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1. Tritone: a key concept of tonality

It is said that tonality is a collection of schematic expectancies in musical experiences, based on European
culture (e.g. [8]). However, the tonal system continuously developed over the years has quite good properties
from a combinatorial point of view. Indeed, we have seen that the maximal evenness ansatz explains
combinatorial aspects of the general diatonic system, or goes together with tonality at least ([3][4][5][6][7]).
In this paper, we give a combinatorial characterization of tritones in the general diatonic system in terms of
the rigidity of chords[7], and we find tritones are key objects. We find that our combinatorial definition of
tritones (Definition 3.4) induces the Leittonwechsel (=leading tone exchange) property and the leading tone
property (Proposition 4.1), the combinatorial definition of leading tones (Definition 4.2), the specificity of
the usual 12TET-7 notes diatonic system and the existence of the double tritone (Subsection 4.2), the tritone
substitution in the general diatonic system and a combinatorial reason for the perfect cadence (Subsection
4.3).

2. Combinatorial description of the general diatonic system

All notations and definitions are inherited from [7], so we omit details. For a tuple A = (a;), |A| denotes
the set {a;} consists of entries of A. If a tuple B = (b;) satisfies | B| C |A| and that the inclusion ¢ : |B| — |A|
is increasing on indexes, that is, for b;,b; € B with ¢ < j, ¢’ < j" holds for a;y = «(b;) and a;r = ¢(b;), we call
B is compatible with A and write B C A.

Definition 2.1 (J-function by Clough and Douthett[1]). For ¢,d,m € Z with ¢ > d > 0, the J-function on
Z is defined as

ck+m
mwm = |5
where |z denotes the largest integer less than or equal to . We note J'y as the tuple (J(k))r=0,...d—1
and |J.7| as the set {t € J}} of entries of J.

Definition 2.2 (Chromatic scale and note). A chromatic scale Ch, is a tuple (fo, f1,-.., fe—1) of frequencies
fo< fi <.+ < fe_q satisfying f._1 < 2f9. A semitone encoding 6 associated with the chromatic scale Ch,
is a map |Che| > fx — k € Z. An extension Ch, of Ch, is given by Ch. = (2" f0,2" f1,...,2" fo_1)nez, and
the semitone encoding 6 is also extended to a bijection 6 : [Che| 3 2" f; + cn + k € Z. We call an element
of Ch,. a note.

Since tones with basic frequencies f and 2"f,n € Z have a ‘similar’ quality for human ears, these
tones are called octave equivalent to each other in music theory. This psychoacoustic fact is represented as
0(f) = 0(2"f) (mod c). Therefore we often identify Ch, with Z/cZ and Ch, with its covering space Z.
We also identify a tuple X = (z1,...,2,) C Ch. (or Ch. ) with its image 6(X) = (0(z1),...,0(zy)), like
X = (0(x1),...,0(xy)) for short.

Definition 2.3 (Scale and diatonic scale). Given a chromatic scale Che, a scaleis a tuple S = (tg,t1,...,tq-1)
compatible with Ch.. Thus entries of S are arranged in ascending order 6(ty) < 0(t1) < -+ < 0(t4—1) with
0(ta—1) — 0(to) < c. We call S a diatonic scale whenever 0(S) = J (mod c) for some m € Z (written as

S = J" for short). For a natural number h, h - S stands for an extension of .S,

he8=(2",..., 2" a 1)n=o,..h 1.
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S denotes an infinite extension of S, S = (2", ...,2"4-1)nez. The wholetone encoding ns of S is a map
|S| 3 2™ty s dn + k € Z. For a scale S and a note t € S, upper note ug(t) and lower note lg(t) of t are
given as notes in S such that ns(us(t)) = ns(t) + 1 and ns(ls(t)) = ns(t) — 1.

Whenever S is a diatonic scale J", it is well known as Myhill’s property that

2. Ous(t)) = 00),00) — 0is(0) € {s5+ 1}, 5= 5]

holds for any t € S (see e.g. [4][5]). Thus the intervals of length s and s+ 1 correspond to the semitone and
the whole tone respectively in usual music theory.

