Combinatorics on Tritones in the General Diatonic System

Yukihiro HASHIMOTO

Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1. Tritone: a key concept of tonality

It is said that tonality is a collection of schematic expectancies in musical experiences, based on European culture (e.g. [8]). However, the tonal system continuously developed over the years has quite good properties from a combinatorial point of view. Indeed, we have seen that the maximal evenness ansatz explains combinatorial aspects of the general diatonic system, or goes together with tonality at least ([3][4][5][6][7]). In this paper, we give a combinatorial characterization of tritones in the general diatonic system in terms of the rigidity of chords[7], and we find tritones are key objects. We find that our combinatorial definition of tritones (Definition 3.4) induces the Leittonwechsel (=leading tone exchange) property and the leading tone property (Proposition 4.1), the combinatorial definition of leading tones (Definition 4.2), the specificity of the usual 12TET-7 notes diatonic system and the existence of the double tritone (Subsection 4.2), the tritone substitution in the general diatonic system and a combinatorial reason for the perfect cadence (Subsection 4.3).

2. Combinatorial description of the general diatonic system

All notations and definitions are inherited from [7], so we omit details. For a tuple $A = (a_i)$, |A| denotes the set $\{a_i\}$ consists of entries of A. If a tuple $B = (b_j)$ satisfies $|B| \subset |A|$ and that the inclusion $\iota : |B| \hookrightarrow |A|$ is increasing on indexes, that is, for $b_i, b_j \in B$ with i < j, i' < j' holds for $a_{i'} = \iota(b_i)$ and $a_{j'} = \iota(b_j)$, we call B is compatible with A and write $B \sqsubset A$.

Definition 2.1 (*J*-function by Clough and Douthett[1]). For $c, d, m \in \mathbb{Z}$ with c > d > 0, the *J*-function on \mathbb{Z} is defined as

$$J^m_{c,d}(k) = \left\lfloor \frac{ck+m}{d} \right\rfloor,\,$$

where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x. We note $\mathcal{J}_{c,d}^m$ as the tuple $(J_{c,d}^m(k))_{k=0,\dots,d-1}$ and $|\mathcal{J}_{c,d}^m|$ as the set $\{t \in \mathcal{J}_{c,d}^m\}$ of entries of $\mathcal{J}_{c,d}^m$.

Definition 2.2 (Chromatic scale and note). A chromatic scale Ch_c is a tuple $(f_0, f_1, \ldots, f_{c-1})$ of frequencies $f_0 < f_1 < \cdots < f_{c-1}$ satisfying $f_{c-1} < 2f_0$. A semitone encoding θ associated with the chromatic scale Ch_c is a map $|Ch_c| \ni f_k \mapsto k \in \mathbb{Z}$. An extension $\overline{Ch_c}$ of Ch_c is given by $\overline{Ch_c} = (2^n f_0, 2^n f_1, \ldots, 2^n f_{c-1})_{n \in \mathbb{Z}}$, and the semitone encoding θ is also extended to a bijection $\theta : |\overline{Ch_c}| \ni 2^n f_k \mapsto cn + k \in \mathbb{Z}$. We call an element of $\overline{Ch_c}$ a note.

Since tones with basic frequencies f and $2^n f, n \in \mathbb{Z}$ have a 'similar' quality for human ears, these tones are called *octave equivalent* to each other in music theory. This psychoacoustic fact is represented as $\theta(f) \equiv \theta(2^n f) \pmod{c}$. Therefore we often identify Ch_c with $\mathbb{Z}/c\mathbb{Z}$ and $\overline{Ch_c}$ with its covering space \mathbb{Z} . We also identify a tuple $X = (x_1, \ldots, x_n) \sqsubset Ch_c$ (or $\overline{Ch_c}$) with its image $\theta(X) = (\theta(x_1), \ldots, \theta(x_n))$, like $X = (\theta(x_1), \ldots, \theta(x_n))$ for short.

