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1. Tritone: a key concept of tonality

It is said that tonality is a collection of schematic expectancies in musical experiences, based on European

culture (e.g. [8]). However, the tonal system continuously developed over the years has quite good properties

from a combinatorial point of view. Indeed, we have seen that the maximal evenness ansatz explains

combinatorial aspects of the general diatonic system, or goes together with tonality at least ([3][4][5][6][7]).

In this paper, we give a combinatorial characterization of tritones in the general diatonic system in terms of

the rigidity of chords[7], and we find tritones are key objects. We find that our combinatorial definition of

tritones (Definition 3.4) induces the Leittonwechsel (=leading tone exchange) property and the leading tone

property (Proposition 4.1), the combinatorial definition of leading tones (Definition 4.2), the specificity of

the usual 12TET-7 notes diatonic system and the existence of the double tritone (Subsection 4.2), the tritone

substitution in the general diatonic system and a combinatorial reason for the perfect cadence (Subsection

4.3).

2. Combinatorial description of the general diatonic system

All notations and definitions are inherited from [7], so we omit details. For a tuple A = (ai), |A| denotes
the set {ai} consists of entries of A. If a tuple B = (bj) satisfies |B| ⊂ |A| and that the inclusion ι : |B| ↪→ |A|
is increasing on indexes, that is, for bi, bj ∈ B with i < j, i′ < j′ holds for ai′ = ι(bi) and aj′ = ι(bj), we call

B is compatible with A and write B � A.

Definition 2.1 (J-function by Clough and Douthett[1]). For c, d,m ∈ Z with c > d > 0, the J-function on

Z is defined as

Jm
c,d(k) =

⌊
ck +m

d

⌋
,

where �x� denotes the largest integer less than or equal to x. We note Jm
c,d as the tuple (Jm

c,d(k))k=0,...,d−1

and |Jm
c,d| as the set {t ∈ Jm

c,d} of entries of Jm
c,d.

Definition 2.2 (Chromatic scale and note). A chromatic scale Chc is a tuple (f0, f1, . . . , fc−1) of frequencies

f0 < f1 < · · · < fc−1 satisfying fc−1 < 2f0. A semitone encoding θ associated with the chromatic scale Chc

is a map |Chc| � fk �→ k ∈ Z. An extension Chc of Chc is given by Chc = (2nf0, 2
nf1, . . . , 2

nfc−1)n∈Z, and

the semitone encoding θ is also extended to a bijection θ : |Chc| � 2nfk �→ cn+ k ∈ Z. We call an element

of Chc a note.

Since tones with basic frequencies f and 2nf, n ∈ Z have a ‘similar’ quality for human ears, these

tones are called octave equivalent to each other in music theory. This psychoacoustic fact is represented as

θ(f) ≡ θ(2nf) (mod c). Therefore we often identify Chc with Z/cZ and Chc with its covering space Z.

We also identify a tuple X = (x1, . . . , xn) � Chc ( or Chc ) with its image θ(X) = (θ(x1), . . . , θ(xn)), like

X = (θ(x1), . . . , θ(xn)) for short.

Definition 2.3 (Scale and diatonic scale). Given a chromatic scale Chc, a scale is a tuple S = (t0, t1, . . . , td−1)

compatible with Chc. Thus entries of S are arranged in ascending order θ(t0) < θ(t1) < · · · < θ(td−1) with

θ(td−1) − θ(t0) < c. We call S a diatonic scale whenever θ(S) ≡ Jm
c,d (mod c) for some m ∈ Z (written as

S = Jm
c,d for short). For a natural number h, h · S stands for an extension of S,

h · S = (2nt0, . . . , 2
ntd−1)n=0,...,h−1.

1
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S denotes an infinite extension of S, S = (2nt0, . . . , 2
ntd−1)n∈Z. The wholetone encoding ηS of S is a map

|S| � 2ntk �→ dn + k ∈ Z. For a scale S and a note t ∈ S, upper note uS(t) and lower note lS(t) of t are

given as notes in S such that ηS(uS(t)) = ηS(t) + 1 and ηS(lS(t)) = ηS(t)− 1.

Whenever S is a diatonic scale Jm
c,d, it is well known as Myhill’s property that

(2.1) θ(uS(t))− θ(t), θ(t)− θ(lS(t)) ∈ {s, s+ 1} , s =
� c
d

�

holds for any t ∈ S (see e.g. [4][5]). Thus the intervals of length s and s+1 correspond to the semitone and

the whole tone respectively in usual music theory.