We see by definition that the relation between the semitone encoding € and the whole tone encoding 7 is
given by

(2.2) {WJ = 6(t)

for any t € J)", C Che.

Definition 2.4 (Chord and maximally even chord). A chord X belongs to a scale S is a tuple of notes
X = (xg,...,Te—1) compatible with h - S for some h. We call oct(X) = min{h | X C h-S} the octave range
of X. If 6(xp) # 0(z4) (mod c) holds for any entries z;,, and x4 of X, we call X prime. We call X mazimally
even whenever ng(X) = Jj', (mod d) for some n € Z. We call X dyad whenever #|X| = 2.

Example 2.5. Usual western music is established on 12-tone chromatic scale,
Chyy = (C,C*,D,D¥ E,F,F* G,G¥, A, A* B), A=440Hz, A" = 466.16Hz, .. ..
We adopt the semitone encoding 6 : |Chis| — Z/127Z,
0(C)=0,0(C*)=1,0(D)=2,...,6(B) =11.
Usual diatonic scales are given by Jj5,,m = 0,...,11. For instance, C-major scale C = CDEFGAB is
expressed as a tuple (0,2,4,5,7,9,11) = (J37(k))r=0,..6 = Jia7- For C-major scale Ji 7, we adopt a
wholetone encoding n¢ as
nc(C) = 0,nc(D) = 1nc(E) = 2,mc(F) = 3,n0(G) = 4,1¢(A) = 5,1¢(B) = 6.
For usual chromatic Chya, we put the set Aja7 of the extended diatonic scales, Ajp7 = {T% | m =
0,...,11}.

3. Combinatorics on tritones

Definition 3.1 (Rigidity of chord). Given a chromatic scale Ch. and a set S of extended scales in Che.
For a chord X in some S € S, putting Cs(X) = {S € S | X C S}, we define the rigidity Rs(X) of X as the
number of scales with which X is compatible,

Rs(X) =#{S eS| XC S} =#Cs(X).

Hereafter, for a chromatic scale Ch., we take d € N prime to ¢ and d < ¢. Then we fix a unique solution
(¢c,d™) of
cce +dd =1
with 0 < d~ < cand —d < ¢~ < 0. We consider a set of diatonic scales A.g = {J; | m =0,...,c—1}
compatible with a chromatic scale Ch.. An interval [a,a + d) with 0 < a < ¢ in Z/cZ is understood cyclic
way as
{a,a+1,...;a+d—1}, ifa+d<c,

Ja+d) =
la,a+d) {{a,a—i—l,...,c—1}U{O,1,...,a+d—c—1}, ifa+d>c
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To observe the rigidity of chords, we firstly determine the rigidity of a note t € Ch,.

Proposition 3.2. For any note t € Ch., we have
Cn.a(t) ={T4 Im e 1(t) = [a(t),at) +d) C Z/cZ}
with a(t) = 0(t)d (mod ¢) and 0 < «a(t) < c. Hence the rigidity RAc’d(t) of any note t is d.
Proof. t € J"; holds if and only if there exists integer k € [0, d) such that
0(t)d < ck+m < (6(t) + 1)d.
Taking the unique solution [ € [0,d) and «(t) € [0, ¢) of ¢l + a(t) = 0(t)d, we have
a(t) <clk—=1)+m < at)+d.

If a(t) +d < ¢, we see k = [ hence a(t) < m < a(t) +d. If a(t) +d > ¢, as m € [0,¢), we divide the
inequality into two cases: k =1 hence a(t) <m < ¢, and k =1+ 1 hence 0 <m < a(t) +d —c.

Therefore the compatible scales Ca_ ,(t) of a note t € Ch, corresponds to the interval I(t) = [a(t), a(t) +
d) C Z/cZ. This fact is quite useful for analysis of rigidity, indeed, the following is a direct consequent.

