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1. Tonality and maximal evenness ansatz: a review

Based on the Pythagorean tuning and the maximal evenness ansatz, we have been trying to build a

combinatorial model of tonal music theory [3][4][5][6]. The concept of maximal evenness has been firstly

introduced into mathematical music theory by Clough and Douthett[1], where they have realized maximally

even collections by mechanical sequences associated with fractions, which is described by J-functions (Defi-

nition 2.4). In [3] and [4], we show that any maximally even set has a descriptions as a rotational dynamics

(Theorem 2.6, quoted below), which corresponds to an abstraction of the Pythagorean tuning, hence we

have found a good reason for the maximal evenness ansatz in tonal music theory. In [5], we have investigated

possibilities to describe tonality from a viewpoint of the maximal evenness ansatz. From a combinatorial

viewpoint, maximal evenness imposes a kind of limitation on the choice of musical notes in a piece, hence it

influences chord progressions. As a result, it brings a smoothness of voice leadings among maximally even

chords[6].

To step deeply into tonality, we have to investigate the relation between scales and chords. The tonality

of a piece is provided by melodies and chord progressions, dominated by the system of organizing notes

named the scale. A chord in a scale, however, belongs to more than one scale generally, thus the number

of scales the chord belongs, which we call rigidity, seems to relate tonality of the piece. We give the upper

bound of the rigidity for the fixed number of notes that form a chord (Theorem 3.2). We see that the

suspended chords like Sus2 or Sus4 are characterized as maximum rigidity chords (Example 2.14). We also

characterize tritones in maximally even scales from the rigidity of chords viewpoint (Theorem 3.3), which

will bring us a clue to build a combinatorial model on consonance/dissonance, the underground concept of

tonality.

2. Maximal evenness of diatonic system

2.1. General setting of scales. Since tones with basic frequencies f and 2nf, n ∈ Z have a ‘similar’

quality for human ears, these tones are called octave equivalent to each other in music theory. Keeping

this psychological fact in mind, we introduce the followings. For a tuple A = (ai), |A| denotes the set {ai}
consists of entries of A. If a tuple B = (bj) satisfies |B| ⊂ |A| and that the inclusion ι : |B| ↪→ |A| is
increasing on indexes, that is, for bi, bj ∈ B with i < j, i′ < j′ holds for ai′ = ι(bi) and aj′ = ι(bj), we call

B is compatible with A and write B ⊏ A.

Definition 2.1 (General chromatic scale). A general chromatic scale Chc is a tuple (f0, f1, . . . , fc−1) of

tones with basic frequencies f0 < f1 < · · · < fc−1 satisfying fc−1 < 2f0. A general semitone encoding θ

associated with the chromatic scale Chc is a map |Chc| ∋ fk 7→ k ∈ Z. The octave equivalence leads a

periodic extension Chc of the chromatic scale Chc such that Chc = (2nf0, 2
nf1, . . . , 2

nfc−1)n∈Z, and the

semitone encoding θ is also extended to a bijection θ : |Chc| ∋ 2nfk 7→ cn + k ∈ Z. We call an element of

Chc a note.

Definition 2.2 (General scales). Given a general chromatic scale Chc, a scale is a tuple S = (t0, t1, . . . , td−1)

compatible with Chc. Thus entries of S are arranged in ascending order θ(t0) < θ(t1) < · · · < θ(td−1) with

θ(td−1)− θ(t0) < c. For a natural number h, h · S stands for an extension of scale S,

h · S = (2nt0, . . . , 2
ntd−1)n=0,...,h−1.
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S denotes an infinite extension of S, S = (2nt0, . . . , 2
ntd−1)n∈Z. The general wholetone encoding ηS associ-

ated with a scale S is a map |S| ∋ 2ntk 7→ dn+ k ∈ Z.

Definition 2.3 (General chords). A chord X ⊏ h ·S is a tuple of notes X = (x0, . . . , xn−1) compatible with

h · S. We call oct(X) = h the octave range of the chord X. If θ(xp) ̸≡ θ(xq) (mod c) holds for any entries

xp and xq, we call X prime.