Definition 2.3 (Scale and diatonic scale). Given a chromatic scale Ch_c , a scale is a tuple $S = (t_0, t_1, \ldots, t_{d-1})$ compatible with Ch_c . Thus entries of S are arranged in ascending order $\theta(t_0) < \theta(t_1) < \cdots < \theta(t_{d-1})$ with $\theta(t_{d-1}) - \theta(t_0) < c$. We call S a diatonic scale whenever $\theta(S) \equiv \mathcal{J}_{c,d}^m \pmod{c}$ for some $m \in \mathbb{Z}$ (written as $S = \mathcal{J}_{c,d}^m$ for short). For a natural number $h, h \cdot S$ stands for an extension of S,

$$h \cdot S = (2^n t_0, \dots, 2^n t_{d-1})_{n=0,\dots,h-1}.$$

 \overline{S} denotes an infinite extension of S, $\overline{S} = (2^n t_0, \dots, 2^n t_{d-1})_{n \in \mathbb{Z}}$. The wholetone encoding η_S of S is a map $|\overline{S}| \ni 2^n t_k \mapsto dn + k \in \mathbb{Z}$. For a scale S and a note $t \in S$, upper note $u_S(t)$ and lower note $l_S(t)$ of t are given as notes in S such that $\eta_S(u_S(t)) = \eta_S(t) + 1$ and $\eta_S(l_S(t)) = \eta_S(t) - 1$.

Whenever S is a diatonic scale $\mathcal{J}_{c,d}^m$, it is well known as Myhill's property that

(2.1)
$$\theta(u_S(t)) - \theta(t), \theta(t) - \theta(l_S(t)) \in \{s, s+1\}, \qquad s = \left\lfloor \frac{c}{d} \right\rfloor$$

holds for any $t \in S$ (see e.g. [4][5]). Thus the intervals of length s and s + 1 correspond to the semitone and the whole tone respectively in usual music theory.

We see by definition that the relation between the semitone encoding θ and the whole tone encoding η is given by

(2.2)
$$\left\lfloor \frac{c\eta_{\mathcal{J}_{c,d}^m}(t) + m}{d} \right\rfloor = \theta(t)$$

for any $t \in \mathcal{J}_{c,d}^m \sqsubset Ch_c$.

Definition 2.4 (Chord and maximally even chord). A chord X belongs to a scale S is a tuple of notes $X = (x_0, \ldots, x_{e-1})$ compatible with $h \cdot S$ for some h. We call $oct(X) = \min\{h \mid X \sqsubset h \cdot S\}$ the octave range of X. If $\theta(x_p) \not\equiv \theta(x_q) \pmod{c}$ holds for any entries x_p and x_q of X, we call X prime. We call X maximally even whenever $\eta_S(X) \equiv \mathcal{J}_{d,e}^n \pmod{d}$ for some $n \in \mathbb{Z}$. We call X dyad whenever #|X| = 2.

Example 2.5. Usual western music is established on 12-tone chromatic scale,

$$Ch_{12} = (C, C^{\#}, D, D^{\#}, E, F, F^{\#}, G, G^{\#}, A, A^{\#}, B), A = 440$$
Hz, $A^{\#} = 466.16$ Hz,

We adopt the semitone encoding $\theta : |Ch_{12}| \to \mathbb{Z}/12\mathbb{Z}$,

$$\theta(C) = 0, \theta(C^{\#}) = 1, \theta(D) = 2, \dots, \theta(B) = 11.$$

Usual diatonic scales are given by $\mathcal{J}_{12,7}^m, m = 0, \dots, 11$. For instance, *C*-major scale $\mathcal{C} = CDEFGAB$ is expressed as a tuple $(0, 2, 4, 5, 7, 9, 11) = (J_{12,7}^5(k))_{k=0,\dots,6} = \mathcal{J}_{12,7}^5$. For *C*-major scale $\mathcal{J}_{12,7}^5$, we adopt a wholetone encoding η_C as

$$\eta_C(C) = 0, \eta_C(D) = 1, \eta_C(E) = 2, \eta_C(F) = 3, \eta_C(G) = 4, \eta_C(A) = 5, \eta_C(B) = 6.$$

For usual chromatic Ch_{12} , we put the set $\Delta_{12,7}$ of the extended diatonic scales, $\Delta_{12,7} = \{\overline{\mathcal{J}_{12,7}^m} \mid m = 0, \ldots, 11\}.$