Proposition 3.3. For any chord X = (t1,...,t.) C Che,

Ca,.(X) = { ed | ME ﬁ[(t) C Z/CZ}.
i=1

Definition 3.4 (tritone). A dyad T), C J7 is called a tritone whenever T}, 7 ,,707’?1.

In [7] , we have mentioned the tritone as the dyad of minimum rigidity, hence it characterizes the scale
that belongs to. However, essential quality of a tritone is the unstability among the related keys of the scale
to which the tritone belongs.

Theorem 3.5. Fach diatonic scale jg}i contains a unique tritone T, = (t1,t2) T C’;‘i, which satisfies
(3.1) O(ta) —0(t1)=d” —1orc—d +1,

in the semitone encoding and

(3.2) njcv:wd(tg) - njcv:wd(h) =—c ord+c

in the whole tone encoding. The tritone has minimum rigidity among dyads in JC%

(3.3) Ra, (Ty) = min{Ra_,(X) | X = (21,72) C J.q} = max{2d — ¢, 1}.

Proof. Since multiplying d induces a bijection Z/cZ > z — xd € Z/cZ, we see
{a(t)=6(t)d (modc)|teCh}={0,1,...,c—1}.

Then for each diatonic scale J.", there exists a unique note t,, € [T\ |7, C"Zl_1|. We also see

{a(t)+d—-1 (modc)|te Ch}=1{0,1,...,c—1},
hence there exists a unique note t;;, € | Tl \ | jgrcLlH" Putting

(th), 05 < (),
T @t i Ot < 6(t),
we see Tj, is a unique tritone compatible with J.'; by construction. Taking the whole tone encoding of t
ki = ngm (tE) € [0,d), we have

{’“ijmj — 0t
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by (2.2). By the definition of ¢, m is the left hand side of I(¢,,), m = a(t;,), and then

ck, +m ck,, +m
0(t,) =|—= ==
hence
(3.4) ck,, +m =0(t,,)d.
We also see by the definition of ¢, m is the right hand side of I(¢;), that is,
~Jalth) +d-1, whenever a(t}) +d—1 < c,
Cle(tt)+d—1—¢, whenever a(th)+d—1>c¢,
then . .
k 1 k 1
o)1= |Dm AL tm Al
d d
hence
(3.5) cki +m+1=(0(t)) +1)d.

Consequently we have
(3.6) Ot —0(t,))d=1—d (mod c), i.e. O(t})—0(t,)=d —1 (mod c),
and as 0(t%) € [0, c), we have (3.1). It also comes from (3.4) and (3.5) that
k., =-cm (modd) and kI =-—c (m+1) (mod d),
hence
kf —k =-—c (mod d).
As ki € [0,d), we have (3.2).
For any dyad X = (21, 22) T Jy, its rigidity is given by
Ra, (X) = # ([a(21), a(z1) + d) N [a(x2), a(r2) +d)) ,

where these intervals are taken as subsets of Z/cZ. Without loss of generality, we can assume 0 < a(x1) <

a(x2) < c. Thus we just consider
Ra,,(X) = #((0,d) N[, + d)),
where o = a(z2) — a(z1). We note Ra,_, > 1 since X T J, thus at least we have
O<a<dor0<a+d—-1-c<d.
When 0 < o < d only occurs, we see a + d < ¢ and
Ra, (X)) =#([0,d)N[a,a+d)) =#{a,a+1,....,d -1} =d—a>2d—c
When 0 < a+d—1—c < donly occurs, we see a > d and
Ra, (X)) =#([0,d) N[a,a+d)) =#{0,1,...,.a+d-1-c}=a+d—-c>2d—c.
Ifboth0<a<dand 0 <a+d—1—c<doccur,weneed 0 < a+d—1—c<2d—1—c¢, that is, 2d—c > 2.
In this case, we see
Ra,,(X) = #(00.d) " o0 + d)
=#{o,a+1,...,d—1}U{0,1,....,.a+d—-1—c})=2d —c.
Therefore we have
min{RAcvd(X) | X = (21,29) C jg&} = max{2d — ¢, 1}.
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Again consider the tritone T}, T J.7. By (3.6) we have a(t,,) — a(th)=d—1 (mod c¢), so we may assume
a(ty)=d—1and a(t})=0. As0 < a(t,)=d—1<d, if a(t;,)+d=2d — 1 < ¢, we have