We see by definition that the relation between the semitone encoding θ and the whole tone encoding η is

given by

(2.2)

�
cηJm

c,d
(t) +m

d

�
= θ(t)

for any t ∈ Jm
c,d � Chc.

Definition 2.4 (Chord and maximally even chord). A chord X belongs to a scale S is a tuple of notes

X = (x0, . . . , xe−1) compatible with h ·S for some h. We call oct(X) = min{h | X � h ·S} the octave range

of X. If θ(xp) �≡ θ(xq) (mod c) holds for any entries xp and xq of X, we call X prime. We call X maximally

even whenever ηS(X) ≡ J n
d,e (mod d) for some n ∈ Z. We call X dyad whenever #|X| = 2.

Example 2.5. Usual western music is established on 12-tone chromatic scale,

Ch12 = (C,C#, D,D#, E, F, F#, G,G#, A,A#, B), A = 440Hz, A# = 466.16Hz, . . . .

We adopt the semitone encoding θ : |Ch12| → Z/12Z,

θ(C) = 0, θ(C#) = 1, θ(D) = 2, . . . , θ(B) = 11.

Usual diatonic scales are given by Jm
12,7,m = 0, . . . , 11. For instance, C-major scale C = CDEFGAB is

expressed as a tuple (0, 2, 4, 5, 7, 9, 11) = (J5
12,7(k))k=0,...,6 = J 5

12,7. For C-major scale J 5
12,7, we adopt a

wholetone encoding ηC as

ηC(C) = 0, ηC(D) = 1, ηC(E) = 2, ηC(F ) = 3, ηC(G) = 4, ηC(A) = 5, ηC(B) = 6.

For usual chromatic Ch12, we put the set ∆12,7 of the extended diatonic scales, ∆12,7 = {Jm
12,7 | m =

0, . . . , 11}.

3. Combinatorics on tritones

Definition 3.1 (Rigidity of chord). Given a chromatic scale Chc and a set S of extended scales in Chc.

For a chord X in some S ∈ S, putting CS(X) = {S ∈ S | X � S}, we define the rigidity RS(X) of X as the

number of scales with which X is compatible,

RS(X) = #{S ∈ S | X � S} = #CS(X).

Hereafter, for a chromatic scale Chc, we take d ∈ N prime to c and d < c. Then we fix a unique solution

(c−, d−) of

cc− + dd− = 1

with 0 < d− < c and −d < c− < 0. We consider a set of diatonic scales ∆c,d = {Jm
c,d | m = 0, . . . , c − 1}

compatible with a chromatic scale Chc. An interval [a, a+ d) with 0 ≤ a < c in Z/cZ is understood cyclic

way as

[a, a+ d) =

{
{a, a+ 1, . . . , a+ d− 1}, if a+ d ≤ c,

{a, a+ 1, . . . , c− 1} ∪ {0, 1, . . . , a+ d− c− 1}, if a+ d > c.

3.  Combinatorics on tritones
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To observe the rigidity of chords, we firstly determine the rigidity of a note t ∈ Chc.

Proposition 3.2. For any note t ∈ Chc, we have

C∆c,d
(t) = {Jm

c,d | m ∈ I(t) = [α(t), α(t) + d) ⊂ Z/cZ}

with α(t) ≡ θ(t)d (mod c) and 0 ≤ α(t) < c. Hence the rigidity R∆c,d
(t) of any note t is d.

Proof. t ∈ Jm
c,d holds if and only if there exists integer k ∈ [0, d) such that

θ(t)d ≤ ck +m < (θ(t) + 1)d.

Taking the unique solution l ∈ [0, d) and α(t) ∈ [0, c) of cl + α(t) = θ(t)d, we have

α(t) ≤ c(k − l) +m < α(t) + d.

If α(t) + d ≤ c, we see k = l hence α(t) ≤ m < α(t) + d. If α(t) + d > c, as m ∈ [0, c), we divide the

inequality into two cases: k = l hence α(t) ≤ m < c, and k = l + 1 hence 0 ≤ m < α(t) + d− c. �

Therefore the compatible scales C∆c,d
(t) of a note t ∈ Chc corresponds to the interval I(t) = [α(t), α(t)+

d) ⊂ Z/cZ. This fact is quite useful for analysis of rigidity, indeed, the following is a direct consequent.

