Combinatorics on Tritones in the General Diatonic System

Yukihiro HASHIMOTO
Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Tritone: a key concept of tonality

It is said that tonality is a collection of schematic expectancies in musical experiences, based on European culture (e.g. [8]). However, the tonal system continuously developed over the years has quite good properties from a combinatorial point of view. Indeed, we have seen that the maximal evenness ansatz explains combinatorial aspects of the general diatonic system, or goes together with tonality at least ([3][4][5][6][7]). In this paper, we give a combinatorial characterization of tritones in the general diatonic system in terms of the rigidity of chords[7], and we find tritones are key objects. We find that our combinatorial definition of tritones (Definition 3.4) induces the Leittonwechsel (=leading tone exchange) property and the leading tone property (Proposition 4.1), the combinatorial definition of leading tones (Definition 4.2), the specificity of the usual 12TET-7 notes diatonic system and the existence of the double tritone (Subsection 4.2), the tritone substitution in the general diatonic system and a combinatorial reason for the perfect cadence (Subsection 4.3).

2. Combinatorial description of the general diatonic system

All notations and definitions are inherited from [7], so we omit details. For a tuple $A=\left(a_{i}\right),|A|$ denotes the set $\left\{a_{i}\right\}$ consists of entries of A. If a tuple $B=\left(b_{j}\right)$ satisfies $|B| \subset|A|$ and that the inclusion $\iota:|B| \hookrightarrow|A|$ is increasing on indexes, that is, for $b_{i}, b_{j} \in B$ with $i<j, i^{\prime}<j^{\prime}$ holds for $a_{i^{\prime}}=\iota\left(b_{i}\right)$ and $a_{j^{\prime}}=\iota\left(b_{j}\right)$, we call B is compatible with A and write $B \sqsubset A$.

Definition 2.1 (J-function by Clough and Douthett[1]). For $c, d, m \in \mathbf{Z}$ with $c>d>0$, the J-function on \mathbf{Z} is defined as

$$
J_{c, d}^{m}(k)=\left\lfloor\frac{c k+m}{d}\right\rfloor,
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. We note $\mathcal{J}_{c, d}^{m}$ as the tuple $\left(J_{c, d}^{m}(k)\right)_{k=0, \ldots, d-1}$ and $\left|\mathcal{J}_{c, d}^{m}\right|$ as the set $\left\{t \in \mathcal{J}_{c, d}^{m}\right\}$ of entries of $\mathcal{J}_{c, d}^{m}$.

Definition 2.2 (Chromatic scale and note). A chromatic scale $C h_{c}$ is a tuple $\left(f_{0}, f_{1}, \ldots, f_{c-1}\right)$ of frequencies $f_{0}<f_{1}<\cdots<f_{c-1}$ satisfying $f_{c-1}<2 f_{0}$. A semitone encoding θ associated with the chromatic scale $C h_{c}$ is a map $\left|C h_{c}\right| \ni f_{k} \mapsto k \in \mathbf{Z}$. An extension $\overline{C h_{c}}$ of $C h_{c}$ is given by $\overline{C h_{c}}=\left(2^{n} f_{0}, 2^{n} f_{1}, \ldots, 2^{n} f_{c-1}\right)_{n \in \mathbf{Z}}$, and the semitone encoding θ is also extended to a bijection $\theta:\left|\overline{C h_{c}}\right| \ni 2^{n} f_{k} \mapsto c n+k \in \mathbf{Z}$. We call an element of $\overline{C h_{c}}$ a note.

Since tones with basic frequencies f and $2^{n} f, n \in \mathbf{Z}$ have a 'similar' quality for human ears, these tones are called octave equivalent to each other in music theory. This psychoacoustic fact is represented as $\theta(f) \equiv \theta\left(2^{n} f\right)(\bmod c)$. Therefore we often identify $C h_{c}$ with $\mathbf{Z} / c \mathbf{Z}$ and $\overline{C h_{c}}$ with its covering space \mathbf{Z}. We also identify a tuple $X=\left(x_{1}, \ldots, x_{n}\right) \sqsubset C h_{c}\left(\right.$ or $\left.\overline{C h_{c}}\right)$ with its image $\theta(X)=\left(\theta\left(x_{1}\right), \ldots, \theta\left(x_{n}\right)\right)$, like $X=\left(\theta\left(x_{1}\right), \ldots, \theta\left(x_{n}\right)\right)$ for short.

Definition 2.3 (Scale and diatonic scale). Given a chromatic scale $C h_{c}$, a scale is a tuple $S=\left(t_{0}, t_{1}, \ldots, t_{d-1}\right)$ compatible with $C h_{c}$. Thus entries of S are arranged in ascending order $\theta\left(t_{0}\right)<\theta\left(t_{1}\right)<\cdots<\theta\left(t_{d-1}\right)$ with $\theta\left(t_{d-1}\right)-\theta\left(t_{0}\right)<c$. We call S a diatonic scale whenever $\theta(S) \equiv \mathcal{J}_{c, d}^{m}(\bmod c)$ for some $m \in \mathbf{Z}$ (written as $S=\mathcal{J}_{c, d}^{m}$ for short). For a natural number $h, h \cdot S$ stands for an extension of S,

$$
h \cdot S=\left(2^{n} t_{0}, \ldots, 2^{n} t_{d-1}\right)_{n=0, \ldots, h-1}
$$

\bar{S} denotes an infinite extension of $S, \bar{S}=\left(2^{n} t_{0}, \ldots, 2^{n} t_{d-1}\right)_{n \in \mathbf{Z}}$. The wholetone encoding η_{S} of S is a map $|\bar{S}| \ni 2^{n} t_{k} \mapsto d n+k \in \mathbf{Z}$. For a scale S and a note $t \in S$, upper note $u_{S}(t)$ and lower note $l_{S}(t)$ of t are given as notes in S such that $\eta_{S}\left(u_{S}(t)\right)=\eta_{S}(t)+1$ and $\eta_{S}\left(l_{S}(t)\right)=\eta_{S}(t)-1$.

Whenever S is a diatonic scale $\mathcal{J}_{c, d}^{m}$, it is well known as Myhill's property that

$$
\begin{equation*}
\theta\left(u_{S}(t)\right)-\theta(t), \theta(t)-\theta\left(l_{S}(t)\right) \in\{s, s+1\}, \quad s=\left\lfloor\frac{c}{d}\right\rfloor \tag{2.1}
\end{equation*}
$$

holds for any $t \in S$ (see e.g. [4][5]). Thus the intervals of length s and $s+1$ correspond to the semitone and the whole tone respectively in usual music theory.