3. Combinatorics on tritones

Definition 3.1 (Rigidity of chord). Given a chromatic scale Ch_c and a set S of extended scales in Ch_c . For a chord X in some $\overline{S} \in S$, putting $C_{S}(X) = \{\overline{S} \in S \mid X \sqsubset \overline{S}\}$, we define the *rigidity* $R_{S}(X)$ of X as the number of scales with which X is compatible,

$$R_{\mathcal{S}}(X) = \#\{\overline{S} \in \mathcal{S} \mid X \sqsubset \overline{S}\} = \#C_{\mathcal{S}}(X).$$

Hereafter, for a chromatic scale Ch_c , we take $d \in \mathbf{N}$ prime to c and d < c. Then we fix a unique solution (c^-, d^-) of

$$cc^- + dd^- = 1$$

with $0 < d^- < c$ and $-d < c^- < 0$. We consider a set of diatonic scales $\Delta_{c,d} = \{\mathcal{J}_{c,d}^m \mid m = 0, \dots, c-1\}$ compatible with a chromatic scale Ch_c . An interval [a, a + d) with $0 \le a < c$ in $\mathbf{Z}/c\mathbf{Z}$ is understood cyclic way as

$$[a, a+d) = \begin{cases} \{a, a+1, \dots, a+d-1\}, & \text{if } a+d \le c \\ \{a, a+1, \dots, c-1\} \cup \{0, 1, \dots, a+d-c-1\}, & \text{if } a+d > c \end{cases}$$

To observe the rigidity of chords, we firstly determine the rigidity of a note $t \in Ch_c$.

Proposition 3.2. For any note $t \in Ch_c$, we have

$$C_{\Delta_{c,d}}(t) = \{ \mathcal{J}_{c,d}^m \mid m \in I(t) = [\alpha(t), \alpha(t) + d) \subset \mathbf{Z}/c\mathbf{Z} \}$$

with $\alpha(t) \equiv \theta(t)d \pmod{c}$ and $0 \leq \alpha(t) < c$. Hence the rigidity $R_{\Delta_{c,d}}(t)$ of any note t is d.

Proof. $t \in \mathcal{J}_{c,d}^m$ holds if and only if there exists integer $k \in [0, d)$ such that

$$\theta(t)d \le ck + m < (\theta(t) + 1)d.$$

Taking the unique solution $l \in [0, d)$ and $\alpha(t) \in [0, c)$ of $cl + \alpha(t) = \theta(t)d$, we have

 $\alpha(t) \le c(k-l) + m < \alpha(t) + d.$

If $\alpha(t) + d \leq c$, we see k = l hence $\alpha(t) \leq m < \alpha(t) + d$. If $\alpha(t) + d > c$, as $m \in [0, c)$, we divide the inequality into two cases: k = l hence $\alpha(t) \leq m < c$, and k = l + 1 hence $0 \leq m < \alpha(t) + d - c$.

Therefore the compatible scales $C_{\Delta_{c,d}}(t)$ of a note $t \in Ch_c$ corresponds to the interval $I(t) = [\alpha(t), \alpha(t) + d) \subset \mathbf{Z}/c\mathbf{Z}$. This fact is quite useful for analysis of rigidity, indeed, the following is a direct consequent.

Proposition 3.3. For any chord $X = (t_1, \ldots, t_e) \sqsubset Ch_c$,

$$C_{\Delta_{c,d}}(X) = \left\{ \mathcal{J}_{c,d}^m \mid m \in \bigcap_{i=1}^e I(t) \subset \mathbf{Z}/c\mathbf{Z} \right\}.$$

Definition 3.4 (tritone). A dyad $T_m \sqsubset \mathcal{J}_{c,d}^m$ is called a *tritone* whenever $T_m \not\sqsubset \mathcal{J}_{c,d}^{m\pm 1}$.

In [7], we have mentioned the tritone as the dyad of minimum rigidity, hence it characterizes the scale that belongs to. However, essential quality of a tritone is the unstability among the related keys of the scale to which the tritone belongs.