Proposition 3.3. For any chord X = (t1, . . . , te) � Chc,

C∆c,d
(X) =

{
Jm
c,d

����� m ∈
e∩

i=1

I(t) ⊂ Z/cZ

}
.

Definition 3.4 (tritone). A dyad Tm � Jm
c,d is called a tritone whenever Tm �� Jm±1

c,d .

In [7] , we have mentioned the tritone as the dyad of minimum rigidity, hence it characterizes the scale

that belongs to. However, essential quality of a tritone is the unstability among the related keys of the scale

to which the tritone belongs.

Theorem 3.5. Each diatonic scale Jm
c,d contains a unique tritone Tm = (t1, t2) � Jm

c,d, which satisfies

(3.1) θ(t2)− θ(t1) = d− − 1 or c− d− + 1,

in the semitone encoding and

(3.2) ηJm
c,d
(t2)− ηJm

c,d
(t1) = −c− or d+ c−

in the whole tone encoding. The tritone has minimum rigidity among dyads in Jm
c,d

(3.3) R∆c,d
(Tm) = min{R∆c,d

(X) | X = (x1, x2) � Jm
c,d} = max{2d− c, 1}.

Proof. Since multiplying d induces a bijection Z/cZ � x �→ xd ∈ Z/cZ, we see

{α(t) ≡ θ(t)d (mod c) | t ∈ Chc} = {0, 1, . . . , c− 1}.

Then for each diatonic scale Jm
c,d, there exists a unique note t−m ∈ |Jm

c,d| \ |J
m−1
c,d |. We also see

{α(t) + d− 1 (mod c) | t ∈ Chc} = {0, 1, . . . , c− 1},

hence there exists a unique note t+m ∈ |Jm
c,d| \ |J

m+1
c,d |. Putting

Tm =

{
(t−m, t+m), if θ(t−m) < θ(t+m),

(t+m, t−m), if θ(t+m) < θ(t−m),

we see Tm is a unique tritone compatible with Jm
c,d by construction. Taking the whole tone encoding of t±m,

k±m = ηJm
c,d
(t±m) ∈ [0, d), we have �

ck±m +m

d

�
= θ(t±m)
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by (2.2). By the definition of t−m, m is the left hand side of I(t−m), m = α(t−m), and then

θ(t−m) =

�
ck−m +m

d

�
=

ck−m +m

d
,

hence

(3.4) ck−m +m = θ(t−m)d.

We also see by the definition of t+m, m is the right hand side of I(t+m), that is,

m =

{
α(t+m) + d− 1, whenever α(t+m) + d− 1 < c,

α(t+m) + d− 1− c, whenever α(t+m) + d− 1 ≥ c,

then

θ(t+m) + 1 =

�
ck+m +m+ 1

d

�
=

ck+m +m+ 1

d
,

hence

(3.5) ck+m +m+ 1 = (θ(t+m) + 1)d.

Consequently we have

(3.6) (θ(t+m)− θ(t−m))d ≡ 1− d (mod c), i.e. θ(t+m)− θ(t−m) ≡ d− − 1 (mod c),

and as θ(t±m) ∈ [0, c), we have (3.1). It also comes from (3.4) and (3.5) that

k−m ≡ −c−m (mod d) and k+m ≡ −c−(m+ 1) (mod d),

hence

k+m − k−m ≡ −c− (mod d).

As k±m ∈ [0, d), we have (3.2).

For any dyad X = (x1, x2) � Jm
c,d, its rigidity is given by

R∆c,d
(X) = # ([α(x1), α(x1) + d) ∩ [α(x2), α(x2) + d)) ,

where these intervals are taken as subsets of Z/cZ. Without loss of generality, we can assume 0 ≤ α(x1) <

α(x2) < c. Thus we just consider

R∆c,d
(X) = # ([0, d) ∩ [α, α+ d)) ,

where α = α(x2)− α(x1). We note R∆c,d
≥ 1 since X � Jm

c,d, thus at least we have

0 < α < d or 0 ≤ α+ d− 1− c < d.

When 0 < α < d only occurs, we see α+ d ≤ c and

R∆c,d
(X) = # ([0, d) ∩ [α, α+ d)) = #{α, α+ 1, . . . , d− 1} = d− α ≥ 2d− c.