We see by definition that the relation between the semitone encoding θ and the whole tone encoding η is given by

$$
\begin{equation*}
\left\lfloor\frac{c \eta_{\mathcal{J}_{c, d}^{m}}(t)+m}{d}\right\rfloor=\theta(t) \tag{2.2}
\end{equation*}
$$

for any $t \in \mathcal{J}_{c, d}^{m} \sqsubset C h_{c}$.
Definition 2.4 (Chord and maximally even chord). A chord X belongs to a scale S is a tuple of notes $X=\left(x_{0}, \ldots, x_{e-1}\right)$ compatible with $h \cdot S$ for some h. We call oct $(X)=\min \{h \mid X \sqsubset h \cdot S\}$ the octave range of X. If $\theta\left(x_{p}\right) \not \equiv \theta\left(x_{q}\right)(\bmod c)$ holds for any entries x_{p} and x_{q} of X, we call X prime. We call X maximally even whenever $\eta_{S}(X) \equiv \mathcal{J}_{d, e}^{n}(\bmod d)$ for some $n \in \mathbf{Z}$. We call X dyad whenever $\#|X|=2$.

Example 2.5. Usual western music is established on 12 -tone chromatic scale,

$$
C h_{12}=\left(C, C^{\#}, D, D^{\#}, E, F, F^{\#}, G, G^{\#}, A, A^{\#}, B\right), A=440 \mathrm{~Hz}, A^{\#}=466.16 \mathrm{~Hz}, \ldots .
$$

We adopt the semitone encoding $\theta:\left|C h_{12}\right| \rightarrow \mathbf{Z} / 12 \mathbf{Z}$,

$$
\theta(C)=0, \theta\left(C^{\#}\right)=1, \theta(D)=2, \ldots, \theta(B)=11
$$

Usual diatonic scales are given by $\mathcal{J}_{12,7}^{m}, m=0, \ldots, 11$. For instance, C-major scale $\mathcal{C}=C D E F G A B$ is expressed as a tuple $(0,2,4,5,7,9,11)=\left(J_{12,7}^{5}(k)\right)_{k=0, \ldots, 6}=\mathcal{J}_{12,7}^{5}$. For C-major scale $\mathcal{J}_{12,7}^{5}$, we adopt a wholetone encoding η_{C} as

$$
\eta_{C}(C)=0, \eta_{C}(D)=1, \eta_{C}(E)=2, \eta_{C}(F)=3, \eta_{C}(G)=4, \eta_{C}(A)=5, \eta_{C}(B)=6
$$

For usual chromatic $C h_{12}$, we put the set $\Delta_{12,7}$ of the extended diatonic scales, $\Delta_{12,7}=\left\{\overline{\mathcal{J}_{12,7}^{m}} \mid \mathrm{m}=\right.$ $0, \ldots, 11\}$.

3. Combinatorics on tritones

Definition 3.1 (Rigidity of chord). Given a chromatic scale $C h_{c}$ and a set \mathcal{S} of extended scales in $C h_{c}$. For a chord X in some $\bar{S} \in \mathcal{S}$, putting $C_{\mathcal{S}}(X)=\{\bar{S} \in \mathcal{S} \mid X \sqsubset \bar{S}\}$, we define the rigidity $R_{\mathcal{S}}(X)$ of X as the number of scales with which X is compatible,

$$
R_{\mathcal{S}}(X)=\#\{\bar{S} \in \mathcal{S} \mid X \sqsubset \bar{S}\}=\# C_{\mathcal{S}}(X)
$$

Hereafter, for a chromatic scale $C h_{c}$, we take $d \in \mathbf{N}$ prime to c and $d<c$. Then we fix a unique solution $\left(c^{-}, d^{-}\right)$of

$$
c c^{-}+d d^{-}=1
$$

with $0<d^{-}<c$ and $-d<c^{-}<0$. We consider a set of diatonic scales $\Delta_{c, d}=\left\{\mathcal{J}_{c, d}^{m} \mid m=0, \ldots, c-1\right\}$ compatible with a chromatic scale $C h_{c}$. An interval $[a, a+d)$ with $0 \leq a<c$ in $\mathbf{Z} / c \mathbf{Z}$ is understood cyclic way as

$$
[a, a+d)= \begin{cases}\{a, a+1, \ldots, a+d-1\}, & \text { if } a+d \leq c \\ \{a, a+1, \ldots, c-1\} \cup\{0,1, \ldots, a+d-c-1\}, & \text { if } a+d>c\end{cases}
$$

To observe the rigidity of chords, we firstly determine the rigidity of a note $t \in C h_{c}$.
Proposition 3.2. For any note $t \in C h_{c}$, we have

$$
C_{\Delta_{c, d}}(t)=\left\{\mathcal{J}_{c, d}^{m} \mid m \in I(t)=[\alpha(t), \alpha(t)+d) \subset \mathbf{Z} / c \mathbf{Z}\right\}
$$

with $\alpha(t) \equiv \theta(t) d(\bmod c)$ and $0 \leq \alpha(t)<c$. Hence the rigidity $R_{\Delta_{c, d}}(t)$ of any note t is d.
Proof. $t \in \mathcal{J}_{c, d}^{m}$ holds if and only if there exists integer $k \in[0, d)$ such that

$$
\theta(t) d \leq c k+m<(\theta(t)+1) d
$$

Taking the unique solution $l \in[0, d)$ and $\alpha(t) \in[0, c)$ of $c l+\alpha(t)=\theta(t) d$, we have

$$
\alpha(t) \leq c(k-l)+m<\alpha(t)+d
$$

If $\alpha(t)+d \leq c$, we see $k=l$ hence $\alpha(t) \leq m<\alpha(t)+d$. If $\alpha(t)+d>c$, as $m \in[0, c)$, we divide the inequality into two cases: $k=l$ hence $\alpha(t) \leq m<c$, and $k=l+1$ hence $0 \leq m<\alpha(t)+d-c$.

