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ABSTRACT
The main purpose of this paper is to propose an (α, q)-analogue of the Poisson operators on the Fock space of type B in the
sense of Bożejko, Ejsmont, and Hasebe [J. Funct. Anal. 269, 1769–1795 (2015)] and to find a probability law of this operator. We
shall show that the probability law is expressed by the q-Meixner distribution in the sense of Definition 3.2. Our results contain
not only symmetric distributions as in Bożejko-Ejsmont-Hasebe but also the non-symmetric ones such as free Poisson, q and
q2-deformations of Poisson, Pascal, Gamma, and Meixner distributions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5074114

I. INTRODUCTION
Based on a general procedure in Ref. 10, Bożejko et al.7 considered a deformation of the (algebraic) full Fock space with two

parameters α, q ∈ (−1, 1), namely, the (α, q)-Fock space (or the Fock space of type B) Fα,q(H ) over a complex Hilbert space H.
The deformation with α = 0 is equivalent to the q-deformation by Bożejko and Speicher9 and Bożejko et al.8 In Ref. 7, a crucial
point is to replace the Coxeter group of type A, that is, symmetric group Sn for the q-Fock space by the Coxeter group of
type B, B(n) B Zn

2 oSn in (2.1), to construct Fα,q(H ) equipped with the (α.q)-inner product 〈·,·〉α ,q. This replacement provides
us to define more general creation B†α,q(x) and annihilation Bα ,q(x) operators acting on Fα,q(H ) and to compute a probability
distribution να ,q on R of the (α, q)-Gaussian operator (the Gaussian operator of type B), B†α,q(x) + Bα,q(x), x ∈ H, with respect
to the vacuum state. In fact, να ,q is identified with the orthogonality and symmetric probability measure on R associated with

the (α, q)-orthogonal polynomials {P(α,q)
n (t)} given by the recurrence relation in (3.1). We should note that {να,q }α,q∈(−1,1) contains

important examples, the laws of the free Gaussian (α = q = 0), symmetric free Meixner (q = 0), q-Gaussian (α = 0), and q2-Gaussian
(α = q).

On the other hand, in Ref. 18, the q-Poisson operator (the Poisson operator of type A) is introduced as the sum of q-
creation b†q, q-annihilation bq, and q-number b†qbq operators and its probability law is identified with the q-Poisson distribution for
q ∈ [0, 1). However, an (α, q)-counterpart of the Poisson operator is not considered to the best of our knowledge. Hence, it is a
natural question to consider how to define its (α, q)-analogue.

The organization of this paper is as follows: In Sec. II, we shall give a quick review on the Fock space of type B from Ref.
7. In Sec. III, we shall recall the (α, q)-Gaussian operator and propose the (α, q)-Poisson operator. In Sec. IV, after relationships
between q-Meixner operator Xq of Ref. 21 and our (α, q2)-Poisson operator are explained, we shall introduce a weighted (−q,
q2)-Poisson operator Y−q,q2 . Our approach is based on the q-Meixner class of orthogonal polynomials in the sense of Definition
3.2 to discuss the probability laws of all field operators. We shall show in Theorem 4.3 that the probability law of Y−q,q2 is equal

to that of the scaled Meixner operator Yq =
Xq
1+q with respect to appropriate vacuum states. Moreover, it will be seen that one can

treat rich examples of non-symmetric probability distributions such as
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• free Poisson and q-Poisson,
• q2-Poisson, q2-Pascal, q2-Gamma, and q2-Meixner,

within the framework of the Fock space of type B. This is a significant development in this line of research.

II. PRELIMINARIES ON THE FOCK SPACE OF TYPE B
Let B(n) be the set of bijections σ of the 2n points {±1, ±2, . . ., ±n} with σ(−k) = −σ(k). Equipped with the composition

operation as a product, B(n) becomes what is called a Coxeter group of type B. It is generated by π0 B (1, −1) and πi B (i, i + 1), 1 ≤
i ≤ n − 1, which satisfy the generalized braid relations




π2
i = e, 0 ≤ i ≤ n − 1,

(π0πn−1)4 = (πiπi+1)3 = e, 1 ≤ i ≤ n − 1,

(πiπj)2 = e, |i − j | ≥ 2, 0 ≤ i, j ≤ n − 1.