R, u(Tw) = #(0,d) N [d— 1,20~ 1) = #{d— 1} =1 > 2% — .
Ho<alt,)+d—1—c=2d—2-c<d,ie.,2d—c> 2, we have
R, o(To) = #(10,4) 01 ([d = 1,0) U[0,2d — 1 - 0)))
= #{0,1,...,2d—2—c,d—1} =2d — ¢ > 1.

c,d

Hence R, ,(Tm) = max{2d — ¢, 1}.

Tables 1, 2 and 3 show the relation between diatonic scales and tritones. When ¢ = 13 and d = 7 (Table 1),
the diatonic scale ‘713377 contains a unique tritone 73 = (6,7) with rigidity Ra,,,(73) = max{2d —¢,1} =1,
in other terms, no other diatonic scale contains T3. Thus T3 uniquely determines the scale j133’7.

When ¢ = 11 and d = 7 (Table 3), the diatonic scale Jf, ; contains a unique tritone T3 = (2,5) with
rigidity Ra,, ,(73) = max{2d — ¢,1} = 3, so T3 is not rare: we see T3 C .7181777 j191’7. Even so, no diatonic
scale contains T3 as a tritone except J7| ;. Jfj 7 and J}) ; contain unique tritones Ty = (5,9) and Ty = (2,6)
respectively.

Finally, when ¢ = 12 and d = 7 (Table 2), the diatonic scale J7, ,(= B’-major) contains a unique tritone
T3 = (3,9) = E’ A with rigidity Ra,, ,(75) = max{2d—c, 1} = 2, so Ty = E’ A is also contained in J} (= E-
major). Moreover it is noticeable that T3 is also the tritone in j19277, that is, |Ty| = |T5|. Therefore the

diatonic system with 2d — ¢ = 2 has a combinatorial special feature.

4. Tritone, leading tone and cadence: a combinatorial perspective

4.1. Tritone and leading tone. We have seen that a tritone T, consists of two notes ;, € ||\ |77
and € |77\ |71, By construction, we see there exist 0 < k~, k™ < d such that

Q(ﬁ,_n)d =ck™ +m and (H(t;;) + 1>d =ckt +m+ 1,
hence

(41) TN = rkzm_lJ

meaning that

(4.2) o(t+

m—1

=0(t;,) — L and J5 (KF) = {

) =0(t,) —1and O(t,, ) =0(t%) + L.

That is, changing ¢, — t:,rl_l and &, — ¢ 41 cause the modulation (=change of keys) J" — ._70”(;71 and
= JC”(;H respectively. (4.2) corresponds to one of transformations in Neo-Riemannian theory, called
Leittonwechsel (=leading tone exchange). Therefore we can expect that tﬁ; act as leading tones in our

combinatorial setting. Indeed, by (2.1) and (4.1), we have (u,, = ugm,; m = lgm, for short)
Ot (t,)) = Ot5) = Ja(k™ + 1) = JZ(k™) = | 2|
< S|+ =m0 1) = T R = () — O(t)
as JIy(k™ +1) = J(Tdfl(k_ +1), and
O(th—1) = -1ty 1)) = J0  (K7) = 0™ = 1)
< 5]+ 1=ty = gz = 1) = 006 — 00 (t)
as JIy(k™ —1) = J(Tdfl(k_ —1). Thus we have
O(um(ty)) = 0(tn,) < 0(t,) = 0(ln(ty,))-

I
—_—
Ul o
| I
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Considering the inequality, we can say that ¢, leads to u(t,,) according to usual music theory. Similarly, it
comes from
c

O(th) — O(lm(t) = JIy(k™) = Jy(k* = 1) = bJ

C m m
< {—J +1= Jc,d+1(k+) — JC,d+1(k+ —1) =0t} 1) = 0(ms1 () 11))

d
and
)~ ) = 2760+ 1)) |2
C m m
< S|+ 1= Jmt 1) = T) = 0un(£5)) — 0(E7)
that

0(ty,) = 0(m(t)) < O(um(t})) — 0(t).