Z oooo ηS oo

proj.
����

S � � //

����

Chc // θ // //

����

Z

proj.
����

Z/hdZ oooo ηS oo

proj.
����

h · S � � //

����

h · Chc // θ // //

oct.eq.
����

Z/hcZ

proj.
����

Z/dZ oooo ηS oo S � � // Chc // θ // // Z/cZ

Since the octave equivalence of a and b ∈ Chc

means θ(a) ≡ θ(b) (mod c), the chromatic scale

Chc is identified with Z/cZ. When we focus on a

scale S of d notes, we identify S with Z/dZ. Thus

the extension Chc and S can be seen as the cover-

ing space Z of Z/cZ and Z of Z/dZ respectively.

We also identify an extension h · S with Z/hdZ.

Throughout these identification, we also reuse θ and

ηS as the semitone and wholetone encoding respec-

tively. We often identify a tuple X = (x1, . . . , xn) ⊏ Chc with its image θ(X) = (θ(x1), . . . , θ(xn)), like

X = (θ(x1), . . . , θ(xn)) for short. For a note a ∈ Chc and n ∈ Z, an ∈ Chc stands for the octave equivalent

note such that θ(an) = θ(a) + nc.

2.2. J-function, diatonic scale and diatonic chord. The J-function is introduced by Clough and

Douthett[1], which works well to extract features of tonality (see for details, e.g.,[4][5][6]).

Definition 2.4. For c, d,m ∈ Z with c > d and d ̸= 0, the J-function on Z is defined as

Jm
c,d(k) =

⌊
ck +m

d

⌋
,

where ⌊x⌋ denotes the largest integer less than or equal to x. We note Jm
c,d as the tuple (Jm

c,d(k))k=0,...,d−1

and |Jm
c,d| as the set {t ∈ Jm

c,d} of entries of Jm
c,d.

We just quote the following and omit the proof.

Proposition 2.5 ([5] Proposition 2.7). Let c, d be non-zero integers prime to each other. Then for any

x ∈ R,

(2.1)
∑

k∈Z/dZ

|Jx+1
c,d (k)− Jx

c,d(k)| = 1

holds. Thus the Hamming distance of J x+1
c,d and J x

c,d is 1.

The tuple Jm
c,d ⊏ Chc has a special feature called Myhill’s property, which is an embodiment of ‘maximal

evenness’. When we treat Jm
c,d ⊏ Chc as a scale, we call it a (general) diatonic scale. The following gives

a dynamical description of maximally even sets, which is a crucial tool for our observations of tonality via

the maximal evenness ansatz.

Theorem 2.6 (Dynamical characterization of Myhill set[4] Theorem 3.4). Consider a subset S ⊂ Z/cZ

with #S = d prime to c, and take a translation

T : Z/cZ ∋ x 7→ x+ d−1 ∈ Z/cZ,

where d−1 is the multiplicative inverse of d ∈ (Z/cZ)×. Then S is maximally even if and only if S is a

collection of successive d images of some element g ∈ Z/cZ by T , namely

S = {g, T (g), T 2(g), . . . , T d−1(g)} = {g, g + d−1, g + 2d−1, . . . , g + 1− d−1}.
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Example 2.7. Classical European music or Western popular music even today is established on 12-tone

scale, so-called the chromatic scale,

Ch12 = (C,C#, D,D#, E, F, F#, G,G#, A,A#, B),

where frequencies of A,A#, . . . are determined appropriately in music theory (e.g., A = 440Hz, A# =

466.16Hz, . . . ). Hereafter we adopt the semitone encoding θ : |Ch12| → Z/12Z,

θ(C) = 0, θ(C#) = 1, θ(D) = 2, θ(D#) = 3, θ(E) = 4, θ(F ) = 5,

θ(F#) = 6, θ(G) = 7, θ(G#) = 8, θ(A) = 9, θ(A#) = 10, θ(B) = 11.

Tonal music pieces are composed over diatonic scales Jm
12,7,m = 0, . . . , 11 which are maximally even in

Ch12. For instance the C-major diatonic scale C = CDEFGAB is expressed as a tuple (0, 2, 4, 5, 7, 9, 11) =

(J5
12,7(k))k=0,...,6 = J 5

12,7. We also note that |J 5
12,7| = {0, 2, 4, 5, 7, 9, 11} has a dynamical expression {5 + 7k

(mod 7) | k = 0, . . . , 6}, since 7−1 ≡ 7 (mod 12).

