

where A (n)=4n+1and No = NU{0},

Proof. ForkeNo, we see that 8k+3=4(2k)+3, 8k+5=4(2k+1)+1=A(2k+1) and 8k+7=4(2k+1)+3.
8k+1€ A (No) means 8k+1=4I+1 for some [ € N and then [ = 2k contradicts to [ € No. 4k+3 € A (Nw) means
4k +3 = 4l+1 for some ! € Nua, which leads to a contradiction 2/ = 2k + 1. Finally, infinite descent method shows that for any
k € No, there exists # € {8]+ 1, 4/+3 7€ No} and v € N such that 8k +5 = A" (1) since 0 < n <A (n) generally.
Lemma 2.7. Forn € No, (B0A (n), BoHoA (n))=A (8 (n), BoH (n)).

Proof. By Lemma 2.4 and 2. 5, we have for # € N,
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A@on, o o) =240 +3 gorr )
= (8 (4n+1), BoH (n))= (8 (4n +1), BoH (4n+1).

Proof. of Theorem 2. 3. Lamma 2. 7 shows that A" (€L €1) C € for each k € No, that is LI (A" (€oUE1)CE
We show the converse. For £ € No we see %SB (8k+1)= s (8k) +%<% and %SB(4k+3):%+%< 1 by

Lemma 2. 4, which means
Co={(8(8k+1), BoH (8k+1))| k & No},

@1 €1 ={(8 (4k+3), BoH (4k+3))| k € No}.
By Lemma 2.6 we find 2 €{8/+ 1, 4/+3]7€ No} and v € No such that # = A* (h) for each # € Nos. Then Lemma 2.7
shows
(B(n), BoH (n))=(B(A*(h)), BoH (A (h)))=A" (B (h), BoH (h)).

Tt follows that € Ii oA " (€0 LI € 1), hence the assertion.
Note that H (8k+1)=(3(8k+ 1)+ 1)/4 = 6k + 1 and H (4k+3)=(3(4k+3)+1)/2 = 6k +5, hence
Co={(8(8k+1), B (6k+1)| k€ No},

(2.2 €1 ={(B(4k+3), B (6k+5)| k< No}.

3. A self-similar set associated with the Collatz procedure

We consider contructing maps g1, g2, 95 :[0, 1]*—[0, 1]*,

g (x, y):%(aﬁ 1,y+1),
gz(x,y):%(xﬂ,y),
g (x, y)=%(1*x, 2—y).

It is known that any set of contructing maps, that is, any iterated functional system (IFS) has a unique compact set & <[0, 1]

satisfying
K=91R)UG:(K)Ugs(R)

(See figure 2). Since g:’s are affine maps and the TFS {g1, g2, gs} satisfies the open set condition, it follows from Hutchin-

Figure 2. The set &
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son’s theorem [1] that the Hausdorff dimension s of & is given as a solution of

()

that is, s =1.

Theorem 3. 1. The closures €0 and €1 are homeomorphic to K.

Proof. We prove €1 = . Take the affine map 7\ :[%, 1} X {%, 1]%[0, 1%, Ti (2, y)=(4x—3, 2y—1) and put

Gi =T 'og;oTi. We have

Gi(z, y) =5 (x+1,y+1),
G (x, y):%(2x+5, 2y+3),
Gs(x, y):%(S—Zx, 7—2y).

We show €1= G1(€1)UG2(§1)UGs(E1). Letusdenote €11 = €1 N

e 3 , = 13 71 11 5
8,1]><[4,1],¢1,z @10[1 , S]X[Z' 8}and
Cizs=C1N 3 713] [*5 3

2 16 1%s 4}. Note that for each (x, ¥) € €1 we take # = 4k + 3, k € No such that

(x,y)=(8(n), BoH (n)) by the definition of €1.

Since H (2n+1)= 12k+11=2H (n)+ 1, 8 (2n+1)= 8 (8 +7) = L) | e[
ﬂ(12k+11):5(4(k+2)+3):W+%e[% 1],Wesee
*2
=B 2n+1),BoH (2n+1))EC1,

G 8 n), BoH () =58 00)+1), J@oH 1) +1) ) =8 20-+1), 8 2H )+ 1)

using Lemma 2.4, and hence G1(€1)C G 11. Conversary, for any 7 € Nu, 8 (m) € [%, 1} means B3 (m )= B (8k+7), that is

m=8k+7=2(4k+3)+1. Thus we have G1(€1)= €11. Taking the closures, we have G1(€1) = Eu1.
With the help of Lemma 2. 4, we see that for m = 2[+1 € Noa,

Blm) 5 _ BR2I+1) 5 B1),3
4 8T 4 8T8 Ty
B(l)

=5
Blm) 3 _ 3y s , )= _ _
1 +8 = B (4m—3) in the similar way. Since H (4n—1)=24k+17=4H (n)-3,

+B(3)=B(8I+3)=p8(4m—1),

and also

Bdn—1)=8 (16k+11>:%+%e[%, %] and 8 (24k +17)= B (8(3k+2)+1):W+%e[%, %},we have
Ge 8 (n), BoH (1) =( 5801 +5, L80H )+ )= (8 (4n 1), 8 (41 (1)-3)

=B (4n—1), BoH (4n—1))EQ 12
hence G2(€1) C €12. An argument similar to the case of G1 shows the converse G2 (€1) D €12, and hence G2 (€1)= C12.
To see G3(€1) = €13 we need
Lemma 3. 2. For n € N, we have
1-8(n)=8(3-2" —(n+1)),
where ord (n) =[log, n ], the highest degree of the binary expansion of n.