Hence ¢}, leads to I(t}). We have shown the following.

Proposition 4.1. The tritone T,,, T J™ consists of two notes |T,,,| = {t,,,t5} such that

(1) (Leittonwechsel property)
Tl AT = Aty ta )}, and [T4) A TG = {th 0t}
where A A\ B stands for XOR of A and B. We also have adjacent relations
O(th 1) =0(t,,) —1 and 6(t,,,,) =0(t}) + 1.
(2) (Tone leading property)
0(tm(t,)) = 0(t) < 0(ty,) — 0 () and 0(t),) — Olm (L)) < Oum (L)) — (L),
where we put uy, = UJ(%,lm = ljg}i.

Of course, Psychoacoustic effects have brought the concept of the leading tone in usual music theory.
When a people is hearing a melody in C-major scale, for instance, in European classical music theory it is
said that the progressions from B to C' and F to E bring a feeling of resolution, however, from C' to B or F
to F' does not. Regarding this asymmetry and Proposition 4.1, we propose a purely combinatorial definition

of leading tones.

Definition 4.2. A note ¢ in a diatonic scale J is called a leading tone whenever ¢ is an entry of the tritone
Tn| = {tym, th} C | T, that is, t € T When t = t;,, we say ¢ leads to um,(t), or ¢ is a lower leading
tone to w,,(t). When ¢ = t;-, we say t leads to ,,,(t), or ¢ is an upper leading tone to I, (t) V).

Thus Proposition 4.1 shows that ¢,,, and ¢}, lead to up,(t,,,) and l,,,(¢;) respectively. Let us observe Table
1,2 and 3 again. The usual case ¢ = 12 and d = 7 (Table 2), A = 9 (resp. E” = 3) is the lower (resp. upper)
leading tone to B” = 10 (resp. D = 2) in B’-major scale .,’713277. In the case ¢ = 11 and d = 7 (Table 3), we
see 2 is the lower leading tone to 3, and 9 is the upper leading tone to 8 in the diatonic scale \7131’7. We also
find another adjacent semitone pair 5 and 6 € Jf’u, however neither is the leading tone according to our
definition, as they are contained in adjacent diatonic scales ‘7131%71. In the case ¢ = 13 and d = 7, the leading

tones are degenerate: we see 6 and 7, entries of the tritone 73 in j13377, are leading tones to each other.

DThe definition of an upper leading tone is unusual, because in usual music theory, a leading tone leads to the tonic, i.e.
the key note of the considering scale.
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4.2. Double tritone and diminished chord. We consider the case 2d — ¢ = 2, where the rigidity of a
tritone is 2, that is, a tritone is contained in two different diatonic scales. As a result, a tritone in a diatonic
scale also acts as a tritone in another scale, that is, any tritone has ‘twofold meaning’. As is seen above,
Table 2 shows the tritone 73 = E’A in Bb—major is also the tritone in E-major. However, the direction of
leading tones are exchanged. E” = 3 is the upper leading tone to D = 2 and A = 9 is the lower leading tone
to B = 10 in B’-major while D! = 3 is the lower leading tone to E = 4 and A = 9 is the upper leading

tone to Gf = 8 in E-major.

B*-major E-major

FIGURE 1. Double tritone E’A = D!A. Every tritone has the twofold meaning.

We also note the mathematical specificity of the case as follows.
d+1
5

Proof. ¢ = 2(d — 1) means c is even, thus d is odd. Then we can put d = 2 4+ 1 and ¢ = 4l for some [ € N,
hence d?> = 41(I +1) +1=1 (mod ¢). We also see

Lemma 4.3. Let d be prime to c, then 2d—c = 2 brings d> = 1 (mod c¢), that is, d~ = d, and ¢~ =

c (—d;1> =-2020+2)=—(d—1)(d+1)=1 (mod d)

d+1
and —d < —% < 0, hence the assertion.
In our setting 2d — ¢ = 2, the semitone interval s becomes s = |¢/d]| = 1, that is, the interval of two

adjacent notes in Ch, coincides with the semitone, as usual musical theory.