Example 2.8. Diatonic chords of three notes stacked in ‘thirds’, called triads, play crucial roles in tonal

music. In the case of C-major scale, adopting a wholetone encoding ηC as

ηC(C) = 0, ηC(D) = 1, ηC(E) = 2, ηC(F ) = 3, ηC(G) = 4, ηC(A) = 5, ηC(B) = 6,

the triads are also expressed by the J-function as follows:

CEG = J 0
7,3, DFA = J 3

7,3, EGB = J 6
7,3, FAC1 = J 9

7,3, GBD1 = J 12
7,3, AC1E1 = J 15

7,3, BD1F 1 = J 18
7,3.

Moreover, the 7th chords that consist of four diatonic notes are expressed as

CEGB = J 3
7,4, DFAC1 = J 7

7,4, EGBD1 = J 11
7,4, FAC1E1 = J 15

7,4,

GBD1F 1 = J 19
7,4, AC1E1G1 = J 23

7,3, BD1F 1A1 = J 27
7,3.

So, using an abbreviation

Jm,n
c,d,e = Jm

c,d(J n
d,e) = (Jm

c,d ◦ Jn
d,e(k))k=0,...,e−1

for c > d > e > 0, the triads or 7-th chords have semitone encoding expressions, such as

CEG = J 5,0
12,7,3, CEGB = J 5,3

12,7,4,

meaning that the diatonic triads or 7th chords are understood as ‘multi-order maximally even sets’, pointed

out by Douthett[2].

Definition 2.9. Consider a chord T = (ti1 , . . . , tin) compatible with the extended scale S = (. . . , t−1, t0, t1, . . . )

of a scale S of d notes. The translation T + l of T in S is a chord given by T + l = (ti1+l, . . . , tin+l) for

any l ∈ Z. The first inversion T (1) of T is a chord given by T (1) = (ti2 , . . . , tin , ti1+hd), where h = oct(T ).

Inductively, the p-th inversion T (p) of T is given as the first inversion of T (p− 1).

Proposition 2.10. Given a scale S of d notes, consider a maximally-even chord Jm
hd,e compatible with h ·S.

Then the translation Jm
hd,e + l for any integer l is a maximally-even chord

(2.2) Jm
hd,e + l = Jm+le

hd,e ,

and the p-th inversion Jm
hd,e(p) for any integer p is a maximally-even chord

(2.3) Jm
hd,e(p) = J

m+phd
hd,e .

This proposition shows that translation and inversion of maximally-even chords are also expressed in

terms of J-functions, but we omit the proof (see [6]).
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Z/dZ

⟳

� �
Jm
hc,d //

×h ≈
��

Z/hcZ

proj.
����

Z/dZ � �

Jm
c,d

// Z/cZ

2.3. Expansion of scales (revisited). When h > 1 is prime to d,

Z/dZ ∋ k 7→ hk ∈ Z/dZ is isomorphic. Thus a tuple

X =
(
Jm
c,d(hk)

)
k=0,...,d−1

gives a maximally even subset |X| in Chc = Z/cZ while its entries are

out of sequence on the semitone encoding. As is pointed out in [5], the equality (on Z),

Jm
c,d(hk) =

⌊
c(hk) +m

d

⌋
=

⌊
hc · k +m

d

⌋
= Jm

hc,d(k)

shows that X is maximally even in h · Chc = Z/hcZ. In other words, a maximally even tuple X in h · Chc

is folded up in Chc.

Definition 2.11 (Expansion of scales). Let S = (t0, . . . , td−1) be a scale compatible with Chc. For a natural

number h prime to d, we define an h-expansion Sh = (s0, . . . , sd−1) ⊏ h · S of S by

(2.4) θ(si) = θ(tj) + nc where hi = nc+ j.