Proof. Letn = ai-2' +a;-1-2""' +---+ao be a binary expansion where [ = ord (n). Noticing & = 1, we see
! ]
173 (n ) — Z 27(i+1) +27(H~1) _ Z ai .27(i+1)
i=0 i=0

— li (1—a;)-2-0+V 4 2-0+D

—3(2’+lj(1ai)-Zi)—B<21+ljZin+21)
izo i=0
=R2"—-1—n+2)=8(3-2'—(n+1))
Lemma 3.3. For p; =21 —(4s+1), s € No , we have
(1-8(4s),1-8 (GS)):jli{g(B (p:), BoH (p;)) € 1.
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Proof . Taking j > ord (6s) >ord(4s), we see ord (2/ +4s)=j. It follows from Lemma 3. 2 that
1-8(4s)—2"1=1—-B(2 +4s)=B(3-2 — (2 +4s+1))
=B (2 —(4s+1))=8(p).
Aspi =2 —(4n+1)=4(27"'—n—1)+3, we see (B (p;), BoH (p;j)) € €1 and
H (pi)=(3p; +1)/2=3-2 —(6n+1). For any natural numbers @ > 0 , it holds that
B(20—=20)=B (2071 2072 4.4 20)
= B (2748 (27 44 B (2) =55
Since j > 1 = ord(6s), we have
BoH (pj)=8(3-2 —(6s+1))
= B2 20 (21— 1 Gs))

- 2]{2 +2}H f%ﬁe (211 —1—6s).

Asord (2" =1—-6s)=1—-1 the limit / — ©© brings
lim foH (p;)=5—+B (2" —1—6s)=F (2! + 21 —(6s+1))

S 2/+1
=8(3-2 —(6s+1))=1—8(6s).
We have H (n) = as 7 = 4k + 3. It follows from Lemma 2. 4 that

l_ﬂoli(n) :1_{;+M}:1_{%+B<8<%>+4>}

3n+1

8 8§ 4
_{%+5(4(H(n)—1))}:1—,8(4H(n)—2).
=1-4(6n)
Thus we have
G:;(B( ) (7’l .8(4”),1_:8(67’1)).
Note that 1— 4 (4n) = 1 -8 (4(4k+3)) = ———i [% —g]and1—3(6n):1—,8(8(k+2)+2):1—@—%

E[%’ %] Lemma 3.2 shows that (1—8(4n),1-8(6n))=(8(p).B(q)) where p=3-2""'—(4n+1) and
q =326 —(6n+1), while H (p)#q.
Applying Lemma 3. 3 for p; = 2/*! —(4n + 1), we have

(18 (4n), 1=4 (61))=lim (8 (p;),8°H (p))) € G
Hence Gs(€1) € €13, which means G3 (€1) € C1a.
We show the converse €13 < G3(€1). Note that B(n)e{z,%] means 7 =2'%+3(k€No), then
H(n)=3n+1)/2=2%-3k+5. Forn=2'%+3(k € No), we have

BOH(MH%: 5(233’”+B(5)+l= ng)+ﬂ(3)=ﬁ(23-3k+3)

—grn-2=8(30-1).

and also
d 3(71_1) _ d(23.3 o\ _ ~
or 5 =ord(2%-3k+3)=ord(6k)+2
ord<3n8_l>—ord(6k+1 )=ord (6% ),
3(n—1)

that is, ord< )— 2= 0rd< Sn—1 . It follows from Lemma 3. 2 that

G; 1

—

§00,8oH (1)) =4(1-8 (1), 1-oH (n)+5)

(1
=4<1 ,8(n),1—5<%(n—1)>>

B( ,201‘(1(71)_(14_._1))y ﬂ <3.2111<1(?(;171)) _%))
ord(n) 7’l+1 . ord ?(ﬂ*l) 72_3%—1
~(8(3-zmsers-2F L), g (3.pmlin ) 8n1))
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=(B (32000 — (4 + 1)), B (329 —(6k +1)))
=(1-4(4k), 1-5(6k))

Applying Lemma 3. 3 for p; = 2/*! _nT—i-l =2*1—(4k+1), we have

(1—=4(4k),1—5 (6k )):jlgg(ﬂ (bi),BoH (pj)) € Ci.

Hence €13 C G3(€1), which shows €13 € G3(€1).
We have shown that €1 is a solution of set valued equation
=G (¥)UG (X)L Gs (%),
It follows from the uniqueness of the invariant set of IFS {G1, Gz, Gs} that & = 71 (€1). Similar argument shows & =~ Co.

4 . Kis a Cantor set

Proposition 4. 1. K is a Cantor set with the Hausdorff dimension one.
Proof. As & = T1(€1)=T1(C€1), 71 (€1) is dense in K. It follows from
Jim (8 (n+2%),80H (n+2"))=(8(n),8°H (n))
for 7 € Nos that any elements in €1 are accumulation points, i.e., €1 is a perfect set. Thus K is so. As the IFS {g1, g», g5} sat-
isfies strong separation condition
K=01(R)UG2(R)Ugs(K) and g: (R)Ng; (R)=0,1#7,

K is totally disconnected. We see that the Hausdorff dimension of K is one in the previous section. Hence the assertion.
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