Theorem 4.4. Consider the case 2d—c = 2. Then the tritone in J" coincides with the tritone in J:Zl+d_1,'

Ty = |Tonga—1|. Their entries satisfy

+ - - 4+ :
by = tpyqoq and t, =1t . | up to ocatve equivalence.

The tritone T,, divides the chromatic scale Ch, into two equal parts. Moreover, as a dyad, Ty, is a maximally

even chord in J.

Proof. Noticing d —1=1—d (mod ¢), we see by (3.4) and (3.5),
O, g )d=m+d-—1=m+1-d= 0(t})d (mod c)

and

Otf g )d=m+d—1+(1—-d)=m=0(t,)d (mod c),

equivalently 0(t, ., ;) =0(t%) and 0t}
Suppose O, (t,,) < O (t) and thus n,(¢,,) < nm (). By Theorem 3.5 and Lemma 4.3,

) = 6(t,,) (mod c), hence the assertion.

9(t$)—9(t;)=d‘—1:d_1:§,

We also have
d—1

1
M () = nm(ty,) = —¢~ = ——, hence (nn(t;,) +d) — nm(th) = —5
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showing that T, satisfies the Myhill’s property (2.1) for s = |¢/d| = 1. Thus T}, is a maximally even chord

: m
m c,d:

It is well known that a diminished chord, like BDFA®, consists of two different tritones, like BF and
DA, and divides the chromatic scale Chys into four equal parts, BD, DF, F A®, A°B. These are true in our

general situation.

Corollary 4.5 (diminished chord). Let X = (to,t1,t2,t3) C Che be a chord with 0(ty,) = zk +n (mod c)
for some integer 0 < n < 2 Then (tg,t2) (resp. (t1,t3)) is a tritone compatible with Jm and jCTVLLi+d—1

resp. J™ and Jmtd—l , where m = nd (mod ¢) and m' = ¢ +n)d (mod c).
c,d c,d 4

Proof. As is seen in the proof of Lemma 4.3, we can put ¢ = 4l and d = 2] + 1 for some [ € Z, and then
O(ta)—0(tg) =20 =d—1=d~ —1By (3.1),(3.4) and Theorem 4.4, we see that (to, t2) is a tritone compatible
with 77 and J%‘Ld*l, where m = 6(ty)d (mod ¢). The proof for (¢1,¢3) is the same.

Cy

4.3. Tritone substitution and perfect cadence: a combinatorial reason. In usual music theory,
leading tones are supposed to bring progressions of chords. In C-major scale for instance, since B leads to C'
and F leads to E, so the perfect cadence such as G7 = (GBDF') — C = (CEG) gives a feeling of resolution.
In terms of the functional harmony theory, this progression is described as V7 to I, where the root G of
the chord G7 moves to the root C' of the chord C, which is the origin of what we call the descending 5th
progression. However as is seen above, since the tritone BF is also compatible with F¥-major scale, we can
borrow the V7 chord in Ff-major, C*7 = (C*FG*B) instead of G7. Thus we obtain another progression
C*7 — C, so called the tritone substitution, where the motion C* — C' of their roots is more ‘smooth’ than

the original G — C.

[
N

FIGURE 2. The perfect cadence (left) and its tritone substitution (right).