We note that, when we consider ηS as a function S → Z, the condition (2.4) is equivalent to

ηS(si) = ηS(tj) + nd = j + nd where hi = nd+ j,

that is, ηS(si) = hi while ηSh(si) = i by definition. For a scale S = (t0, . . . , td−1), πh·S : h ·S → S stands for

a projection corresponding to a natural projection Z/hdZ→ Z/dZ. Whenever h is prime to d, there exists

its multiplicative inverse h−1 ∈ (Z/dZ)×. Then the multiplication by h−1 : Z/dZ ∋ k 7→ h−1k ∈ Z/hdZ is

injective, which corresponds to the map (·)h : S ∋ tj 7→ si ∈ h · S defined by (2.4). Thus we can define the

expansion of a chord X ⊏ S as the image of the map (·)h, denoted by Xh. We note that Xh is compatible

with Sh by definition.

Example 2.12. Consider the C major scale C = CDEFGAB in Ch12, then its expansions Ch are

C2 = CEGBD1F 1A1 ⊏ 2 · C, C3 = CFBE1A1D2G2 ⊏ 3 · C,

C4 = CGD1A1E2B2F 3 ⊏ 4 · C, C5 = CAF 1D2B2G3E4 ⊏ 5 · C

and C6 = CBA1G2F 3E4D5 ⊏ 6 · C. We have ηC(C2) = (0, 2, 4, 6, 8, 10, 12) while ηC2(C2) = (0, 1, 2, 3, 4, 5, 6).

2-expansion C2 represents so called the ‘stacking third’ process, which are mainly used by pieces in classical

music. 3-expansion C3 shows a stacking 4th process, which was the concept that Claude Debussy used

preferably in his pieces. 4-expansion C4 is nothing but the ‘stacking perfect 5-th’ process and used by the

Pythagorean tuning. We note that all these expansions are maximally even since Ch = J 5
12h,7 ⊏ h · C.

Consider a chord DFA ⊏ C of which the whole tone encoding is ηC(DFA) = (1, 3, 5) = J 3
7,3. As

2−1 ≡ 4 (mod 7), we have ηC2((DFA)2) = (4, 12, 20) ≡ (4, 5, 6) = ηC2(D1F 1A1) (mod 7), that is, (DFA)2 =

D1F 1A1, which is not maximally even. Conversely, consider a chordDEF ⊏ C with ηC(DEF ) = (1, 2, 3). As

3−1 ≡ 5 (mod 7), we have ηC3((DEF )3) = (5, 10, 15) ≡ (5, 3, 1) = ηC3((D2E1F ), hence (DEF )3 = D2E1F

which is maximally even in C3.

The following states that any chord of which entries form an arithmetic sequence in the sense of wholetone

encoding, compatible with a scale S, becomes a maximally even chord compatible with Sh for some octave

range h.

Theorem 2.13. Let S be a scale of d notes and take natural numbers b and t which are prime to d.

Identifying S with (0, 1, 2, . . . , d− 1) via a wholetone encoding ηS, consider a chord X compatible with S of

which entries form an arithmetic sequence,

ηS(|X|) = {a+ kb (mod d) | k = 0, . . . , t− 1}.
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Then, its expansion Xh ⊏ Sh is maximally even in Sh, where 0 < h < d satisfies h ≡ bt (mod d).

Proof. Putting Sh = (y0, . . . , yd−1), we have seen ηS(yi) = hi = h · ηSh(yi). It comes from the equation

ηS(yi) ≡ a+ kb (mod d)

that

(2.5) ηSh(yi) ≡ h−1(a+ bk) ≡ h−1a+ t−1k (mod d)

where h−1 is the multiplicative inverse of h = bt ∈ (Z/dZ)×. Let Xh ⊏ Sh be the h-expansion of X. It

comes from Theorem 2.6 that a chord X of t ∈ (Z/dZ)× notes compatible with S is maximally even if and

only if |X| forms an arithmetic sequence,

ηS(|X|) = {g + t−1k (mod d) | k = 0, . . . , t− 1}.