Therefore the compatible scales $C_{\Delta_{c, d}}(t)$ of a note $t \in C h_{c}$ corresponds to the interval $I(t)=[\alpha(t), \alpha(t)+$ $d) \subset \mathbf{Z} / c \mathbf{Z}$. This fact is quite useful for analysis of rigidity, indeed, the following is a direct consequent.

Proposition 3.3. For any chord $X=\left(t_{1}, \ldots, t_{e}\right) \sqsubset C h_{c}$,

$$
C_{\Delta_{c, d}}(X)=\left\{\mathcal{J}_{c, d}^{m} \mid m \in \bigcap_{i=1}^{e} I(t) \subset \mathbf{Z} / c \mathbf{Z}\right\}
$$

Definition 3.4 (tritone). A dyad $T_{m} \sqsubset \mathcal{J}_{c, d}^{m}$ is called a tritone whenever $T_{m} \not \subset \mathcal{J}_{c, d}^{m \pm 1}$.
In [7], we have mentioned the tritone as the dyad of minimum rigidity, hence it characterizes the scale that belongs to. However, essential quality of a tritone is the unstability among the related keys of the scale to which the tritone belongs.

Theorem 3.5. Each diatonic scale $\mathcal{J}_{c, d}^{m}$ contains a unique tritone $T_{m}=\left(t_{1}, t_{2}\right) \sqsubset \mathcal{J}_{c, d}^{m}$, which satisfies

$$
\begin{equation*}
\theta\left(t_{2}\right)-\theta\left(t_{1}\right)=d^{-}-1 \text { or } c-d^{-}+1 \tag{3.1}
\end{equation*}
$$

in the semitone encoding and

$$
\begin{equation*}
\eta_{\mathcal{J}_{c, d}^{m}}^{m}\left(t_{2}\right)-\eta_{\mathcal{J}_{c, d}^{m}}\left(t_{1}\right)=-c^{-} \text {or } d+c^{-} \tag{3.2}
\end{equation*}
$$

in the whole tone encoding. The tritone has minimum rigidity among dyads in $\mathcal{J}_{c, d}^{m}$

$$
\begin{equation*}
R_{\Delta_{c, d}}\left(T_{m}\right)=\min \left\{R_{\Delta_{c, d}}(X) \mid X=\left(x_{1}, x_{2}\right) \sqsubset \mathcal{J}_{c, d}^{m}\right\}=\max \{2 d-c, 1\} \tag{3.3}
\end{equation*}
$$

Proof. Since multiplying d induces a bijection $\mathbf{Z} / c \mathbf{Z} \ni x \mapsto x d \in \mathbf{Z} / c \mathbf{Z}$, we see

$$
\left\{\alpha(t) \equiv \theta(t) d \quad(\bmod c) \mid t \in C h_{c}\right\}=\{0,1, \ldots, c-1\}
$$

Then for each diatonic scale $\mathcal{J}_{c, d}^{m}$, there exists a unique note $t_{m}^{-} \in\left|\mathcal{J}_{c, d}^{m}\right| \backslash\left|\mathcal{J}_{c, d}^{m-1}\right|$. We also see

$$
\left\{\alpha(t)+d-1 \quad(\bmod c) \mid t \in C h_{c}\right\}=\{0,1, \ldots, c-1\}
$$

hence there exists a unique note $t_{m}^{+} \in\left|\mathcal{J}_{c, d}^{m}\right| \backslash\left|\mathcal{J}_{c, d}^{m+1}\right|$. Putting

$$
T_{m}= \begin{cases}\left(t_{m}^{-}, t_{m}^{+}\right), & \text {if } \theta\left(t_{m}^{-}\right)<\theta\left(t_{m}^{+}\right) \\ \left(t_{m}^{+}, t_{m}^{-}\right), & \text {if } \theta\left(t_{m}^{+}\right)<\theta\left(t_{m}^{-}\right)\end{cases}
$$

we see T_{m} is a unique tritone compatible with $\mathcal{J}_{c, d}^{m}$ by construction. Taking the whole tone encoding of $t_{m}^{ \pm}$, $k_{m}^{ \pm}=\eta_{\mathcal{J}_{c, d}^{m}}^{m}\left(t_{m}^{ \pm}\right) \in[0, d)$, we have

$$
\left\lfloor\frac{c k_{m}^{ \pm}+m}{d}\right\rfloor=\theta\left(t_{m}^{ \pm}\right)
$$

by (2.2). By the definition of t_{m}^{-}, m is the left hand side of $I\left(t_{m}^{-}\right), m=\alpha\left(t_{m}^{-}\right)$, and then

$$
\theta\left(t_{m}^{-}\right)=\left\lfloor\frac{c k_{m}^{-}+m}{d}\right\rfloor=\frac{c k_{m}^{-}+m}{d}
$$

hence

$$
\begin{equation*}
c k_{m}^{-}+m=\theta\left(t_{m}^{-}\right) d \tag{3.4}
\end{equation*}
$$

We also see by the definition of t_{m}^{+}, m is the right hand side of $I\left(t_{m}^{+}\right)$, that is,

$$
m= \begin{cases}\alpha\left(t_{m}^{+}\right)+d-1, & \text { whenever } \alpha\left(t_{m}^{+}\right)+d-1<c \\ \alpha\left(t_{m}^{+}\right)+d-1-c, & \text { whenever } \alpha\left(t_{m}^{+}\right)+d-1 \geq c\end{cases}
$$

then

$$
\theta\left(t_{m}^{+}\right)+1=\left\lfloor\frac{c k_{m}^{+}+m+1}{d}\right\rfloor=\frac{c k_{m}^{+}+m+1}{d}
$$

hence

$$
\begin{equation*}
c k_{m}^{+}+m+1=\left(\theta\left(t_{m}^{+}\right)+1\right) d \tag{3.5}
\end{equation*}
$$