Theorem 3.5. Each diatonic scale $\mathcal{J}_{c,d}^m$ contains a unique tritone $T_m = (t_1, t_2) \sqsubset \mathcal{J}_{c,d}^m$, which satisfies (3.1) $\theta(t_2) - \theta(t_1) = d^- - 1 \text{ or } c - d^- + 1,$

in the semitone encoding and

(3.2)
$$\eta_{\mathcal{J}_{c,d}^m}(t_2) - \eta_{\mathcal{J}_{c,d}^m}(t_1) = -c^- \text{ or } d + c^-$$

in the whole tone encoding. The tritone has minimum rigidity among dyads in $\mathcal{J}_{c,d}^m$

(3.3)
$$R_{\Delta_{c,d}}(T_m) = \min\{R_{\Delta_{c,d}}(X) \mid X = (x_1, x_2) \sqsubset \mathcal{J}_{c,d}^m\} = \max\{2d - c, 1\}$$

Proof. Since multiplying d induces a bijection $\mathbf{Z}/c\mathbf{Z} \ni x \mapsto xd \in \mathbf{Z}/c\mathbf{Z}$, we see

$$\{\alpha(t) \equiv \theta(t)d \pmod{c} \mid t \in Ch_c\} = \{0, 1, \dots, c-1\}.$$

Then for each diatonic scale $\mathcal{J}_{c,d}^m$, there exists a unique note $t_m^- \in |\mathcal{J}_{c,d}^m| \setminus |\mathcal{J}_{c,d}^{m-1}|$. We also see

$$\{\alpha(t) + d - 1 \pmod{c} \mid t \in Ch_c\} = \{0, 1, \dots, c - 1\},\$$

hence there exists a unique note $t_m^+ \in |\mathcal{J}_{c,d}^m| \setminus |\mathcal{J}_{c,d}^{m+1}|$. Putting

$$T_m = \begin{cases} (t_m^-, t_m^+), & \text{if } \theta(t_m^-) < \theta(t_m^+), \\ (t_m^+, t_m^-), & \text{if } \theta(t_m^+) < \theta(t_m^-), \end{cases}$$

we see T_m is a unique tritone compatible with $\mathcal{J}_{c,d}^m$ by construction. Taking the whole tone encoding of t_m^{\pm} , $k_m^{\pm} = \eta_{\mathcal{J}_{c,d}^m}(t_m^{\pm}) \in [0,d)$, we have

$$\left\lfloor \frac{ck_m^{\pm} + m}{d} \right\rfloor = \theta(t_m^{\pm})$$

by (2.2). By the definition of t_m^- , m is the left hand side of $I(t_m^-)$, $m = \alpha(t_m^-)$, and then

$$\theta(t_m^-) = \left\lfloor \frac{ck_m^- + m}{d} \right\rfloor = \frac{ck_m^- + m}{d}$$

hence

$$(3.4) ck_m^- + m = \theta(t_m^-)d.$$

We also see by the definition of t_m^+ , m is the right hand side of $I(t_m^+)$, that is,

$$m = \begin{cases} \alpha(t_m^+) + d - 1, & \text{whenever } \alpha(t_m^+) + d - 1 < c, \\ \alpha(t_m^+) + d - 1 - c, & \text{whenever } \alpha(t_m^+) + d - 1 \ge c, \end{cases}$$

then

$$\theta(t_m^+) + 1 = \left\lfloor \frac{ck_m^+ + m + 1}{d} \right\rfloor = \frac{ck_m^+ + m + 1}{d},$$

hence

(3.5)
$$ck_m^+ + m + 1 = (\theta(t_m^+) + 1)d.$$

Consequently we have

(3.6)
$$(\theta(t_m^+) - \theta(t_m^-))d \equiv 1 - d \pmod{c}$$
, i.e. $\theta(t_m^+) - \theta(t_m^-) \equiv d^- - 1 \pmod{c}$,

and as $\theta(t_m^{\pm}) \in [0, c)$, we have (3.1). It also comes from (3.4) and (3.5) that

$$k_m^- \equiv -c^- m \pmod{d}$$
 and $k_m^+ \equiv -c^- (m+1) \pmod{d}$

hence

$$k_m^+ - k_m^- \equiv -c^- \pmod{d}.$$

As $k_m^{\pm} \in [0, d)$, we have (3.2).