By (2.5) we see

ηSh(|Xh|) = {h−1a+ t−1k (mod d) | k = 0, . . . , t− 1},
hence Xh is a maximally even chord compatible with Sh. □

Example 2.14 (Maximal evenness of suspended chords). In music theory, a chord CFG is called a ‘sus-

pended 4th’ chord denoted by Csus4. Historically, the name ‘suspended’ comes from voice leadings: for

instance, when a chord progression CFA → CEG occurs, a deformation CFA → CFG → CEG may be

used in order to get more mild change of voices. In this case, the note F in CFG is suspended from CFA.

Here we give another interpretation to the suspended chords from the maximal evenness ansatz. The

whole tone encoding of CFG on C major scale C is given by ηC(CFG) = (0, 3, 4), however, if we take 2nd

inversion GC1F 1, we obtain an arithmetic sequence ηC(GC1F 1) = (4, 7, 10). Thus we can apply Theorem

2.13 for d = 7, t = 3, b = 4. As h ≡ bt ≡ 2 (mod 7) and h−1 ≡ 4 (mod 7) we have

ηC2((CFG)2) = (0, 12, 16) ≡ (0, 5, 2) = ηC2(CF 1G) (mod 7).

You see {0, 2, 5} = |J 1
7,3|, so even though CFG is not maximally even in C, its 2-expansion (CFG)2 = CF 1G

is maximally even in C2. Also we note that GC1F 1 is not maximally even in 2 ·C: as ηC(GC1F 1) = (2, 7, 12),

the distances between adjacent notes G,C1 and F 1 in 2 · C = Z/2 · 7Z are 3, 5 and 3, which means (2, 7, 12)

is not balanced (see [9]).

Similar argument can be done for so called ‘suspended 2nd’ Csus2 such as CDG in C: its first inversion
DGC1 gives an arithmetic sequence ηC(DGC1) = (1, 4, 7), hence taking octave range h ≡ bt = 9 ≡ 2

(mod 7), 2-expansion (CDG)2 = CD1G is maximally even in C2, since ηC2(|CD1G|) = {0, 4, 2} = |J 0
7,3|.

3. Rigidity of chords and tonality

3.1. Rigidity of chords. The triad CEG is regarded as one of the primary triads in not only C-major

scale but also G-major and F -major scales: CEG ⊏ J 4
12,7,J 5

12,7,J 6
12,7, thus CEG is invariant for the change

of ‘key’ J 5±1
12,7 .

Definition 3.1 (Rigidity of chords). Given a general chromatic scale Chc and a set of extended scales

S = {Sk} in Chc. For a chord X in some S ∈ S, we define the rigidity RS(X) of X as the number of scales

with which X is compatible,

RS(X) = #{S ∈ S | X ⊏ S}.
CS(X) stands for the set of scales in S compatible with X, CS(X) = {S ∈ S | X ⊏ S}.

For usual chromatic Ch12, we put the set ∆ of the extended diatonic scales, ∆ = {Jm
12,7 | m = 0, . . . , 11}.

Then, it can be seen R∆(CEG) = 3.
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D
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A

A

A

E

E

E

B

B

B

1

1

1

1

1

1
1 2·C

C
C2

Figure 1. The chord CFG in C-major scale C is not maximally even (left) while its 2-
expansion CF 1G in C2 is maximally even (right). Also we note that CF 1G is not maximally
even in 2 · C.

Theorem 3.2. Let c > d be natural numbers prime to each other. For a general chromatic scale Chc and

a set of maximally-even scales S = {Jm
c,d | m = 0, . . . , c − 1} in Chc, let X be a prime chord consists of t

notes and compatible with some Jm
c,d ∈ S. Then we have

(3.1) RS(X) ≤ d− t+ 1.

There exists a prime chord with maximum rigidity,

max{RS(X) | X ⊏ Jm
c,d for some Jm

c,d ∈ S and X is a prime chord consists of t notes.} = d− t+ 1

Proof. As X is prime and X ⊏ Jm
c,d, we see X = (Jm

c,d(k1), . . . , J
m
c,d(kt)) where Jm

c,d(ki) ̸≡ Jm
c,d(kj) (mod c),

or equivalently ki ̸≡ kj (mod d) for any i ̸= j. Taking mk = min{m′ | Jm′
c,d (k) = Jm

c,d(k)}, we see J
mk−1
c,d (k) =

Jmk
c,d (k)− 1, hence ck+mk ≡ 0 (mod d). Thus Jm′

c,d (k) = Jm
c,d(k) holds if and only if mk ≤ m′ ≤ mk + d− 1.