Consequently we have

$$
\begin{equation*}
\left(\theta\left(t_{m}^{+}\right)-\theta\left(t_{m}^{-}\right)\right) d \equiv 1-d \quad(\bmod c), \text { i.e. } \quad \theta\left(t_{m}^{+}\right)-\theta\left(t_{m}^{-}\right) \equiv d^{-}-1 \quad(\bmod c) \tag{3.6}
\end{equation*}
$$

and as $\theta\left(t_{m}^{ \pm}\right) \in[0, c)$, we have (3.1). It also comes from (3.4) and (3.5) that

$$
k_{m}^{-} \equiv-c^{-} m \quad(\bmod d) \quad \text { and } k_{m}^{+} \equiv-c^{-}(m+1) \quad(\bmod d)
$$

hence

$$
k_{m}^{+}-k_{m}^{-} \equiv-c^{-} \quad(\bmod d)
$$

As $k_{m}^{ \pm} \in[0, d)$, we have (3.2).
For any dyad $X=\left(x_{1}, x_{2}\right) \sqsubset \mathcal{J}_{c, d}^{m}$, its rigidity is given by

$$
R_{\Delta_{c, d}}(X)=\#\left(\left[\alpha\left(x_{1}\right), \alpha\left(x_{1}\right)+d\right) \cap\left[\alpha\left(x_{2}\right), \alpha\left(x_{2}\right)+d\right)\right),
$$

where these intervals are taken as subsets of $\mathbf{Z} / c \mathbf{Z}$. Without loss of generality, we can assume $0 \leq \alpha\left(x_{1}\right)<$ $\alpha\left(x_{2}\right)<c$. Thus we just consider

$$
R_{\Delta_{c, d}}(X)=\#([0, d) \cap[\alpha, \alpha+d)),
$$

where $\alpha=\alpha\left(x_{2}\right)-\alpha\left(x_{1}\right)$. We note $R_{\Delta_{c, d}} \geq 1$ since $X \sqsubset \mathcal{J}_{c, d}^{m}$, thus at least we have

$$
0<\alpha<d \text { or } 0 \leq \alpha+d-1-c<d
$$

When $0<\alpha<d$ only occurs, we see $\alpha+d \leq c$ and

$$
R_{\Delta_{c, d}}(X)=\#([0, d) \cap[\alpha, \alpha+d))=\#\{\alpha, \alpha+1, \ldots, d-1\}=d-\alpha \geq 2 d-c
$$

When $0 \leq \alpha+d-1-c<d$ only occurs, we see $\alpha \geq d$ and

$$
R_{\Delta_{c, d}}(X)=\#([0, d) \cap[\alpha, \alpha+d))=\#\{0,1, \ldots, \alpha+d-1-c\}=\alpha+d-c \geq 2 d-c
$$

If both $0<\alpha<d$ and $0 \leq \alpha+d-1-c<d$ occur, we need $0 \leq \alpha+d-1-c<2 d-1-c$, that is, $2 d-c \geq 2$. In this case, we see

$$
\begin{aligned}
R_{\Delta_{c, d}}(X) & =\#([0, d) \cap[\alpha, \alpha+d)) \\
& =\#(\{\alpha, \alpha+1, \ldots, d-1\} \cup\{0,1, \ldots, \alpha+d-1-c\})=2 d-c .
\end{aligned}
$$

Therefore we have

$$
\min \left\{R_{\Delta_{c, d}}(X) \mid X=\left(x_{1}, x_{2}\right) \sqsubset \mathcal{J}_{c, d}^{m}\right\}=\max \{2 d-c, 1\}
$$

Again consider the tritone $T_{m} \sqsubset \mathcal{J}_{c, d^{\prime}}^{m}$. By (3.6) we have $\alpha\left(t_{m}^{-}\right)-\alpha\left(t_{m}^{+}\right) \equiv d-1(\bmod c)$, so we may assume $\alpha\left(t_{m}^{-}\right)=d-1$ and $\alpha\left(t_{m}^{+}\right)=0$. As $0<\alpha\left(t_{m}^{-}\right)=d-1<d$, if $\alpha\left(t_{m}^{-}\right)+d=2 d-1 \leq c$, we have

$$
R_{\Delta_{c, d}}\left(T_{m}\right)=\#([0, d) \cap[d-1,2 d-1))=\#\{d-1\}=1 \geq 2 d-c
$$

If $0 \leq \alpha\left(t_{m}^{-}\right)+d-1-c=2 d-2-c<d$, i.e., $2 d-c \geq 2$, we have

$$
\begin{aligned}
R_{\Delta_{c, d}}\left(T_{m}\right) & =\#([0, d) \cap([d-1, c) \cup[0,2 d-1-c))) \\
& =\#\{0,1, \ldots, 2 d-2-c, d-1\}=2 d-c>1
\end{aligned}
$$

Hence $R_{\Delta_{c, d}}\left(T_{m}\right)=\max \{2 d-c, 1\}$.
Tables 1, 2 and 3 show the relation between diatonic scales and tritones. When $c=13$ and $d=7$ (Table 1), the diatonic scale $\mathcal{J}_{13,7}^{3}$ contains a unique tritone $T_{3}=(6,7)$ with rigidity $R_{\Delta_{13,7}}\left(T_{3}\right)=\max \{2 d-c, 1\}=1$, in other terms, no other diatonic scale contains T_{3}. Thus T_{3} uniquely determines the scale $\mathcal{J}_{13,7}^{3}$.

When $c=11$ and $d=7$ (Table 3), the diatonic scale $\mathcal{J}_{11,7}^{3}$ contains a unique tritone $T_{3}=(2,5)$ with rigidity $R_{\Delta_{11,7}}\left(T_{3}\right)=\max \{2 d-c, 1\}=3$, so T_{3} is not rare: we see $T_{3} \sqsubset \mathcal{J}_{11,7}^{8}, \mathcal{J}_{11,7}^{9}$. Even so, no diatonic scale contains T_{3} as a tritone except $\mathcal{J}_{11,7}^{3} . \mathcal{J}_{11,7}^{8}$ and $\mathcal{J}_{11,7}^{9}$ contain unique tritones $T_{8}=(5,9)$ and $T_{9}=(2,6)$ respectively.

Finally, when $c=12$ and $d=7$ (Table 2), the diatonic scale $\mathcal{J}_{12,7}^{3}\left(=B^{b}\right.$-major) contains a unique tritone $T_{3}=(3,9)=E^{b} A$ with rigidity $R_{\Delta_{12,7}}\left(T_{3}\right)=\max \{2 d-c, 1\}=2$, so $T_{3}=E^{b} A$ is also contained in $\mathcal{J}_{12,7}^{9}(=E-$ major). Moreover it is noticeable that T_{3} is also the tritone in $\mathcal{J}_{12,7}^{9}$, that is, $\left|T_{9}\right|=\left|T_{3}\right|$. Therefore the diatonic system with $2 d-c=2$ has a combinatorial special feature.