For any dyad $X = (x_1, x_2) \sqsubset \mathcal{J}_{c,d}^m$, its rigidity is given by

$$R_{\Delta_{c,d}}(X) = \# \left([\alpha(x_1), \alpha(x_1) + d) \cap [\alpha(x_2), \alpha(x_2) + d) \right),$$

where these intervals are taken as subsets of $\mathbf{Z}/c\mathbf{Z}$. Without loss of generality, we can assume $0 \le \alpha(x_1) < \alpha(x_2) < c$. Thus we just consider

$$R_{\Delta_{c,d}}(X) = \# \left([0,d) \cap [\alpha, \alpha+d) \right)$$

where $\alpha = \alpha(x_2) - \alpha(x_1)$. We note $R_{\Delta_{c,d}} \ge 1$ since $X \sqsubset \mathcal{J}_{c,d}^m$, thus at least we have

$$0 < \alpha < d \text{ or } 0 \le \alpha + d - 1 - c < d.$$

When $0 < \alpha < d$ only occurs, we see $\alpha + d \leq c$ and

$$R_{\Delta_{c,d}}(X) = \# ([0,d) \cap [\alpha, \alpha + d)) = \# \{\alpha, \alpha + 1, \dots, d - 1\} = d - \alpha \ge 2d - c.$$

When $0 \le \alpha + d - 1 - c < d$ only occurs, we see $\alpha \ge d$ and

$$R_{\Delta_{c,d}}(X) = \# ([0,d) \cap [\alpha, \alpha+d)) = \# \{0,1,\dots,\alpha+d-1-c\} = \alpha+d-c \ge 2d-c.$$

If both $0 < \alpha < d$ and $0 \le \alpha + d - 1 - c < d$ occur, we need $0 \le \alpha + d - 1 - c < 2d - 1 - c$, that is, $2d - c \ge 2$. In this case, we see

$$R_{\Delta_{c,d}}(X) = \# ([0,d) \cap [\alpha, \alpha + d))$$

= $\# (\{\alpha, \alpha + 1, \dots, d - 1\} \cup \{0, 1, \dots, \alpha + d - 1 - c\}) = 2d - c.$

Therefore we have

$$\min\{R_{\Delta_{c,d}}(X) \mid X = (x_1, x_2) \sqsubset \mathcal{J}_{c,d}^m\} = \max\{2d - c, 1\}$$

```
-4-
```

Again consider the tritone $T_m \sqsubset \mathcal{J}_{c,d}^m$. By (3.6) we have $\alpha(t_m^-) - \alpha(t_m^+) \equiv d-1 \pmod{c}$, so we may assume $\alpha(t_m^-) = d-1$ and $\alpha(t_m^+) = 0$. As $0 < \alpha(t_m^-) = d-1 < d$, if $\alpha(t_m^-) + d = 2d-1 \leq c$, we have

$$R_{\Delta_{c,d}}(T_m) = \# \left([0,d) \cap [d-1,2d-1) \right) = \# \{d-1\} = 1 \ge 2d-c.$$

If $0 \le \alpha(t_m^-) + d - 1 - c = 2d - 2 - c < d$, i.e., $2d - c \ge 2$, we have

$$R_{\Delta_{c,d}}(T_m) = \# \left([0,d) \cap \left([d-1,c) \cup [0,2d-1-c) \right) \right)$$
$$= \# \{0,1,\ldots,2d-2-c,d-1\} = 2d-c > 1$$

Hence $R_{\Delta_{c,d}}(T_m) = \max\{2d - c, 1\}.$

Tables 1, 2 and 3 show the relation between diatonic scales and tritones. When c = 13 and d = 7 (Table 1), the diatonic scale $\mathcal{J}_{13,7}^3$ contains a unique tritone $T_3 = (6,7)$ with rigidity $R_{\Delta_{13,7}}(T_3) = \max\{2d - c, 1\} = 1$, in other terms, no other diatonic scale contains T_3 . Thus T_3 uniquely determines the scale $\mathcal{J}_{13,7}^3$.