When 0 ≤ α+ d− 1− c < d only occurs, we see α ≥ d and

R∆c,d
(X) = # ([0, d) ∩ [α, α+ d)) = #{0, 1, . . . , α+ d− 1− c} = α+ d− c ≥ 2d− c.

If both 0 < α < d and 0 ≤ α+d−1− c < d occur, we need 0 ≤ α+d−1− c < 2d−1− c, that is, 2d− c ≥ 2.

In this case, we see

R∆c,d
(X) = # ([0, d) ∩ [α, α+ d))

= # ({α, α+ 1, . . . , d− 1} ∪ {0, 1, . . . , α+ d− 1− c}) = 2d− c.

Therefore we have

min{R∆c,d
(X) | X = (x1, x2) � Jm

c,d} = max{2d− c, 1}.
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Again consider the tritone Tm � Jm
c,d. By (3.6) we have α(t−m)− α(t+m) ≡ d− 1 (mod c), so we may assume

α(t−m) = d− 1 and α(t+m) = 0. As 0 < α(t−m) = d− 1 < d, if α(t−m) + d = 2d− 1 ≤ c, we have

R∆c,d
(Tm) = # ([0, d) ∩ [d− 1, 2d− 1)) = #{d− 1} = 1 ≥ 2d− c.

If 0 ≤ α(t−m) + d− 1− c = 2d− 2− c < d, i.e., 2d− c ≥ 2, we have

R∆c,d
(Tm) = # ([0, d) ∩ ([d− 1, c) ∪ [0, 2d− 1− c)))

= #{0, 1, . . . , 2d− 2− c, d− 1} = 2d− c > 1.

Hence R∆c,d
(Tm) = max{2d− c, 1}. �

Tables 1, 2 and 3 show the relation between diatonic scales and tritones. When c = 13 and d = 7 (Table 1),

the diatonic scale J 3
13,7 contains a unique tritone T3 = (6, 7) with rigidity R∆13,7(T3) = max{2d− c, 1} = 1,

in other terms, no other diatonic scale contains T3. Thus T3 uniquely determines the scale J 3
13,7.

When c = 11 and d = 7 (Table 3), the diatonic scale J 3
11,7 contains a unique tritone T3 = (2, 5) with

rigidity R∆11,7(T3) = max{2d − c, 1} = 3, so T3 is not rare: we see T3 � J 8
11,7,J 9

11,7. Even so, no diatonic

scale contains T3 as a tritone except J 3
11,7. J 8

11,7 and J 9
11,7 contain unique tritones T8 = (5, 9) and T9 = (2, 6)

respectively.

Finally, when c = 12 and d = 7 (Table 2), the diatonic scale J 3
12,7(= B�-major) contains a unique tritone

T3 = (3, 9) = E�A with rigidity R∆12,7(T3) = max{2d−c, 1} = 2, so T3 = E�A is also contained in J 9
12,7(= E-

major). Moreover it is noticeable that T3 is also the tritone in J 9
12,7, that is, |T9| = |T3|. Therefore the

diatonic system with 2d− c = 2 has a combinatorial special feature.

4. Tritone, leading tone and cadence: a combinatorial perspective

4.1. Tritone and leading tone. We have seen that a tritone Tm consists of two notes t−m ∈ |Jm
c,d| \ |J

m−1
c,d |

and t+m ∈ |Jm
c,d| \ |J

m+1
c,d |. By construction, we see there exist 0 ≤ k−, k+ < d such that

θ(t−m)d = ck− +m and (θ(t+m) + 1)d = ck+ +m+ 1,

hence

(4.1) Jm−1
c,d (k−) =

⌊
ck− +m− 1

d

⌋
= θ(t−m)− 1 and Jm+1

c,d (k+) =

⌊
ck+ +m+ 1

d

⌋
= θ(t+m) + 1,

meaning that

(4.2) θ(t+m−1) = θ(t−m)− 1 and θ(t−m+1) = θ(t+m) + 1.