4. Tritone, leading tone and cadence: a combinatorial perspective

4.1. Tritone and leading tone. We have seen that a tritone T_{m} consists of two notes $t_{m}^{-} \in\left|\mathcal{J}_{c, d}^{m}\right| \backslash\left|\mathcal{J}_{c, d}^{m-1}\right|$ and $t_{m}^{+} \in\left|\mathcal{J}_{c, d}^{m}\right| \backslash\left|\mathcal{J}_{c, d}^{m+1}\right|$. By construction, we see there exist $0 \leq k^{-}, k^{+}<d$ such that

$$
\theta\left(t_{m}^{-}\right) d=c k^{-}+m \text { and }\left(\theta\left(t_{m}^{+}\right)+1\right) d=c k^{+}+m+1
$$

hence

$$
\begin{equation*}
J_{c, d}^{m-1}\left(k^{-}\right)=\left\lfloor\frac{c k^{-}+m-1}{d}\right\rfloor=\theta\left(t_{m}^{-}\right)-1 \text { and } J_{c, d}^{m+1}\left(k^{+}\right)=\left\lfloor\frac{c k^{+}+m+1}{d}\right\rfloor=\theta\left(t_{m}^{+}\right)+1, \tag{4.1}
\end{equation*}
$$

meaning that

$$
\begin{equation*}
\theta\left(t_{m-1}^{+}\right)=\theta\left(t_{m}^{-}\right)-1 \text { and } \theta\left(t_{m+1}^{-}\right)=\theta\left(t_{m}^{+}\right)+1 \tag{4.2}
\end{equation*}
$$

That is, changing $t_{m}^{-} \rightarrow t_{m-1}^{+}$and $t_{m}^{+} \rightarrow t_{m+1}^{-}$cause the modulation (=change of keys) $\mathcal{J}_{c, d}^{m} \rightarrow \mathcal{J}_{c, d}^{m-1}$ and $\mathcal{J}_{c, d}^{m} \rightarrow \mathcal{J}_{c, d}^{m+1}$ respectively. (4.2) corresponds to one of transformations in Neo-Riemannian theory, called Leittonwechsel (=leading tone exchange). Therefore we can expect that $t_{m}^{ \pm}$act as leading tones in our combinatorial setting. Indeed, by (2.1) and (4.1), we have $\left(u_{m}=u_{\mathcal{J}_{c, d}^{m}}, l_{m}=l_{\mathcal{J}_{c, d}^{m}}\right.$ for short)

$$
\begin{aligned}
& \theta\left(u_{m}\left(t_{m}^{-}\right)\right)-\theta\left(t_{m}^{-}\right)=J_{c, d}^{m}\left(k^{-}+1\right)-J_{c, d}^{m}\left(k^{-}\right)=\left\lfloor\frac{c}{d}\right\rfloor \\
& \quad<\left\lfloor\frac{c}{d}\right\rfloor+1=J_{c, d}^{m-1}\left(k^{-}+1\right)-J_{c, d}^{m-1}\left(k^{-}\right)=\theta\left(u_{m-1}\left(t_{m-1}^{-}\right)\right)-\theta\left(t_{m-1}^{-}\right)
\end{aligned}
$$

as $J_{c, d}^{m}\left(k^{-}+1\right)=J_{c, d}^{m-1}\left(k^{-}+1\right)$, and

$$
\begin{aligned}
& \theta\left(t_{m-1}^{-}\right)-\theta\left(l_{m-1}\left(t_{m-1}^{-}\right)\right)=J_{c, d}^{m-1}\left(k^{-}\right)-J_{c, d}^{m-1}\left(k^{-}-1\right)=\left\lfloor\frac{c}{d}\right\rfloor \\
& \quad<\left\lfloor\frac{c}{d}\right\rfloor+1=J_{c, d}^{m}\left(k^{-}\right)-J_{c, d}^{m}\left(k^{-}-1\right)=\theta\left(t_{m}^{-}\right)-\theta\left(l_{m}\left(t_{m}^{-}\right)\right)
\end{aligned}
$$

as $J_{c, d}^{m}\left(k^{-}-1\right)=J_{c, d}^{m-1}\left(k^{-}-1\right)$. Thus we have

$$
\theta\left(u_{m}\left(t_{m}^{-}\right)\right)-\theta\left(t_{m}^{-}\right)<\theta\left(t_{m}^{-}\right)-\theta\left(l_{m}\left(t_{m}^{-}\right)\right) .
$$

Considering the inequality, we can say that t_{m}^{-}leads to $u\left(t_{m}^{-}\right)$according to usual music theory. Similarly, it comes from

$$
\begin{aligned}
\theta\left(t_{m}^{+}\right) & -\theta\left(l_{m}\left(t_{m}^{+}\right)\right)=J_{c, d}^{m}\left(k^{+}\right)-J_{c, d}^{m}\left(k^{+}-1\right)=\left\lfloor\frac{c}{d}\right\rfloor \\
& <\left\lfloor\frac{c}{d}\right\rfloor+1=J_{c, d}^{m+1}\left(k^{+}\right)-J_{c, d}^{m+1}\left(k^{+}-1\right)=\theta\left(t_{m+1}^{+}\right)-\theta\left(l_{m+1}\left(t_{m+1}^{+}\right)\right)
\end{aligned}
$$

and

$$
\begin{array}{r}
\theta\left(u_{m+1}\left(t_{m+1}^{+}\right)\right)-\theta\left(t_{m+1}^{+}\right)=J_{c, d}^{m+1}\left(k^{+}+1\right)-J_{c, d}^{m+1}\left(k^{+}\right)=\left\lfloor\frac{c}{d}\right\rfloor \\
\quad<\left\lfloor\frac{c}{d}\right\rfloor+1=J_{c, d}^{m}\left(k^{+}+1\right)-J_{c, d}^{m}\left(k^{+}\right)=\theta\left(u_{m}\left(t_{m}^{+}\right)\right)-\theta\left(t_{m}^{+}\right)
\end{array}
$$

that

$$
\theta\left(t_{m}^{+}\right)-\theta\left(l_{m}\left(t_{m}^{+}\right)\right)<\theta\left(u_{m}\left(t_{m}^{+}\right)\right)-\theta\left(t_{m}^{+}\right)
$$