When c = 11 and d = 7 (Table 3), the diatonic scale $\mathcal{J}_{11,7}^3$ contains a unique tritone $T_3 = (2,5)$ with rigidity $R_{\Delta_{11,7}}(T_3) = \max\{2d - c, 1\} = 3$, so T_3 is not rare: we see $T_3 \sqsubset \mathcal{J}_{11,7}^8, \mathcal{J}_{11,7}^9$. Even so, no diatonic scale contains T_3 as a tritone except $\mathcal{J}_{11,7}^3$. $\mathcal{J}_{11,7}^8$ and $\mathcal{J}_{11,7}^9$ contain unique tritones $T_8 = (5,9)$ and $T_9 = (2,6)$ respectively.

Finally, when c = 12 and d = 7 (Table 2), the diatonic scale $\mathcal{J}_{12,7}^3(=B^{\flat}\text{-major})$ contains a unique tritone $T_3 = (3,9) = E^{\flat}A$ with rigidity $R_{\Delta_{12,7}}(T_3) = \max\{2d-c,1\} = 2$, so $T_3 = E^{\flat}A$ is also contained in $\mathcal{J}_{12,7}^9(=E-major)$. Moreover it is noticeable that T_3 is also the tritone in $\mathcal{J}_{12,7}^9$, that is, $|T_9| = |T_3|$. Therefore the diatonic system with 2d - c = 2 has a combinatorial special feature.

4. Tritone, leading tone and cadence: a combinatorial perspective

4.1. Tritone and leading tone. We have seen that a tritone T_m consists of two notes $t_m^- \in |\mathcal{J}_{c,d}^m| \setminus |\mathcal{J}_{c,d}^{m-1}|$ and $t_m^+ \in |\mathcal{J}_{c,d}^m| \setminus |\mathcal{J}_{c,d}^{m+1}|$. By construction, we see there exist $0 \leq k^-, k^+ < d$ such that

$$\theta(t_m^-)d = ck^- + m \text{ and } (\theta(t_m^+) + 1)d = ck^+ + m + 1,$$

hence

(4.1)
$$J_{c,d}^{m-1}(k^{-}) = \left\lfloor \frac{ck^{-} + m - 1}{d} \right\rfloor = \theta(t_m^{-}) - 1 \text{ and } J_{c,d}^{m+1}(k^{+}) = \left\lfloor \frac{ck^{+} + m + 1}{d} \right\rfloor = \theta(t_m^{+}) + 1,$$

meaning that

(4.2)
$$\theta(t_{m-1}^+) = \theta(t_m^-) - 1 \text{ and } \theta(t_{m+1}^-) = \theta(t_m^+) + 1.$$

That is, changing $t_m^- \to t_{m-1}^+$ and $t_m^+ \to t_{m+1}^-$ cause the modulation (=change of keys) $\mathcal{J}_{c,d}^m \to \mathcal{J}_{c,d}^{m-1}$ and $\mathcal{J}_{c,d}^m \to \mathcal{J}_{c,d}^{m+1}$ respectively. (4.2) corresponds to one of transformations in Neo-Riemannian theory, called *Leittonwechsel* (=leading tone exchange). Therefore we can expect that t_m^\pm act as leading tones in our combinatorial setting. Indeed, by (2.1) and (4.1), we have $(u_m = u_{\mathcal{J}_{c,d}^m}, l_m = l_{\mathcal{J}_{c,d}^m}$ for short)

$$\theta(u_m(t_m^-)) - \theta(t_m^-) = J_{c,d}^m(k^- + 1) - J_{c,d}^m(k^-) = \left\lfloor \frac{c}{d} \right\rfloor$$

$$< \left\lfloor \frac{c}{d} \right\rfloor + 1 = J_{c,d}^{m-1}(k^- + 1) - J_{c,d}^{m-1}(k^-) = \theta(u_{m-1}(t_{m-1}^-)) - \theta(t_{m-1}^-)$$

as $J_{c,d}^m(k^- + 1) = J_{c,d}^{m-1}(k^- + 1)$, and

$$\theta(t_{m-1}^{-}) - \theta(l_{m-1}(t_{m-1}^{-})) = J_{c,d}^{m-1}(k^{-}) - J_{c,d}^{m-1}(k^{-}-1) = \left\lfloor \frac{c}{d} \right\rfloor$$
$$< \left\lfloor \frac{c}{d} \right\rfloor + 1 = J_{c,d}^{m}(k^{-}) - J_{c,d}^{m}(k^{-}-1) = \theta(t_{m}^{-}) - \theta(l_{m}(t_{m}^{-}))$$