(2.1)

An element σ ∈ B(n) expresses an irreducible form

σ = πi1 · · · πik , 0 ≤ i1, . . . , ik ≤ n − 1,

and in this case

`1(σ) B the number of π0 in σ,

`2(σ) B the number of πi, 1 ≤ i ≤ n − 1, in σ

are well defined.
Let H be a complex Hilbert space equipped with the inner product 〈·, ·〉 and norm ‖ · ‖, where the inner product is linear on

the right and conjugate linear on the left. For a given self-adjoint involution x 7→ x for x ∈H, an action of B(n) on H ⊗n is defined
by




π0(x1 ⊗ · · · ⊗ xn) = x1 ⊗ x2 ⊗ · · · ⊗ xn, n ≥ 1,

πi(x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ xi ⊗ xi+2 ⊗ · · · ⊗ xn, n ≥ 2, 1 ≤ i ≤ n − 1.

Throughout this paper, we assume that the involution x of x ∈ H is defined in such a way that 〈x, x〉 ∈ R holds and 〈x, x〉 = 0 is
equivalent to x = 0.

Let Ffin(H ) denote the algebraic full Fock space over H

Ffin(H ) B CΩ ⊕
∞⊕

n=1

H ⊗n,

where Ω denotes the vacuum vector. We note that the elements of Ffin(H ) are expressed as finite linear combinations of the
elementary vectors x1 ⊗ · · · ⊗ xn ∈H ⊗n. We equip Ffin(H ) with the inner product

〈
x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ yn

〉
0,0 B δm,n

n∏
k=1

〈
xk, yk

〉
, xk, yk ∈H.

For α, q ∈ (−1, 1), define the symmetrization operator of type B on H ⊗n as

P(n)
α,q =

∑
σ∈B(n)

α`1(σ)q`2(σ)σ, n ≥ 1,

P(n)
0,q =

∑
σ∈Sn

q`2(σ)σ, n ≥ 1,

P(0)
α,q = IH ⊗0 , P(n)

0,0 = IH ⊗n ,

where we put 00 = 1 and H ⊗0
= CΩ by convention and

Pα,q =

∞⊕
n=0

P(n)
α,q

be the symmetrization operator of type B on Ffin(H ). Since P(n)
α,q is known to be strictly positive,
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〈x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ yn〉α,q B 〈x1 ⊗ · · · ⊗ xm, Pα,q(y1 ⊗ · · · ⊗ yn)〉0,0

becomes an inner product and 〈·, ·〉α ,q is called the (α, q)-inner product with the convention 00 = 1 and y−k = yk, k = 1, 2, . . . , n.

Definition 2.1. (1) For α, q ∈ (−1, 1), the (algebraic) full Fock space Ffin(H ) with respect to 〈·,·〉α ,q is called the (α, q)-Fock space
(the Fock space of type B) denoted by Fα,q(H ). In this paper, we do not take completion. In particular, F0,q(H ) is nothing but
the q-Fock space (the Fock space of type A) Fq(H ) equipped with the q-inner product 〈·,·〉q B 〈·,·〉0,q of Bożejko and Speicher.9

(2) Let B†α,q(x) be defined as the usual left creation operator

B†α,q(x)Ω = x,

B†α,q(x)(x1 ⊗ · · · ⊗ xn) = x ⊗ x1 ⊗ · · · ⊗ xn, n ≥ 1,

and Bα ,q(x) be its adjoint with respect to 〈·,·〉α ,q, that is, Bα,q = (B†α,q)∗. B†α,q and Bα ,q are called the (α, q)-creation and (α, q)-
annihilation operators, respectively.

The next proposition is direct consequences of the definition.

Proposition 2.2. (1) The (α, q)-annihilation operator Bα ,q acts on the elementary vectors as follows:

Bα,q(x)Ω = 0, Bα,q(x)x1 = 〈x, x1〉Ω,

Bα,q(x)(x1 ⊗ · · · ⊗ xn) = L + R,

where

L =
n∑

k=1

qk−1〈x, xk〉 x1 ⊗ · · · ⊗
∨
xk ⊗ · · · ⊗ xn,

R = αqn−1
n∑

k=1

qk−1〈x, xn−(k−1)〉 x1 ⊗ · · · ⊗
∨
xn−(k−1) ⊗ · · · ⊗ xn,

for n ≥ 2 where
∨
xk means that xk should be deleted from the tensor product.