It comes from Proposition 2.5 that mk1 , . . . ,mkt are different each other. Thus

(3.2) #

(
t∩

i=1

{mki ,mki + 1, . . . ,mki + d− 1}

)
≤ d− t+ 1

holds, hence (3.1).

By taking k1 = k, k2 = k + c−, k3 = k + 2c−, . . . , kt = k + (t − 1)c− where c− > 0 is the multiplicative

inverse of c ∈ (Z/dZ)×; cc− ≡ 1 (mod d), the chord X = (Jmk
c,d (k1), . . . , J

mk
c,d (kt)) is prime, and

0 ≡ cki +mki ≡ ck +mki + i− 1 (mod d),

hence mki ≡ mk− i+1 (mod d). Applying the octave equivalence to ki ≡ k+(i−1)c− (mod d) if necessary

so that mki = mk − i + 1 holds for all i = 1, . . . , t − 1, the equality of (3.2) holds for X. Thus we have

RS(X) = d− t+ 1. □

3.2. Rigidity under the diatonic scales ∆ and tonality: a characterization of tritone. Here we

come back to the usual chromatic scale Ch12. Figure 2 shows the all diatonic scales as a function Jm
12,7 of

m. From this, we see the rigidity of primary triads are 3, R∆(CEG) = R∆(CFA) = R∆(BDG) = 3, which

is smaller than the possible maximum rigidity 7− 3 + 1 = 5. When the chord CEG appears in a piece, you

will find the possible key of the piece is C∆(CEG) = {F = J 4
12,7, C = J 5

12,7,G = J 6
12,7}. If the piece contains

CEG,CFA and BDG, the possible key is uniquely determined: C∆(CEG)∩C∆(CFA)∩C∆(BDG) = {C}.
Namely, the primary chords CEG,CFA and BDG characterize C major scale C. In this sense, since the

diminished chord BDF = J 5,−3
12,7,3 and the G7 chord GBDF = J 5,−9

12,7,4 is compatible with only C, they
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determine the key of piece (see Table 1). You see that any chord X compatible with some diatonic scale

and which contains F and B belongs to either C or F ♯. We state this phenomenon more generally.

CD A E B F G D A E B F

C 

C#

D 

D#

E 

F 

F#

G 

G#

A 

A#

B 

C 

m

key of diatonic scale 

0 3 9 6 12 

J12 7
m

(6)

J12 7
m

(5)

J12 7
m

(4)

J12 7
m

(3)

J12,7
m

(2)

J12,7
m

(1)

J12,7
m

(0)

Figure 2. A representation of diatonic scales ∆ by J-function. By increasing m, the key of
diatonic scale is changed, D♭ → A♭ → E♭ → . . . .

Rigidity Diatonic scales close to C

R∆(X) B♭ F C G D
3 × ←− CEG −→ ×
3 ←− DFA −→ × ×
3 × × ←− EGB −→
3 ←− FAC −→ × ×
3 × × ←− GBD −→
3 × ←− ACE −→ ×
1 × × BDF × ×

Rigidity Diatonic scales close to C

R∆(X) B♭ F C G D
2 × × CEGB −→ ×
3 ←− DFAC −→ × ×
3 × × ←− EGBD −→
2 × FACE −→ × ×
1 × × GBDF × ×
3 × ←− ACEG −→ ×
1 × × BDFA × ×

Table 1. The rigidity of triadic chords J 5,n
12,7,3 (left) and 7th chords J 5,n

12,7,4 (right) for n =
0, . . . , 6 compatible with C-major scale. Their compatibility with diatonic scales close to
C-major is shown: × stands for the incompatibility of the chord with the corresponding
scale.

