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All rings in this paper are assumed to be commutative with identity.

Let R be a Noetherian integral domain and R [X] a polynomial ring. Let a be an element of an algebraic

field extension L of the quotient fieldK of R and let n: R[X] -≫R[a] be the i?-algebra homomorphism

sending X to a. Let <f>a(X) be the monic minimal polynomial of a over K with deg <j>a(X) = d and

write

4JX) = Xd+VlXd-l+ ･ ■･ +Vd.

Let IM: = n?=1(R:RVi)- For f(X) &K[X], let cif(X)) denote the i?-submodule generated by the

coefficients of f(X). Let JM:= I
Mci<f>a

(-X")),which is an ideal of R and contains IM. The element a is

called an anti-integral element of degree <fover R if Ker ?r = I
[,]</>,

(X)R[X~＼. When a is an anti-integral

element of degree d over R, R[a] is called an anti-integral extension of R (cf. [1, Introduction]). The

element a is called a super-primitive element of degree rfover R if /[<r]cf /> for any prime />of depth one.

In case that a is an anti-integral element over R, it is known that A ― R[a] is R-f＼at if and only if

JM= R ([2, Proposition 2.6]).

In this paper, for a is not necessarily anti-integral over R, we shall extend the results obtained under the

condition that a is an anti-integral element over R.

We start with the following definition.

Definition. Let 0 -> Ker n -≫R[X] -≫R[a] -≫0 be an exact sequence. For an integer t ^ 0, we set

A(= {f{X) eKer w |deg/(X) = t). Let L(= {aei? |a = 0 or a is the leading coefficient off(X), where

f{X) runs over A*}, which is an ideal of R.

We shall give the following lemma.

Lemma 1. Let d = ＼_Kia):K]. 77zew the following statements hold,

il) If t < d, then At= (0) and Lt= (0).

(2) If t = d, then Lt= Iuy

(3) If t ^ d, then LtQ Lt+1.

Proof. Since Kia) is an extension field of K with d = [Kia): K], it follows that

ad+7Jlad-l+ ･ ･ ･ +Vd= 0,

where rji^K. Clearly, (1) holds. From the definition of I[a], (2) is trivial. Let fiX) e Af. Then

XfiX) e At+1. Hence Lt c L(+1.

The following proposition is useful in the sequel.

Proposition 2. Asswme #Mtf t ^ d. Then Lt= Lt+i= ･ ･ ･ =Ln― ･ ･ -if and only if Ker n is generated

by polynomials of degree t at most.
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Proof. (=>) Let Ker n => f{X) and let a be the leading coefficient of f{X). Put n = deg f{X).

Suppose that n ^ t + 1. Since a e LB= L(, there exists a polynomial #(.X") e A≪such that a is the leading

coefficientof g(X). Since/(X) -X-'g(X) eKer x aaddeg(f(X)-Xn-*g(X)) < n, we have that/(X)

is of degree t at most.

(<=) Let /(X) e Ker ?r and a be the leading coefficient of f(X). Then

/(X) = 2,UgAX)hi(X), where deg £,(X) ^ f, gAX) e Ker jr. We may assume that deg {gt{X)h,

(X)) =degf{X) (l^i^m) anddeg (gi(X)hi{X))<deg/(X) (m + l^i^s). Let bt and ctbe the leading

coefficientsof gt(X) and ht(X), respectively. Then

a = 1,mi=ibiCie Lt. Hence Ln c L(, where w = deg/(Z).

Remark 1. (1) a is an anti-integral element of degree d over R if and only if Ld= Ld+1 = ･ ･ ･ .

In fact, a is anti-integral if and only if Ker n is generated by some polynomials of degree d.

(2) If a is integral over R, then there exists an integer t (^d) such that Lt= R.

Indeed, a has a monic relation over R of degree t. Then lei, and soL,= R.

The converse of this statement is true. Hence the non-integral locus is given by V {Lt), where V (Lt) =

{p e Spec(i?) ＼p 3 Lt).

Definition. Assume that Lt― Lt+i= ･ ･ ･ = Ln= ･ ･ ･. Then we denote the ideal generated by allcoefficients

of each polynomial in A( by Lla].

Proposition 3. Assume that t ^d and Lt = Lt+l= ･ ･ ･ = Ln― ･ ･ ･ . Let p e Spec R and A ― R[a~＼.

Then p 3 L[a]if and only if A/pA = (R/p) [T], where T is an indeterminate over R/p, thatis, Spec A is

a blowing-up at p.

Proof. (=*) From Proposition 2, Ker n is generated by polynomials of degree t at most. The coefficients

of their polynomials are contained in LM. Since LM c p, we have that Ker n c pR[X]. Therefore

A/pA = R[X]/pR[X] = (R/p)[T].

(<=) Since Ker n c pR[X], c(Ker x) = LM. Thus LM c p.

In Spec A -≫Spec i?, the blowing-up locus is given by V(LM).

Remark 2. Assume that a is an anti-integral element of degree d over R. Then the following statements

hold.

In fact,since Ker ;r= IM4>a {X)R[X], A(= IM(f>a (X) ･(polynomials of degree t-d). Hence Lt= IM and

soLM=IMc(*m{X)) =JM.

(2) A = Rta] is ie-flat if and only if JM= R ([2, Proposition 2.6]).

In general, (2) is not necessarily true.

Example. Let R be the integral closure of R in K. Assume that R § R. Take a e R ― R. Since a is

integral over R, we have that LM= R. But suppose that R[a] is i?-flat. Then R[a] is integral over 7?. Thus

R = R[a], a contradiction. Hence R[a] is not i?-flat. This example has property that LM― R but R[a]

is not R -flat.

Proposition 4. Let p e Spec R. If p P JM, then Ap is Rp-flat.

Proof. We may assume that (R, p) is a local ring. Then JM― R. So a is a super-primitive element of

degree d over R and so a is an anti-integral element of degree d over R ([2, Theorem 1.12]). From [2,

Proposition 2.6], R[a] is R-tlat.

Is the converse of thisstatement true ?
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Theorem 5. If R[a] is R-flat and integral over R, then I
M=

R. Hence R[a] is a free R-module of rank d.

Proof. Since a is an integral element over R, we have that R[a] is a finiteR-module. Since R[a] is a

flati?-module, R[a] is a locally free R-module of rank d. Thus RP[a] is a Rp-free module of rank d for

p e Spec R. We may assume that (R, m) is a local ring. Put A ― R[a] and A/mA ― {Rim) [a]. Since

A is a free i?-module of rank d, A/mA is a (/-dimensional vector space over R/m. Hence a has a monic

relation over R/m with degree d. Therefore

A = (R + Ra+ ･ ■■+Rad-1)+mA.

By Nakayama's lemma, A ― R + Ra+ ･ ･ ･ +Rad~1. This implies that ad― ao+ aia+ ･ ･ ･ +ad-iad~1 for

some at e R (O^/^rf-l). Therefore / w = R. And so/w= R.

Remark 3. If R＼_a] is integral over R, the non-flat locus is given by V(IM).

On a general extension A = R[a] of R, the following assertions hold. Assume that Lt= Lt+1= ･ ･ ･ =

Ln= ■･ ･ ..

(1) The non-integral locus of A over R is given by V (Lt).

(2) For Spec A -≫Spec i?, the blowing-up locus is given by V(LM).

(3) Suppose that A is integral over R. If Lt= R, the non-flat locus A over i? is given by V(IM). If A

is not integral over R, the non-flat locus does not know, but in case p t> J
[ai

we have that Ap/Rp is flat.
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