(2) The (α, q)-creation and the (α, q)-annihilation operators satisfy the commutation relation

Bα,q(x)B†α,q(y) − qB†α,q(y)Bα,q(x) = 〈x, y〉I + α〈x, y〉q2N, x, y ∈H.

The readers can refer to Ref. 7 for details. It is easy to see that the operators B†0,q and B0,q are the same as the q-creation

operator b†q(x) and q-annihilation operator bq(x), respectively, with respect to the inner product 〈·,·〉q, that is, bq = (b†q)∗ (see Ref. 9).

Corollary 2.3. (1) The q-annihilation operator bq(x) acts on the elementary vectors as follows:

bq(x)Ω = 0, bq(x)x1 = 〈x, x1〉Ω,

bq(x)(x1 ⊗ · · · ⊗ xn) =
n∑

k=1

qk−1〈x, xk〉 x1 ⊗ · · · ⊗
∨
xk ⊗ · · · ⊗ xn, n ≥ 2,

where
∨
xk means that xk should be deleted from the tensor product.

(2) The q-creation and the q-annihilation operators satisfy the q-commutation relation (q-CCR)

bq(x)b†q(y) − q b†q(y)bq(x) = 〈x, y〉1, x, y ∈H.

III. (α, q)-OPERATORS AND PROBABILITY DISTRIBUTIONS
Let us recall standard notations from q-calculus, which can be found in Refs. 15 and 17, for example. Let [n]q! be the q-factorial

as [n]q!B[1]q[2]q · · · [n]q for n ≥ 1, where [n]q denotes the q-number, [n]q B 1 + q + · · · + qn−1 for n ≥ 1. The q-shifted factorials are
defined by

(a; q)0 B 1, (a; q)k B
k∏
`=1

(1 − aq`−1), k = 1, 2, . . . ,∞.
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Remark 3.1. The q-shifted factorials are a natural extension of the Pochhammer symbol (·)n because one can see that
limq→1[k]q = k implies

lim
q→1

(qk; q)n
(1 − q)n

= (k)n,

where (k)0 B 1, (k)n B k(k + 1)· · · (k + n − 1), n ≥ 1.

A. (α, q)-Gaussian operator on Fα,q(H )

For α, q ∈ (−1, 1), let να ,q be the orthogonalizing probability measure of the sequence of monic polynomials {Pα,q
n (t)} defined

by the recurrence relation



Pα,q
0 (t) = 1, Pα,q

1 (t) = t,

tPα,q
n (t) = Pα,q

n+1 (t) + (1 + αqn−1)[n]qPα,q
n−1(t), n ≥ 1.

(3.1)

The measure να ,q is symmetric, and its explicit expression can be found in Refs. 5, 7, and, 17. In Ref. 7, the (α, q)-Gaussian operator
(the Gaussian operator of type B) on Fα,q(H )

Gα,q(x) B B†α,q(x) + Bα,q(x), x ∈H,

is introduced and its spectral measure with respect to the vacuum state 〈Ω,·Ω〉α ,q is identified with the symmetric probability
measure να〈x,x〉,q on R for α〈x, x〉, q ∈ (−1, 1). When α = 0, one can see that the q-Gaussian operator G0,q(x) (the Gaussian operator
of type A) on Fq(H ),

G0,q(x) B b†q(x) + bq(x), x ∈H,

is recovered and its spectral measure with respect to the vacuum state 〈Ω,·Ω〉q is the q-Gaussian measure, which is the
orthogonalizing measure of the q-Hermite polynomials (see Refs. 8 and 9).

Definition 3.2. For given constants q, κ1, κ2, γ, δ with 0 ≤ q < 1, κ2 > 0, δ ≥ 0, let mq denote the probability measure µ(q; κ1,

κ2, γ, δ) on R such that the sequence of monic polynomials {Q(q)
n (t)} given by the recurrence relation




Q(q)
0 (t) = 1, Q(q)

1 (t) = t − κ1,

tQ(q)
n (t) = Q(q)

n+1(t) +
(
κ2 +δ[n−1]q

)
[n]qQ(q)

n−1(t) +
(
κ1 + γ[n]q

)
Q(q)

n (t), n ≥ 1.
, (3.2)

is orthogonal with respect to the L2(mq)-inner product. We shall refer the measure mq as the q-Meixner distribution. For the
q-Meixner class, see Refs. 4, 11, and 20 and the references cited therein. For the free Meixner class q = 0, see Refs. 3, 6 and 19.