That is, changing t−m → t+m−1 and t+m → t−m+1 cause the modulation (=change of keys) Jm
c,d → Jm−1

c,d and

Jm
c,d → Jm+1

c,d respectively. (4.2) corresponds to one of transformations in Neo-Riemannian theory, called

Leittonwechsel (=leading tone exchange). Therefore we can expect that t±m act as leading tones in our

combinatorial setting. Indeed, by (2.1) and (4.1), we have (um = uJm
c,d
, lm = lJm

c,d
for short)

θ(um(t−m))− θ(t−m) = Jm
c,d(k

− + 1)− Jm
c,d(k

−) =
⌊ c
d

⌋

<
⌊ c
d

⌋
+ 1 = Jm−1

c,d (k− + 1)− Jm−1
c,d (k−) = θ(um−1(t

−
m−1))− θ(t−m−1)

as Jm
c,d(k

− + 1) = Jm−1
c,d (k− + 1), and

θ(t−m−1)− θ(lm−1(t
−
m−1)) = Jm−1

c,d (k−)− Jm−1
c,d (k− − 1) =

⌊ c
d

⌋

<
⌊ c
d

⌋
+ 1 = Jm

c,d(k
−)− Jm

c,d(k
− − 1) = θ(t−m)− θ(lm(t−m))

as Jm
c,d(k

− − 1) = Jm−1
c,d (k− − 1). Thus we have

θ(um(t−m))− θ(t−m) < θ(t−m)− θ(lm(t−m)).

4.  Tritone, leading tone and cadence: a combinatorial perspective
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Considering the inequality, we can say that t−m leads to u(t−m) according to usual music theory. Similarly, it

comes from

θ(t+m)− θ(lm(t+m)) = Jm
c,d(k

+)− Jm
c,d(k

+ − 1) =
⌊ c
d

⌋

<
⌊ c
d

⌋
+ 1 = Jm+1

c,d (k+)− Jm+1
c,d (k+ − 1) = θ(t+m+1)− θ(lm+1(t

+
m+1))

and

θ(um+1(t
+
m+1))− θ(t+m+1) = Jm+1

c,d (k+ + 1)− Jm+1
c,d (k+) =

⌊ c
d

⌋

<
⌊ c
d

⌋
+ 1 = Jm

c,d(k
+ + 1)− Jm

c,d(k
+) = θ(um(t+m))− θ(t+m)

that

θ(t+m)− θ(lm(t+m)) < θ(um(t+m))− θ(t+m).

Hence t+m leads to l(t+m). We have shown the following.

Proposition 4.1. The tritone Tm � Jm
c,d consists of two notes |Tm| = {t−m, t+m} such that

(1) (Leittonwechsel property)

|Jm
c,d| � |Jm−1

c,d | = {t+m−1, t
−
m}, and |Jm

c,d| � |Jm+1
c,d | = {t−m+1, t

+
m},

where A�B stands for XOR of A and B. We also have adjacent relations

θ(t+m−1) = θ(t−m)− 1 and θ(t−m+1) = θ(t+m) + 1.

(2) (Tone leading property)

θ(um(t−m))− θ(t−m) < θ(t−m)− θ(lm(t−m)) and θ(t+m)− θ(lm(t+m)) < θ(um(t+m))− θ(t+m),

where we put um = uJm
c,d
, lm = lJm

c,d
.

Of course, Psychoacoustic effects have brought the concept of the leading tone in usual music theory.

When a people is hearing a melody in C-major scale, for instance, in European classical music theory it is

said that the progressions from B to C and F to E bring a feeling of resolution, however, from C to B or E

to F does not. Regarding this asymmetry and Proposition 4.1, we propose a purely combinatorial definition

of leading tones.

Definition 4.2. A note t in a diatonic scale Jm
c,d is called a leading tone whenever t is an entry of the tritone

|Tm| = {t−m, t+m} ⊂ |Jm
c,d|, that is, t �∈ Jm±1

c,d . When t = t−m, we say t leads to um(t), or t is a lower leading

tone to um(t). When t = t+m, we say t leads to lm(t), or t is an upper leading tone to lm(t) 1).

Thus Proposition 4.1 shows that t−m and t+m lead to um(t−m) and lm(t+m) respectively. Let us observe Table

1,2 and 3 again. The usual case c = 12 and d = 7 (Table 2), A = 9 (resp. E� = 3) is the lower (resp. upper)

leading tone to B� = 10 (resp. D = 2) in B�-major scale J 3
12,7. In the case c = 11 and d = 7 (Table 3), we

see 2 is the lower leading tone to 3, and 9 is the upper leading tone to 8 in the diatonic scale J 3
11,7. We also

find another adjacent semitone pair 5 and 6 ∈ J 3
11,7, however neither is the leading tone according to our

definition, as they are contained in adjacent diatonic scales J 3±1
11,7 . In the case c = 13 and d = 7, the leading

tones are degenerate: we see 6 and 7, entries of the tritone T3 in J 3
13,7, are leading tones to each other.