Hence t_{m}^{+}leads to $l\left(t_{m}^{+}\right)$. We have shown the following.
Proposition 4.1. The tritone $T_{m} \sqsubset \mathcal{J}_{c, d}^{m}$ consists of two notes $\left|T_{m}\right|=\left\{t_{m}^{-}, t_{m}^{+}\right\}$such that
(1) (Leittonwechsel property)

$$
\left|\mathcal{J}_{c, d}^{m}\right| \triangle\left|\mathcal{J}_{c, d}^{m-1}\right|=\left\{t_{m-1}^{+}, t_{m}^{-}\right\}, \text {and }\left|\mathcal{J}_{c, d}^{m}\right| \triangle\left|\mathcal{J}_{c, d}^{m+1}\right|=\left\{t_{m+1}^{-}, t_{m}^{+}\right\}
$$

where $A \triangle B$ stands for $X O R$ of A and B. We also have adjacent relations

$$
\theta\left(t_{m-1}^{+}\right)=\theta\left(t_{m}^{-}\right)-1 \text { and } \theta\left(t_{m+1}^{-}\right)=\theta\left(t_{m}^{+}\right)+1
$$

(2) (Tone leading property)

$$
\theta\left(u_{m}\left(t_{m}^{-}\right)\right)-\theta\left(t_{m}^{-}\right)<\theta\left(t_{m}^{-}\right)-\theta\left(l_{m}\left(t_{m}^{-}\right)\right) \text {and } \theta\left(t_{m}^{+}\right)-\theta\left(l_{m}\left(t_{m}^{+}\right)\right)<\theta\left(u_{m}\left(t_{m}^{+}\right)\right)-\theta\left(t_{m}^{+}\right)
$$

where we put $u_{m}=u_{\mathcal{J}_{c, d}^{m}}, l_{m}=l_{\mathcal{J}_{c, d}^{m}}$.
Of course, Psychoacoustic effects have brought the concept of the leading tone in usual music theory. When a people is hearing a melody in C-major scale, for instance, in European classical music theory it is said that the progressions from B to C and F to E bring a feeling of resolution, however, from C to B or E to F does not. Regarding this asymmetry and Proposition 4.1, we propose a purely combinatorial definition of leading tones.

Definition 4.2. A note t in a diatonic scale $\mathcal{J}_{c, d}^{m}$ is called a leading tone whenever t is an entry of the tritone $\left|T_{m}\right|=\left\{t_{m}^{-}, t_{m}^{+}\right\} \subset\left|\mathcal{J}_{c, d}^{m}\right|$, that is, $t \notin \mathcal{J}_{c, d}^{m \pm 1}$. When $t=t_{m}^{-}$, we say t leads to $u_{m}(t)$, or t is a lower leading tone to $u_{m}(t)$. When $t=t_{m}^{+}$, we say t leads to $l_{m}(t)$, or t is an upper leading tone to $l_{m}(t)^{1)}$.

Thus Proposition 4.1 shows that t_{m}^{-}and t_{m}^{+}lead to $u_{m}\left(t_{m}^{-}\right)$and $l_{m}\left(t_{m}^{+}\right)$respectively. Let us observe Table 1,2 and 3 again. The usual case $c=12$ and $d=7$ (Table 2), $A=9$ (resp. $E^{b}=3$) is the lower (resp. upper) leading tone to $B^{b}=10$ (resp. $D=2$) in B^{b}-major scale $\mathcal{J}_{12,7}^{3}$. In the case $c=11$ and $d=7$ (Table 3), we see 2 is the lower leading tone to 3 , and 9 is the upper leading tone to 8 in the diatonic scale $\mathcal{J}_{11,7}^{3}$. We also find another adjacent semitone pair 5 and $6 \in \mathcal{J}_{11,7}^{3}$, however neither is the leading tone according to our definition, as they are contained in adjacent diatonic scales $\mathcal{J}_{11,7}^{3 \pm 1}$. In the case $c=13$ and $d=7$, the leading tones are degenerate: we see 6 and 7 , entries of the tritone T_{3} in $\mathcal{J}_{13,7}^{3}$, are leading tones to each other.

[^0]4.2. Double tritone and diminished chord. We consider the case $2 d-c=2$, where the rigidity of a tritone is 2 , that is, a tritone is contained in two different diatonic scales. As a result, a tritone in a diatonic scale also acts as a tritone in another scale, that is, any tritone has 'twofold meaning'. As is seen above, Table 2 shows the tritone $T_{3}=E^{b} A$ in B^{b}-major is also the tritone in E-major. However, the direction of leading tones are exchanged. $E^{b}=3$ is the upper leading tone to $D=2$ and $A=9$ is the lower leading tone to $B^{b}=10$ in B^{b}-major while $D^{\sharp}=3$ is the lower leading tone to $E=4$ and $A=9$ is the upper leading tone to $G^{\sharp}=8$ in E-major.
$$
B^{b}-\text { major }
$$

E-major

Figure 1. Double tritone $E^{b} A=D^{\sharp} A$. Every tritone has the twofold meaning.

We also note the mathematical specificity of the case as follows.
Lemma 4.3. Let d be prime to c, then $2 d-c=2$ brings $d^{2} \equiv 1(\bmod c)$, that is, $d^{-}=d$, and $c^{-}=-\frac{d+1}{2}$.
Proof. $c=2(d-1)$ means c is even, thus d is odd. Then we can put $d=2 l+1$ and $c=4 l$ for some $l \in \mathbf{N}$, hence $d^{2}=4 l(l+1)+1 \equiv 1(\bmod c)$. We also see

$$
c\left(-\frac{d+1}{2}\right)=-2 l(2 l+2)=-(d-1)(d+1) \equiv 1 \quad(\bmod d)
$$

and $-d<-\frac{d+1}{2}<0$, hence the assertion.
In our setting $2 d-c=2$, the semitone interval s becomes $s=\lfloor c / d\rfloor=1$, that is, the interval of two adjacent notes in $C h_{c}$ coincides with the semitone, as usual musical theory.

Theorem 4.4. Consider the case $2 d-c=2$. Then the tritone in $\mathcal{J}_{c, d}^{m}$ coincides with the tritone in $\mathcal{J}_{c, d}^{m+d-1}$: $\left|T_{m}\right|=\left|T_{m+d-1}\right|$. Their entries satisfy

$$
t_{m}^{+}=t_{m+d-1}^{-} \quad \text { and } t_{m}^{-}=t_{m+d-1}^{+} \quad \text { up to ocatve equivalence. }
$$

The tritone T_{m} divides the chromatic scale $C h_{c}$ into two equal parts. Moreover, as a dyad, T_{m} is a maximally even chord in $\mathcal{J}_{c, d}^{m}$.