Theorem 3.3. Let S be a set of maximally even scales S = {Jm
c,d | m = 0, . . . , c − 1} compatible with a

chromatic scale Chc. Then, for each scale Jm
c,d ∈ S, there exists a unique chord Xm ⊏ Jm

c,d with #|Xm| = 2

such that

(3.3) RS(Xm) = #{(p, q) ∈ {0, 1, . . . , d− 1}2 | p+ q = 0 or c}.

Putting Xm = (x1, x2), we have θ(x2)− θ(x1) ≡ d−1 − 1 (mod c).

Proof. By Proposition 2.5, there exist unique 0 ≤ im ̸= jm ≤ d− 1 for each m = 0, . . . , c− 1 which satisfy

Jm
c,d(im)− Jm−1

c,d (im) = 1 and Jm+1
c,d (jm)− Jm

c,d(jm) = 1

respectively, from which we have

(3.4) cim +m = Jm
c,d(im)d and cjm +m+ 1 = (Jm

c,d(jm) + 1)d,

hence

(Jm
c,d(jm)− Jm

c,d(im) + 1)d ≡ 1 (mod c),
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namely, Jm
c,d(jm)− Jm

c,d(im) ≡ d−1 − 1 (mod c). (3.4) also brings for 0 ≤ p, q ≤ d− 1,

Jm+p
c,d (im) = Jm

c,d(im) and Jm+c−q
c,d (jm − 1) = Jm

c,d(jm).

Then putting |θ(Xm)| = |(θ(x1), θ(x2))| = {Jm
c,d(im), Jm

c,d(jm)}, we see that J l
c,d ∈ CS(Xm) if and only if

l ≡ m+ p ≡ m− q (mod c) with (p, q) ∈ {0, . . . , d− 1}2. As 0 ≤ p+ q ≤ 2(d− 1) < 2c, we see p+ q = 0 or

c. Hence the assertion. □

Example 3.4. Let us apply the theorem above for C major scale C = J 5
12,7. As

J6
12,7(3)− J5

12,7(3) = J5
12,7(6)− J4

12,7(6) = 1,

we have θ(X) =
(
J5
12,7(3), J

5
12,7(6)

)
= (5, 11), that is, X = FB. The pair FB is known as the ‘tritone’ in

music theory, which is treated carefully because of its dissonance. In fact, since C (C2, more explicitly) is

the second overtone of F , C is quite harmonious with F while B and C are quite dissonant, as the interval

between B and C is one semitone, and one semitone interval causes unpleasantness for human ears (Plomp

and Levelt[10]). We also see that the solution to p + q = 0 or 12 with 0 ≤ p, q ≤ 6 is p = q = 0 and

p = q = 6, thus we have C∆(FB) = {C,F ♯} and R∆(FB) = 2. In music theory, the relation between C and

F ♯ is often used as the tritone substitution, a technique of chord progression: for instance, the dominant

7th G7 = GBDF = J 5,5
12,7,4(−2) can be changed to C♯7 = C♯FG♯B = J 11,3

12,7,4, because both contain the

characteristic toritone FB commonly.

Theorem 3.3 brings us a ray of hope for a mathematical model on consonance/dissonance, the basic

concept of tonality. By Theorem 2.6, any maximally even set Jm
c,d is generated by a dynamics

Z/cZ ∋ x→ x+ d−1 ∈ Z/cZ,

which is just an abstraction of the Pythagorean tuning: adding d−1 corresponds to an abstraction of stacking

perfect 5th. So, it can be said that two notes x1 and x2 are consonant when |θ(x2)− θ(x1)| ≡ d−1 (mod c).

On the contrary, Plomp and Levelt proposed the dissonant curve model based on psychoacoustic research in

[10]. As an abstraction of their model, it can be said that x1 and x2 are dissonant when |θ(x2)− θ(x1)| ≡ 1

(mod c). Thus, we can say that a chord X = (x1, x2) stated in Theorem 3.3 consists of notes dissonant each

other, because θ(x1) and θ(x′1) = θ(x1) + d−1 are consonant while

θ(x2)− θ(x′1) = θ(x2)− (θ(x1) + d−1) = 1

shows that x2 and x′1 are dissonant, ‘hence’ x2 and x1 are also dissonant. In this sense, Theorem 3.3 gives

a combinatorial characterization of the tritone, that is, a ‘general’ tritone is a chord X consists of two

dissonant notes and satisfies (3.3).