Definition 3.3. For s ∈ R, we define the translation Ts of a probability measure µ by Tsµ(·) = µ(·− s). For λ ∈ R,λ , 0, we
define the dilation Dλ of µ by Dλµ(·) = µ(·/λ).

Remark 3.4. The existence of probability measure mq B µ(q; κ1, κ2, γ, δ) is guaranteed by Favard’s theorem, for example, in
Refs. 12 and 16.

Remark 3.5. (1) The equality 1 + αqn−1 = 1 + α − α(1 − q)[n − 1]q holds. Hence, {Pα,q
n (t)} for α ∈ (−1, 0] can be considered as a

special case of {Q(q)
n (t)} in the sense of Definition 3.2. Hence the measure να ,q for {Pα,q

n (t)} coincides with µ(q; 0, 1 + α, 0,−α(1 − q))
for α ∈ (−1, 0].

(2) In particular, by (1 + qn)[n]q = [2n]q = (1 + q)[n]q2 ,

Bq,q(x) = (1 + q)B0,q2 (x) = (1 + q)bq2 (x), x ∈H,

holds. Therefore, νq ,q is equal to the q2-Gaussian measure with variance 1 + q (see Sec. IV).

Remark 3.6. (1) It is known12 that the classical Meixner class of orthogonal polynomials and distributions (q = 1) can be
classified into five types by parameters




θ B
γ
√
κ2

, τ B
δ

κ2
,

D B θ2 − 4τ.
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A q-analogue of the classical case is discussed in Ref. 4 and characterized as well as the q = 1 case by the same parameters (Refs.
11 and 20). More precisely, the q-Meixner distribution is classified into five types as follows:

(i) q-Gaussian: τ = 0, θ = 0.
(ii) q-Poisson: τ = 0, θ , 0.

(iii) q-Pascal: τ > 0, D > 0.
(iv) q-Gamma: τ > 0, D = 0.
(v) q-Meixner: D < 0.

(2) Monic polynomials {Q(q)
n (t)} can be obtained by the affine transformation of Al-Salam-Chihara polynomials,2 but we accept

Eq. (3.2), because it is rather convenient to examine the five types of distributions from the probabilistic viewpoint as well as the
classical case (q = 1).

B. (α, q)-Poisson operator on Fα,q(H )

In Ref. 18, the q-Poisson operator (the Poisson operator of type A) is examined as the sum of b†q, bq and b†qbq and its distribution
is identified with the q-Poisson distribution with δ = 0 (τ = 0) of the Meixner’s classification. However, an (α, q)-counterpart of
Poisson is not considered to the best of our knowledge, and hence it is a natural question to consider how to define its (α,
q)-analogue.

Let us first examine a self-adjoint operator Pα ,q(x) defined by the form

Pα,q(x) B B†α,q(x) + Bα,q(x) + c1Nq(x) + c21,

where Nq B b†qbq and c1 ≥ 0, c2 ∈ R, and compute the probability distribution of this operator with respect to the vacuum state
〈Ω,·Ω〉α ,q. In this paper, the operator Pα ,q(x) is called the (α, q)-Poisson operator (the Poisson operator of type B). By Remark 3.5
(2), in particular, we have

Pq,q(x) B b†
q2 (x) + (1 + q)bq2 (x) + c1(1 + q)Nq2 (x) + c21.

Moreover, we note that P0,q(x) is the same as the q-Poisson operator. It is trivial to see that the Poisson operator with c1 = 0 is
equal to the Gaussian operator with mean c2.

Theorem 3.7. Suppose α, q ∈ (−1, 1) and x ∈ H with ‖x‖ = 1. Let ρα ,q,x be the probability distribution of Pα ,q(x) with respect to
the vacuum state 〈Ω,·Ω〉α ,q.