Proof. Noticing $d-1 \equiv 1-d(\bmod c)$, we see by (3.4) and (3.5),

$$
\theta\left(t_{m+d-1}^{-}\right) d \equiv m+d-1 \equiv m+1-d \equiv \theta\left(t_{m}^{+}\right) d \quad(\bmod c)
$$

and

$$
\theta\left(t_{m+d-1}^{+}\right) d \equiv m+d-1+(1-d)=m \equiv \theta\left(t_{m}^{-}\right) d \quad(\bmod c)
$$

equivalently $\theta\left(t_{m+d-1}^{-}\right) \equiv \theta\left(t_{m}^{+}\right)$and $\theta\left(t_{m+d-1}^{+}\right) \equiv \theta\left(t_{m}^{-}\right)(\bmod c)$, hence the assertion.
Suppose $\theta_{m}\left(t_{m}^{-}\right)<\theta_{m}\left(t_{m}^{+}\right)$and thus $\eta_{m}\left(t_{m}^{-}\right)<\eta_{m}\left(t_{m}^{+}\right)$. By Theorem 3.5 and Lemma 4.3,

$$
\theta\left(t_{m}^{+}\right)-\theta\left(t_{m}^{-}\right)=d^{-}-1=d-1=\frac{c}{2}
$$

We also have

$$
\eta_{m}\left(t_{m}^{+}\right)-\eta_{m}\left(t_{m}^{-}\right)=-c^{-}=\frac{d+1}{2}, \text { hence }\left(\eta_{m}\left(t_{m}^{-}\right)+d\right)-\eta_{m}\left(t_{m}^{+}\right)=\frac{d-1}{2}
$$

showing that T_{m} satisfies the Myhill's property (2.1) for $s=\lfloor c / d\rfloor=1$. Thus T_{m} is a maximally even chord in $\mathcal{J}_{c, d}^{m}$.

It is well known that a diminished chord, like $B D F A^{b}$, consists of two different tritones, like $B F$ and $D A^{b}$, and divides the chromatic scale $C h_{12}$ into four equal parts, $B D, D F, F A^{b}, A^{b} B$. These are true in our general situation.

Corollary 4.5 (diminished chord). Let $X=\left(t_{0}, t_{1}, t_{2}, t_{3}\right) \sqsubset C h_{c}$ be a chord with $\theta\left(t_{k}\right) \equiv \frac{c}{4} k+n(\bmod c)$ for some integer $0 \leq n<\frac{c}{4}$. Then $\left(t_{0}, t_{2}\right)$ (resp. $\left(t_{1}, t_{3}\right)$) is a tritone compatible with $\mathcal{J}_{c, d}^{m}$ and $\mathcal{J}_{c, d}^{m+d-1}$ $\left(\operatorname{resp} . \mathcal{J}_{c, d}^{m^{\prime}}\right.$ and $\left.\mathcal{J}_{c, d}^{m^{\prime}+d-1}\right)$, where $m \equiv n d(\bmod c)$ and $m^{\prime} \equiv\left(\frac{c}{4}+n\right) d(\bmod c)$.

Proof. As is seen in the proof of Lemma 4.3, we can put $c=4 l$ and $d=2 l+1$ for some $l \in \mathbf{Z}$, and then $\theta\left(t_{2}\right)-\theta\left(t_{0}\right)=2 l=d-1=d^{-}-1 \operatorname{By}(3.1),(3.4)$ and Theorem 4.4, we see that $\left(t_{0}, t_{2}\right)$ is a tritone compatible with $\mathcal{J}_{c, d}^{m}$ and $\mathcal{J}_{c, d}^{m+d-1}$, where $m \equiv \theta\left(t_{0}\right) d(\bmod c)$. The proof for $\left(t_{1}, t_{3}\right)$ is the same.
4.3. Tritone substitution and perfect cadence: a combinatorial reason. In usual music theory, leading tones are supposed to bring progressions of chords. In C-major scale for instance, since B leads to C and F leads to E, so the perfect cadence such as $G 7=(G B D F) \rightarrow C=(C E G)$ gives a feeling of resolution. In terms of the functional harmony theory, this progression is described as V^{7} to I, where the root G of the chord $G 7$ moves to the root C of the chord C, which is the origin of what we call the descending 5 th progression. However as is seen above, since the tritone $B F$ is also compatible with F^{\sharp}-major scale, we can borrow the V^{7} chord in F^{\sharp}-major, $C^{\sharp} 7=\left(C^{\sharp} F G^{\sharp} B\right)$ instead of $G 7$. Thus we obtain another progression $C^{\sharp} 7 \rightarrow C$, so called the tritone substitution, where the motion $C^{\sharp} \rightarrow C$ of their roots is more 'smooth' than the original $G \rightarrow C$.

Figure 2. The perfect cadence (left) and its tritone substitution (right).

From our combinatorial viewpoint, we may adopt such a smooth chromatic motion of roots as a principle of chord progressions in tonal music. As is seen in Theorem 4.4, any tritone itself becomes a maximally even chord in its compatible scales, so, we assume that we can take a maximally even chord containing the given tritone (and this is true for the usual case $c=12$ and $d=7$). Let $V_{m}=\left(v_{0}^{m}, \ldots, v_{e-1}^{m}\right)$ be a maximally even chord of $\mathcal{J}_{c, d}^{m}$ containing the tritone $T_{m} \sqsubset V_{m}$. Without loss of generality, we assume v_{0}^{m} is the 'root' of V_{m}. Theorem 4.4 also suggests that there exists the maximally even chord V_{m+d-1} containing T_{m}, which coincides with $(d-1)$-semitones translation of $V_{m}: \theta\left(v_{k}^{m+d-1}\right) \equiv \theta\left(v_{k}^{m}\right)+d-1(\bmod c)$. A chromatic progression $V_{m} \rightarrow V_{m-1}$ induces a semitone motion of roots: $\theta\left(v_{0}^{m}\right)-\theta\left(v_{0}^{m-1}\right) \equiv 1(\bmod c)$. Then applying the tritone substitution to V_{m}, the resultant progression $V_{m+d-1} \rightarrow V_{m-1}$ induces descending d-semitones motion of roots:

$$
\theta\left(v_{0}^{m+d-1}\right)-\theta\left(v_{0}^{m-1}\right) \equiv \theta\left(v_{0}^{m}\right)+d-1-\theta\left(v_{0}^{m-1}\right) \equiv d \quad(\bmod c)
$$

Figure 3 illustrates our combinatorial approach to the descending 5 th motion. We first take the dominant 7 th (omit 5th) GBF in C-major scale. Then we progress the chord chromatic way, hence their root moves smoothly, like $G \rightarrow F^{\sharp} \rightarrow F \rightarrow E \rightarrow \cdots$. After that, we apply the tritone substitution to $F^{\sharp} 7, E 7, \ldots$, then the roots moves in 5th-descending way.