as $J_{c,d}^m(k^- - 1) = J_{c,d}^{m-1}(k^- - 1)$. Thus we have

$$\theta(u_m(t_m^-)) - \theta(t_m^-) < \theta(t_m^-) - \theta(l_m(t_m^-))$$

Considering the inequality, we can say that t_m^- leads to $u(t_m^-)$ according to usual music theory. Similarly, it comes from

$$\theta(t_m^+) - \theta(l_m(t_m^+)) = J_{c,d}^m(k^+) - J_{c,d}^m(k^+ - 1) = \left\lfloor \frac{c}{d} \right\rfloor$$

$$< \left\lfloor \frac{c}{d} \right\rfloor + 1 = J_{c,d}^{m+1}(k^+) - J_{c,d}^{m+1}(k^+ - 1) = \theta(t_{m+1}^+) - \theta(l_{m+1}(t_{m+1}^+))$$

and

$$\theta(u_{m+1}(t_{m+1}^+)) - \theta(t_{m+1}^+) = J_{c,d}^{m+1}(k^+ + 1) - J_{c,d}^{m+1}(k^+) = \left\lfloor \frac{c}{d} \right\rfloor$$
$$< \left\lfloor \frac{c}{d} \right\rfloor + 1 = J_{c,d}^m(k^+ + 1) - J_{c,d}^m(k^+) = \theta(u_m(t_m^+)) - \theta(t_m^+)$$

that

$$\theta(t_m^+) - \theta(l_m(t_m^+)) < \theta(u_m(t_m^+)) - \theta(t_m^+).$$

Hence t_m^+ leads to $l(t_m^+)$. We have shown the following.

Proposition 4.1. The tritone $T_m \sqsubset \mathcal{J}_{c,d}^m$ consists of two notes $|T_m| = \{t_m^-, t_m^+\}$ such that

(1) (Leittonwechsel property)

$$|\mathcal{J}_{c,d}^{m}| \bigtriangleup |\mathcal{J}_{c,d}^{m-1}| = \{t_{m-1}^{+}, t_{m}^{-}\}, \text{ and } |\mathcal{J}_{c,d}^{m}| \bigtriangleup |\mathcal{J}_{c,d}^{m+1}| = \{t_{m+1}^{-}, t_{m}^{+}\},$$

where $A \triangle B$ stands for XOR of A and B. We also have adjacent relations

 $\theta(t_{m-1}^+) = \theta(t_m^-) - 1 \quad and \quad \theta(t_{m+1}^-) = \theta(t_m^+) + 1.$

(2) (Tone leading property)

u

$$\theta(u_m(t_m^-)) - \theta(t_m^-) < \theta(t_m^-) - \theta(l_m(t_m^-)) \quad and \quad \theta(t_m^+) - \theta(l_m(t_m^+)) < \theta(u_m(t_m^+)) - \theta(t_m^+),$$

where we put $u_m = u_{\mathcal{J}_{c,d}^m}, l_m = l_{\mathcal{J}_{c,d}^m}.$

Of course, Psychoacoustic effects have brought the concept of the leading tone in usual music theory. When a people is hearing a melody in C-major scale, for instance, in European classical music theory it is said that the progressions from B to C and F to E bring a feeling of resolution, however, from C to B or Eto F does not. Regarding this asymmetry and Proposition 4.1, we propose a purely combinatorial definition of leading tones.

Definition 4.2. A note t in a diatonic scale $\mathcal{J}_{c,d}^m$ is called a *leading tone* whenever t is an entry of the tritone $|T_m| = \{t_m^-, t_m^+\} \subset |\mathcal{J}_{c,d}^m|$, that is, $t \notin \mathcal{J}_{c,d}^{m\pm 1}$. When $t = t_m^-$, we say t leads to $u_m(t)$, or t is a *lower* leading tone to $u_m(t)$. When $t = t_m^+$, we say t leads to $l_m(t)$, or t is an upper leading tone to $l_m(t)^{-1}$.