(1) If q ∈ (−1, 1) and −1 < α〈x, x〉 ≤ 0, then ρα ,q,x is

µ(q; c2, 1 + α〈x, x〉, c1,−α(1 − q)〈x, x〉).

(2) If c1 = 0, q ∈ (−1, 1) and −1 < α〈x, x〉 < 1, then ρα ,q,x is equal to Tc2να〈x,x〉,q, where it is the probability distribution of Gα ,q(x) − c21.

Proof. The map Φ : span{x⊗n | x ∈H, n ≥ 0} → L2(mq) given by Φ(x⊗n) = Qn(t) is an isometry; in fact, we have

‖x⊗n ‖
2
α,q = ‖Qn(t)‖2L2 = (−α〈x, x〉; q)n[n]q!, n ∈ N0 B N ∪ {0}.

In addition, one can see

Pα,q(x)x⊗n

= B†α,q(x)x⊗n + Bα,q(x)x⊗n + c1Nq(x)x⊗n + c21x⊗n

= x⊗n+1 + (1 + α〈x, x〉qn−1)[n]qx⊗(n−1) + (c1[n]q + c2)x⊗n

= x⊗n+1 + (1 + α〈x, x〉 − α(1 − q)〈x, x〉[n − 1]q)[n]qx⊗(n−1) + (c1[n]q + c2)x⊗n.

Hence, one can get inductively Φ(Pα ,q(x)nΩ) = tn and

〈Ω,Pα,q(x)nΩ〉α,q =

∫
tndµ(q; c2, 1 + α〈x, x〉, c1,−α(1 − q)〈x, x〉).

Since µ(q; c2, 1 + α〈x, x〉, c1,−α(1 − q)〈x, x〉) has a compact support, it can be determined uniquely by the moment sequences.
Therefore, ρα,q,x = µ(q; c2, 1 + α〈x, x〉, c1,−α(1 − q)〈x, x〉) if −1 < α〈x, x〉 ≤ 0 is satisfied. It is easy to see the case c1 = 0. �
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IV. RELATIONSHIP BETWEEN (α, q2)-POISSON AND q-MEIXNER OPERATORS
A. q-Meixner operator on Fq(H )

Due to the replacement of α by α/〈x, x〉 for x , 0 in the Proof of Theorem 3.7, it is enough to consider one-mode operators to
obtain a probability distribution of a field operator on the Fock space of type B with respect to the vacuum state. This is justified
in general by the idea of one-mode interacting Fock spaces by Accardi and Bożejko1 (see also Ref. 16). Therefore, we shall restrict
our consideration to the one-mode case from now on so that we simply denote all operators B†α,q(x), Bα,q(x), b†q(x), bq(x), Nq(x) by
B†α,q, Bα,q, b†q, bq, Nq, respectively.

First, we would like to recall a self-adjoint operator Xq(c3, c4) on Fq(H ) given by

Xq(c3, c4) = (b†q)2 + (bq)2 + c3b†qbq + c41, c3 ≥ 0, c4 ∈ R,

and the probability distribution of this operator denoted by µxq with respect to the vacuum state 〈Ω,·Ω〉q.20 In this paper,
Xq, (b†q)2 and (bq)2 are called the q-Meixner operator, the double q-creation and annihilation operators acting on Fq(H ),
respectively.

Remark 4.1. The operators, b†1 , b1, b†1 b†1 , (b†1 )2, (b1)2, 1, are generators of the centrally extended Schrödinger Lie algebra S1, which
is decomposed as the semi-direct product of the Heisenberg-Weyl algebra and sl(2) (see Refs. 14 and 21). We will not mention this
point in this paper.

It is our main concern in this section to clarify the relationship between probability distributions of Xq and Pα ,q in a sense.
For this purpose, we shall take two steps as follows:

Step 1: Let us begin to see a fundamental identity to connect the operator Xq with (α, q2)-operator. One can get

(1 + αq2(n−1))[n]q2 =
(
1 + α − α(1 − q2)[n − 1]q2

)
[n]q2

=



1 + α − α(1 − q2)
1 − (q2)n−1

1 − q2




1 − (q2)n

1 − q2

=
1

1 + q

{
1 + α −

α(1 − q)
q

(
−1 + [2n − 1]q

)}
[2n]q

=
1

q(1 + q)

(
α + q − α(1 − q)[2n − 1]q

)
[2n]q,

and hence α = −q implies

[2n − 1]q[2n]q =
1 + q
1 − q

(1 − q2n−1)[n]q2

= (1 + q + q(1 + q)2[n − 1]q2 )[n]q2 . (4.1)

On the other hand, due to the definition of b†q and bq, we have, for x ∈H,




(b†q)2 x⊗2n = x⊗2(n+1), n ≥ 0,

(bq)2 x⊗2n = [2n]q [2n − 1]q x⊗2(n−1), n ≥ 1,

b†qbq x⊗2n = [2n]q x⊗2n, n ≥ 1.