1)The definition of an upper leading tone is unusual, because in usual music theory, a leading tone leads to the tonic, i.e.
the key note of the considering scale.
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4.2. Double tritone and diminished chord. We consider the case 2d − c = 2, where the rigidity of a

tritone is 2, that is, a tritone is contained in two different diatonic scales. As a result, a tritone in a diatonic

scale also acts as a tritone in another scale, that is, any tritone has ‘twofold meaning’. As is seen above,

Table 2 shows the tritone T3 = E�A in B�-major is also the tritone in E-major. However, the direction of

leading tones are exchanged. E� = 3 is the upper leading tone to D = 2 and A = 9 is the lower leading tone

to B� = 10 in B�-major while D� = 3 is the lower leading tone to E = 4 and A = 9 is the upper leading

tone to G� = 8 in E-major.

B -major E-major

Figure 1. Double tritone E�A = D�A. Every tritone has the twofold meaning.

We also note the mathematical specificity of the case as follows.

Lemma 4.3. Let d be prime to c, then 2d−c = 2 brings d2 ≡ 1 (mod c), that is, d− = d, and c− = −d+ 1

2
.

Proof. c = 2(d− 1) means c is even, thus d is odd. Then we can put d = 2l + 1 and c = 4l for some l ∈ N,

hence d2 = 4l(l + 1) + 1 ≡ 1 (mod c). We also see

c

(
−d+ 1

2

)
= −2l(2l + 2) = −(d− 1)(d+ 1) ≡ 1 (mod d)

and −d < −d+ 1

2
< 0, hence the assertion. �

In our setting 2d − c = 2, the semitone interval s becomes s = �c/d� = 1, that is, the interval of two

adjacent notes in Chc coincides with the semitone, as usual musical theory.

Theorem 4.4. Consider the case 2d−c = 2. Then the tritone in Jm
c,d coincides with the tritone in Jm+d−1

c,d :

|Tm| = |Tm+d−1|. Their entries satisfy

t+m = t−m+d−1 and t−m = t+m+d−1 up to ocatve equivalence.

The tritone Tm divides the chromatic scale Chc into two equal parts. Moreover, as a dyad, Tm is a maximally

even chord in Jm
c,d.

Proof. Noticing d− 1 ≡ 1− d (mod c), we see by (3.4) and (3.5),

θ(t−m+d−1)d ≡ m+ d− 1 ≡ m+ 1− d ≡ θ(t+m)d (mod c)

and

θ(t+m+d−1)d ≡ m+ d− 1 + (1− d) = m ≡ θ(t−m)d (mod c),

equivalently θ(t−m+d−1) ≡ θ(t+m) and θ(t+m+d−1) ≡ θ(t−m) (mod c), hence the assertion.

Suppose θm(t−m) < θm(t+m) and thus ηm(t−m) < ηm(t+m). By Theorem 3.5 and Lemma 4.3,

θ(t+m)− θ(t−m) = d− − 1 = d− 1 =
c

2
.

We also have

ηm(t+m)− ηm(t−m) = −c− =
d+ 1

2
, hence (ηm(t−m) + d)− ηm(t+m) =

d− 1

2
,
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showing that Tm satisfies the Myhill’s property (2.1) for s = �c/d� = 1. Thus Tm is a maximally even chord

in Jm
c,d. �

It is well known that a diminished chord, like BDFA�, consists of two different tritones, like BF and

DA�, and divides the chromatic scale Ch12 into four equal parts, BD,DF, FA�, A�B. These are true in our

general situation.

Corollary 4.5 (diminished chord). Let X = (t0, t1, t2, t3) � Chc be a chord with θ(tk) ≡
c

4
k + n (mod c)

for some integer 0 ≤ n <
c

4
. Then (t0, t2) (resp. (t1, t3)) is a tritone compatible with Jm

c,d and Jm+d−1
c,d

(resp. Jm′
c,d and Jm′+d−1

c,d ), where m ≡ nd (mod c) and m′ ≡
( c
4
+ n

)
d (mod c).