3.3. Does high rigidity mean tonal ambiguity? How about the Tristan chord? Contrast to

primary triads, suspended chords like Csus4 CFG or Csus2 CDG have the maximum rigidity R∆(CFG) =

R∆(CDG) = 5. The reason for the maximum rigidity is, as is seen in Example 2.14, these suspended chords

are generated by ‘stacking perfect 5th’ up to the octave equivalence, that is parallel to the Pythagorean

tuning which generates diatonic scales. Indeed, you will see

C∆(CFG) = {A♭ = J 1
12,7, E♭ = J 2

12,7,B♭ = J 3
12,7,F = J 4

12,7, C = J 5
12,7}

and

C∆(CDG) = {E♭ = J 2
12,7,B♭ = J 3

12,7,F = J 4
12,7, C = J 5

12,7,G = J 6
12,7}.

Thus, it might be said that high rigidity means tonal ambiguity. Such ambiguity has been widely used by

composers. Indeed, the ambiguity is useful to change the key of a piece naturally. When a melody has high

rigidity, composers can reharmonize it variously. Figure 3 gives such an example of reharmonization for a
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melody CDFG (but just an arpeggio!), compatible with C,F,B♭ and E♭ major scales, namely C∆(CDFG) =

{C, F,B♭, E♭}. At (i), we put C major tonic chords CEG = J 5,0
12,7,3 at the first and 5th measures, and

characteristic tritones at 2nd, 3rd and 4th measures. At (ii), we put 7th chords, a major 7th CM7 =

CEGB = J 5,3
12,7,4, half diminished 7th Em7♭5 = EGB♭D = J 4,4

12,7,4(1), Am7♭5 = ACE♭G = J 3,0
12,7,4 and

Dm7♭5 = DFA♭C = J 2,0
12,7,4(1), containing tritones. At (iii), we use the tritone substitution B♭ → E at

measure 3, D♯m7♭5 = D♯F ♯AC♯ = J 3,0
12,7,4, that sounds aggressive. At (iv), we put a diminished chord

E♭dim = E♭G♭AC = J 3
12,4 at measure 3, that sounds milder.

It must be too early to mention the famous Tristan chord, however, the chord raises an objection to our

rigidity of chords approach to tonality. The Tristan chord was deliberately introduced in Wagner’s opera

Tristan und Isolde (1859). It can be understood as a half-diminished 7th chord enharmonically, however it

has a various kind of possible harmonic functions and voice leadings, because of its tonal ambiguity. BFAD1

is a Tristan chord: it contains the characteristic tritone BF , thus it has low rigidity R∆(BF ) = 2, meaning

that it should has strong tonality from our viewpoint.

In this paper, we pay no attention to harmonic functions of chords or roles of leading tones in a scale,

which are fundamental tools to analyze tonal music, at least in classical music. To build a mathematical

model for tonal music via the maximal evenness ansatz, we need to change our combinatorial equal treatment

of notes in a scale; we may need a a kind of hierarchically organized system of scale notes.
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C CEBFkey of diatonic scale 

(i)

(ii)

(iii)

(vi)

CM7 =J 5,3
12,7,4 CM7 =J 5,3

12,7,4Em7 5 = J 4,4
12,7,4(1)  Am7 5= J 3,0

12,7,4 Dm7 5 = J 2,0
12,7,4(1)

D m7 5= J 3,0
12,7,4

E dim = J 3
12,4

Figure 3. Reharmonizations for a high rigidity melody CDFG compatible with C,F,B♭

and E♭ major scales. At (i), we put characteristic tritones at 2nd,3rd and 4th measure. At
(ii), we use Tristan chords intentionally at 2nd,3rd and 4th measure. At (iii), we apply tritone

substitution at 3rd measure as C∆(E
♭A) = {B♭, E}: the right hand plays in B♭ while the left

hand plays in E. As a result, it sounds aggressive, but the top note of the left hand part
moves chromatic way: G → F ♯ = G♭ → F → E. Thus at (iv), we adopt the E♭ diminished
chord as a compromise choice.
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