(4.2)

Now let us state the following result, where Theorem 4.2 (1) is recalled from Ref. 20.

Theorem 4.2. The probability distribution µxq of the operator Xq(c3, c4) with respect to the vacuum state 〈Ω,·Ω〉q is given as
follows:

(1) If c3 > 0, then

µxq = µ(q2; c4, 1 + q, c3(1 + q), q(1 + q)2)

for q ∈ [0, 1).

(2) If c3 = 0, then µxq = Tc4ν−q,q2 for q ∈ (−1, 1).

Proof. It can be shown that the map Φ1 : {x⊗2n | x ∈ H, ‖x‖ = 1, n ≥ 0} → L2(mq) given by Φ1(x⊗2n) = Qn(t) is an isometry.
Moreover, due to equalities (4.1) and (4.2), we get
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Xqx⊗2n

= (b†q)2x⊗2n + (bq)2x⊗2n + c3b†qbqx⊗2n + c41x⊗2n

= x⊗2(n+1) + [2n]q[2n − 1]qx⊗2(n−1) + (c4 + c3[2n]q)x⊗2n

= x⊗2(n+1) + (1 + q + q(1 + q)2[n − 1]q2 )[n]q2 x⊗2(n−1) + (c4 + c3(1 + q)[n]q2 )x⊗2n.

Hence, one can get inductively Φ1(Xn
qΩ) = tn and

〈Ω,Xq
n
Ω〉α,q =

∫
tndµxq .

Since µxq has a compact support, it can be determined uniquely by the moment sequences. Hence our first claim (1) is derived. It
is easy to see our second claim (2). �

Step 2: For 0 ≤ q < 1, consider a scaled operator Yq of Xq,

Yq B
1

1 + q
Xq, (4.3)

and a weighted Poisson operator Y−q,q2 defined by

Y−q,q2 B
1

1 + q

{
B†
−q,q2 +

1 + q
1 − q

B−q,q2 + c1(1 + q)Nq2 + c21
}

. (4.4)

We remark here that if c1 = c3 = 0, the condition on q can be relaxed to q ∈ (−1, 1).
Since Y−q,q2 is not self-adjoint with respect to 〈·, ·〉−q,q2 due to the second term in RHS of (4.4), which is a counterpart of (bq)2

in (4.3), we need to modify (α, q)-creation and annihilation operators by adding a weight β > 0 as follows:
Let B†β,α,q(x) be the β-weighted (α, q)-creation defined as the (α, q)-creation operator, and B†α,q(x) and Bβ ,α ,q(x) be the β-

weighted (α, q)-annihilation operator given by

Bβ,α,q(x) B βBα,q(x), β > 0.

The above two β-weighted operators are adjoint each other with respect to the β-weighted (α, q)-inner product

〈x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ yn〉β,α,q B δm,nβ
n〈x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ yn〉α,q.

By setting β = 1+q
1−q , the operator Y−q,q2 can be expressed as

Y−q,q2 =
1

1 + q

{
B†
β,−q,q2 + Bβ,−q,q2 + c1(1 + q)Nq2 + c21

}
,

and hence Y−q,q2 is the self-adjoint operator with respect to the inner product 〈·, ·〉β,−q,q2 .
Then we can clarify the relationship between probability distributions of Yq and Y−q,q2 with respect to the vacuum state.