Summing up, we at first consider the chromatic progression which brings a smooth motion of roots, and apply the tritone substitution to any chords in the progression as necessary, then we obtain the descending d-semitones progression. Therefore at least from our combinatorial viewpoint, there is no priority to the perfect cadence.

A

B

Figure 3. A combinatorial example for the descending 5 th sequence (5 th $=7$-semitones). At first, we take a chromatic sequence of the dominant 7th chords (A). Then we apply tritone substitutions. As a result, we obtain the descending 5 th sequence (B).

References

[1] J. Clough and J. Douthett, Maximal Even Sets, Journal of Music Theory 35, pp. 93-173, 1991.
[2] J. Douthett, Filtered Point-Symmetry and Dynamical Voice-Leading, in J. Douthett, M. Hyde and C. Smith(eds.), Music Theory and Mathematics: Chords, Collections, and Transformations, Chapter 4, University of Rochester Press, pp. 72-106, 2008.
[3] Y. Hashimoto, Spatio-temporal symmetry on circle rotations and a notion on diatonic set theory, Bull. of Aichi Univ. of Education, Natural Science 63, pp. 1-9, 2014. http://hdl.handle.net/10424/5380.
[4] Y. Hashimoto, A dynamical characterization of Myhill's property, Bull. of Aichi Univ. of Education, Natural Science 64, pp. 1-9, 2015. http://hdl.handle.net/10424/5978.
[5] Y. Hashimoto, Maximally evenness ansatz and diatonic system, Bull. of Aichi Univ. of Education, Natural Science 66, pp. 7-16, 2017. http://hdl.handle.net/10424/7039.
[6] Y. Hashimoto, Smoothness of Voice Leadings under the Maximal Evenness Ansatz, Bull. of Aichi Univ. of Education, Natural Science 67(1), pp. 1-10, 2018. http://hdl.handle.net/10424/00007532.
[7] Y. Hashimoto, A characterization of tonality via the rigidity of chords, Bull. of Aichi Univ. of Education, Natural Science 68, pp. 5-14, 2019. http://hdl.handle.net/10424/00008292.
[8] S. Koelsch, Brain and Music, John Wiley \& Sons Ltd., 2013.
[9] F. Lerdahl and R. Jackendoff, A Generative Theory of Tonal Music, MIT Press, 1983.
[10] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of mathematics and its applications 90, Cambridge University Press, 2002.
(Received September 24, 2019)

							m						
	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	1	1	1	1	1	1
1	1	2	2	2	2	2	2	2	3	3	3	3	3
2	3	3	4	4	4	4	4	4	4	5	5	5	5
$k 3$	5	5	5	6	6	6	6	6	6	6	7	7	7
4	7	7	7	7	8	8	8	8	8	8	8	9	9
5	9	9	9	9	9	10	10	10	10	10	10	10	11
6	11	11	11	11	11	11	12	12	12	12	12	12	12

TABLE 1. The case $c=13$ and $d=7$. Diatonic scales $\mathcal{J}_{13,7}^{m}$ and a tritone $T_{3}=(6,7) \sqsubset \mathcal{J}_{13,7}^{3}$ are shown. As $2 d-c=1$, the rigidity of T_{3} is 1 .

m												
	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	1	1	1	1	1
1	1	1	2	2	2	2	2	2	2	3	3	3
2	3	3	3	3	4	4	4	4	4	4	4	5
k^{3}	5	5	5	5	5	5	6	6	6	6	6	6
4	6	7	7	7	7	7	7	7	8	8	8	8
5	8	8	8	9	9	9	9	9	9	9	10	10
6	10	10	10	10	10	11	11	11	11	11	11	11

TABLE 2. The case $c=12$ and $d=7$. Diatonic scales $\mathcal{J}_{12,7}^{m}$ and a tritone $T_{3}=(3,9) \sqsubset \mathcal{J}_{12,7}^{3}$ are shown. As $2 d-c=2$, the rigidity of T_{3} is 2 . In terms of usual music theory, B^{b}-major scale has a tritone $E^{b} A$, and the tritone also contained in E-major scale $\mathcal{J}_{12,7}^{9}$. Note that $E^{\mathrm{b}} A$ is also tritone in E-major scale.
m

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	1	1	1	1
1	1	1	1	2	2	2	2	2	2	2	3
2	3	3	3	3	3	3	4	4	4	4	$T_{9} 4$
$k 3$	4	4	5	5	5	5	5	5	5	6	6
4	6	6	6	6	6	7	7	$7_{T_{8}}$	7	7	7
5	7	8	8	8	8	8	8	8	9	9	9
6	9	9	9	9	10	10	10	10	10	10	10

TABLE 3. The case $c=11$ and $d=7$. Diatonic scales $\mathcal{J}_{11,7}^{m}$ and a tritone $T_{3}=(2,9) \sqsubset \mathcal{J}_{11,7}^{3}$ are shown. As $2 d-c=3$, the rigidity of T_{3} is 3 . Indeed, $T_{3} \sqsubset \mathcal{J}_{11,7}^{8}$ and $T_{3} \sqsubset \mathcal{J}_{11,7}^{9}$, however, contrast to the case $2 d-c=2, T_{3}$ is not a tritone in these scales. We see $T_{8}=(5,9)$ and $T_{9}=(2,6)$.

[^0]: ${ }^{1)}$ The definition of an upper leading tone is unusual, because in usual music theory, a leading tone leads to the tonic, i.e. the key note of the considering scale.