Proof. As is seen in the proof of Lemma 4.3, we can put c = 4l and d = 2l + 1 for some l ∈ Z, and then

θ(t2)−θ(t0) = 2l = d−1 = d−−1 By (3.1),(3.4) and Theorem 4.4, we see that (t0, t2) is a tritone compatible

with Jm
c,d and Jm+d−1

c,d , where m ≡ θ(t0)d (mod c). The proof for (t1, t3) is the same. �

4.3. Tritone substitution and perfect cadence: a combinatorial reason. In usual music theory,

leading tones are supposed to bring progressions of chords. In C-major scale for instance, since B leads to C

and F leads to E, so the perfect cadence such as G7 = (GBDF ) → C = (CEG) gives a feeling of resolution.

In terms of the functional harmony theory, this progression is described as V 7 to I, where the root G of

the chord G7 moves to the root C of the chord C, which is the origin of what we call the descending 5th

progression. However as is seen above, since the tritone BF is also compatible with F �-major scale, we can

borrow the V 7 chord in F �-major, C�7 = (C�FG�B) instead of G7. Thus we obtain another progression

C�7 → C, so called the tritone substitution, where the motion C� → C of their roots is more ‘smooth’ than

the original G → C.

G7 C CC 7

Figure 2. The perfect cadence (left) and its tritone substitution (right).

From our combinatorial viewpoint, we may adopt such a smooth chromatic motion of roots as a principle

of chord progressions in tonal music. As is seen in Theorem 4.4, any tritone itself becomes a maximally

even chord in its compatible scales, so, we assume that we can take a maximally even chord containing the

given tritone (and this is true for the usual case c = 12 and d = 7). Let Vm = (vm0 , . . . , vme−1) be a maximally

even chord of Jm
c,d containing the tritone Tm � Vm. Without loss of generality, we assume vm0 is the ‘root’

of Vm. Theorem 4.4 also suggests that there exists the maximally even chord Vm+d−1 containing Tm, which

coincides with (d − 1)-semitones translation of Vm: θ(vm+d−1
k ) ≡ θ(vmk ) + d − 1 (mod c). A chromatic

progression Vm → Vm−1 induces a semitone motion of roots: θ(vm0 )− θ(vm−1
0 ) ≡ 1 (mod c). Then applying

the tritone substitution to Vm, the resultant progression Vm+d−1 → Vm−1 induces descending d-semitones

motion of roots:

θ(vm+d−1
0 )− θ(vm−1

0 ) ≡ θ(vm0 ) + d− 1− θ(vm−1
0 ) ≡ d (mod c).
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Figure 3 illustrates our combinatorial approach to the descending 5th motion. We first take the dominant

7th (omit 5th) GBF in C-major scale. Then we progress the chord chromatic way, hence their root moves

smoothly, like G → F � → F → E → · · · . After that, we apply the tritone substitution to F �7, E7, . . . , then

the roots moves in 5th-descending way.

Summing up, we at first consider the chromatic progression which brings a smooth motion of roots, and

apply the tritone substitution to any chords in the progression as necessary, then we obtain the descending

d-semitones progression. Therefore at least from our combinatorial viewpoint, there is no priority to the

perfect cadence.

A

B

4th up=5th down 5th down 5th down 5th down4th up=5th down 4th up=5th down

Figure 3. A combinatorial example for the descending 5th sequence (5th = 7-semitones).
At first, we take a chromatic sequence of the dominant 7th chords (A). Then we apply tritone
substitutions. As a result, we obtain the descending 5th sequence (B).
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Table 1. The case c = 13 and d = 7. Diatonic scales Jm
13,7 and a tritone T3 = (6, 7) � J 3

13,7

are shown. As 2d− c = 1, the rigidity of T3 is 1.

Table 2. The case c = 12 and d = 7. Diatonic scales Jm
12,7 and a tritone T3 = (3, 9) � J 3

12,7

are shown. As 2d − c = 2, the rigidity of T3 is 2. In terms of usual music theory, B�-major
scale has a tritone E�A, and the tritone also contained in E-major scale J 9

12,7. Note that

E�A is also tritone in E-major scale.

T8

T9

Table 3. The case c = 11 and d = 7. Diatonic scales Jm
11,7 and a tritone T3 = (2, 9) � J 3

11,7

are shown. As 2d− c = 3, the rigidity of T3 is 3. Indeed, T3 � J 8
11,7 and T3 � J 9

11,7, however,

contrast to the case 2d − c = 2, T3 is not a tritone in these scales. We see T8 = (5, 9) and
T9 = (2, 6).
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