Theorem 4.3. Suppose c1 = c3 and c2 = c4. Then the probability law of Yq with respect to 〈Ω,·Ω〉q is equal to that of Y−q,q2 with

respect to 〈Ω, ·Ω〉β,−q,q2 with β = 1+q
1−q . In fact, the probability distribution ρY of these operators is given as follows:

(1) If c1 > 0, then ρY is

Daµxq = µ

(
q2;

c2

1 + q
,

1
1 + q

, c1, q
)
, a =

1
1 + q

,

for q ∈ [0, 1).
(2) If c1 = 0, then ρY is Daµxq = DaTc2ν−q,q2 for q ∈ (−1, 1).

Proof. We shall follow the same procedure as in the Proof of Theorem 4.2.
The map Φ2 : {y⊗n | y ∈H, ‖y‖ = 1, n ≥ 0} → L2(mq) given by Φ2(y⊗n) = Qn(t) is an isometry and

Y−q,q2 y⊗n

=
1

1 + q

{
B†
−q,q2 y⊗n +

1 + q
1 − q

B−q,q2 y⊗n + c1(1 + q)Nq2 y⊗n + c21y⊗n
}

=
1

1 + q

{
y⊗(n+1) +

1 + q
1 − q

(1 − qq2(n−1))[n]q2 y⊗(n−1) + (c2 + c1(1 + q)[n]q2 )y⊗n
}

=
1

1 + q

{
y⊗(n+1) + [2n]q[2n − 1]qy⊗(n−1) + (c2 + c1[2n]q)y⊗n

}
.
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Hence, one can get inductively Φ2(Yn
−q,q2Ω) = tn and

〈Ω,Yn
−q,q2Ω〉α,q =

∫
tnd(Daµxq ), a =

1
1 + q

,

with the help of (4.1). Since Daµxq has a compact support, it can be determined uniquely by the moment sequences.
On the other hand, by Theorem 4.2, the probability distribution of Yq is equal to Daµxq . Therefore, we have obtained our

claim. �

Remark 4.4. In Theorems 4.2 and 4.3, the classification parameters θ and τ under c1 = c3 for the q-Meixner class are given by




θ = c1
√

1 + q,

τ = q(1 + q) ≥ 0,

D = (1 + q)(c2
1 − 4q).

(4.5)

Note that the condition τ ≥ 0 in (4.5) implies 0 ≤ q < 1.

(I) If q = 0 (τ = 0) and
(1) c1 = c3 = 0 (θ = 0), then µx0 = Tc2ν0,0 and Daµx0 = DaTc2ν0,0 are the free Gaussian. Of course, this is a special case of να ,q

discussed in Ref. 7
(2) c1 = c3 , 0 (θ , 0), then µx0 and Daµx0 are the free Poisson.

(II) If 0 < q < 1 (τ > 0) and
(3) c1 = c3 > 2

√
q (D > 0), then µxq and Daµxq are the q2-Pascal.

(4) c1 = c3 = 2
√

q (D = 0), then µxq and Daµxq are the q2-Gamma.
(5) 0 , c1 = c3 < 2

√
q (D < 0), then µxq and Daµxq are the q2-Meixner.

We have shown by introducing the (α, q2)-Poisson and the q-Meixner operators that non-symmetric probability distribu-
tions such as (2)–(5) can be treated within the framework of the Fock space of type B. In Ref. 7, non-symmetric cases are not
treated.

As a final remark, we shall quickly mention about the q2-Gaussian and q2-Poisson distributions. Due to the classifica-
tion in Remark 4.4, neither Xq nor Y−q,q2 produces the q2-Gaussian and q2-Poisson laws. On the other hand, the Yq ,q-operator
given by

Yq,q B aPq,q, a =
1

1 + q
,

has these probability laws for q ∈ (−1, 1). It is the self-adjoint operator with respect to the inner product 〈·, ·〉1+q,0,q2 . It is easy to see
that if c1 = 0, then Yq ,q = a(Gq ,q + c21). Hence we have the following proposition:

Proposition 4.5. For q ∈ (−1, 1), the probability law of Yq,q with respect to 〈Ω, ·Ω〉1+q,0,q2 is as follows:

(1) c1 = 0⇒ the q2-Gaussian, DaTc2ν0,q2 .

(2) c1 > 0⇒ the q2-Poisson, µ
(
q2;

c2

1 + q
,

1
1 + q

, c1, 0
)
.

Note added in proof: We would like to thank an anonymous referee(s) informing us a relevant paper Ref. 13, where the Poisson
distribution of type B is different from ours in this paper.
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