From our combinatorial viewpoint, we may adopt such a smooth chromatic motion of roots as a principle
of chord progressions in tonal music. As is seen in Theorem 4.4, any tritone itself becomes a maximally
even chord in its compatible scales, so, we assume that we can take a maximally even chord containing the
given tritone (and this is true for the usual case ¢ = 12 and d = 7). Let V;,, = (v{,...,v]" ;) be a maximally
even chord of T C’Zi containing the tritone T}, C V;,. Without loss of generality, we assume v{® is the ‘root’
of V. Theorem 4.4 also suggests that there exists the maximally even chord V,,,+4—1 containing T},, which
coincides with (d — 1)-semitones translation of V,: 9(112"”71) = 0(v)") +d —1 (mod ¢). A chromatic
progression Vi, — Vy,—1 induces a semitone motion of roots: (vg') — O(vi" 1) =1 (mod ¢). Then applying
the tritone substitution to V;,, the resultant progression V;,+4-1 — Vin—1 induces descending d-semitones

motion of roots:

Our ) — 0 = 0 +d —1—0( ") =d  (mod c).



Combinatorics on Tritones in the General Diatonic System

Figure 3 illustrates our combinatorial approach to the descending 5th motion. We first take the dominant

7th (omit 5th) GBF in C-major scale. Then we progress the chord chromatic way, hence their root moves
smoothly, like G — F¥ — F — E — --.. After that, we apply the tritone substitution to F*7, E7,..., then
the roots moves in Hth-descending way.

Summing up, we at first consider the chromatic progression which brings a smooth motion of roots, and

apply the tritone substitution to any chords in the progression as necessary, then we obtain the descending

d-semitones progression. Therefore at least from our combinatorial viewpoint, there is no priority to the

perfect cadence.

(1]
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3]
(4]
(5]

[ | ! | |
174 (W Z) D77 - Th I —1 il |
A b5 | 12 e | I i |
{ for N a2 I DIz 1 bel —& i |
& i I i 1 a4 I~z 2 i |

J ! [
|
- H - Tt 1] i i |
0 714 — = p = I I i |
Z | | | | | || | = — L —— ) 1 |
| | ] | | | | 1 |
T T | |

[ | | | ]
"4 (2 1122 = Th u| 1 i |
\ blo | 1.2 |Ld = 1 4 | = Z, 1 |
[ Fan = Ve |7 V1 7] | ba | 1 |
ANIY | | | | v & 1 |

eJ ! [
e L be bo |

‘)- 7 | — Y | 1 — V7 1T | 1 |

. | | | | 1V 7] 1| b
71 t 1 i T I e Eﬂ

I I - t =

4th up=5th down 5th down 4th up=5th down 5th down 4th up=5th down 5th down

FIGURE 3. A combinatorial example for the descending 5th sequence (5th = 7-semitones).
At first, we take a chromatic sequence of the dominant 7th chords (A). Then we apply tritone
substitutions. As a result, we obtain the descending 5th sequence (B).
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4l7 7 77]8 8 8 8 & 8 8 9 9
519 9 9]9|9 10 10 10 10 10 10 10 11
611 11 111111 11 12 12 12 12 12 12 12

TABLE 1. The case ¢ = 13 and d = 7. Diatonic scales J/% ; and a tritone T3 = (6,7) C J} 7
are shown. As 2d — ¢ = 1, the rigidity of T3 is 1.

m
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k3|5 5 5|55 5 6 6 6 6 6 6
ale 7 7|77 7 7 7 8 8 8 8

8 8 8 [;:] 9 9 9 9 9 [j:] 10 10

610 10 10/10]10 11 11 11 11 11 11 11

TABLE 2. The case ¢ = 12 and d = 7. Diatonic scales Jy3 7 and a tritone T3 = (3,9) C ._713277

are shown. As 2d — ¢ = 2, the rigidity of T3 is 2. In terms of usual music theory, B’-major
scale has a tritone E°A, and the tritone also contained in E-major scale ‘719277. Note that

FE’A is also tritone in E-major scale.
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TABLE 3. The case ¢ = 11 and d = 7. Diatonic scales ‘71”1177 and a tritone T3 = (2,9) C .,’713177
are shown. As 2d — ¢ = 3, the rigidity of T3 is 3. Indeed, T35 C ‘718177 and T3 C ‘7191’7, however,
contrast to the case 2d — ¢ = 2, T3 is not a tritone in these scales. We see Tz = (5,9) and
Ty = (2,6).