Thus Proposition 4.1 shows that t_m^- and t_m^+ lead to $u_m(t_m^-)$ and $l_m(t_m^+)$ respectively. Let us observe Table 1,2 and 3 again. The usual case c = 12 and d = 7 (Table 2), A = 9 (resp. $E^{\flat} = 3$) is the lower (resp. upper) leading tone to $B^{\flat} = 10$ (resp. D = 2) in B^{\flat} -major scale $\mathcal{J}_{12,7}^3$. In the case c = 11 and d = 7 (Table 3), we see 2 is the lower leading tone to 3, and 9 is the upper leading tone to 8 in the diatonic scale $\mathcal{J}_{11,7}^3$. We also find another adjacent semitone pair 5 and $6 \in \mathcal{J}_{11,7}^3$, however neither is the leading tone according to our definition, as they are contained in adjacent diatonic scales $\mathcal{J}_{11,7}^{3\pm1}$. In the case c = 13 and d = 7, the leading tones are degenerate: we see 6 and 7, entries of the tritone T_3 in $\mathcal{J}_{13,7}^3$, are leading tones to each other.

¹⁾The definition of an upper leading tone is unusual, because in usual music theory, a leading tone leads to the tonic, i.e. the key note of the considering scale.

4.2. Double tritone and diminished chord. We consider the case 2d - c = 2, where the rigidity of a tritone is 2, that is, a tritone is contained in two different diatonic scales. As a result, a tritone in a diatonic scale also acts as a tritone in another scale, that is, any tritone has 'twofold meaning'. As is seen above, Table 2 shows the tritone $T_3 = E^{\flat}A$ in B^{\flat} -major is also the tritone in *E*-major. However, the direction of leading tones are exchanged. $E^{\flat} = 3$ is the upper leading tone to D = 2 and A = 9 is the lower leading tone to $B^{\flat} = 10$ in B^{\flat} -major while $D^{\sharp} = 3$ is the lower leading tone to E = 4 and A = 9 is the upper leading tone to $G^{\sharp} = 8$ in *E*-major.

FIGURE 1. Double tritone $E^{\flat}A = D^{\sharp}A$. Every tritone has the twofold meaning.

We also note the mathematical specificity of the case as follows.

Lemma 4.3. Let d be prime to c, then 2d - c = 2 brings $d^2 \equiv 1 \pmod{c}$, that is, $d^- = d$, and $c^- = -\frac{d+1}{2}$. Proof. c = 2(d-1) means c is even, thus d is odd. Then we can put d = 2l + 1 and c = 4l for some $l \in \mathbf{N}$, hence $d^2 = 4l(l+1) + 1 \equiv 1 \pmod{c}$. We also see

$$c\left(-\frac{d+1}{2}\right) = -2l(2l+2) = -(d-1)(d+1) \equiv 1 \pmod{d}$$

and $-d < -\frac{d+1}{2} < 0$, hence the assertion.

t

In our setting 2d - c = 2, the semitone interval s becomes $s = \lfloor c/d \rfloor = 1$, that is, the interval of two adjacent notes in Ch_c coincides with the semitone, as usual musical theory.

Theorem 4.4. Consider the case 2d - c = 2. Then the tritone in $\mathcal{J}_{c,d}^m$ coincides with the tritone in $\mathcal{J}_{c,d}^{m+d-1}$: $|T_m| = |T_{m+d-1}|$. Their entries satisfy

$$t_m^+ = t_{m+d-1}^-$$
 and $t_m^- = t_{m+d-1}^+$ up to ocatve equivalence.

The tritone T_m divides the chromatic scale Ch_c into two equal parts. Moreover, as a dyad, T_m is a maximally even chord in \mathcal{J}_{cd}^m .

Proof. Noticing $d - 1 \equiv 1 - d \pmod{c}$, we see by (3.4) and (3.5),

$$\theta(t_{m+d-1}^{-})d \equiv m+d-1 \equiv m+1-d \equiv \theta(t_m^{+})d \pmod{c}$$

and

$$\theta(t_{m+d-1}^+)d \equiv m+d-1+(1-d) = m \equiv \theta(t_m^-)d \pmod{c},$$

equivalently $\theta(t_{m+d-1}^-) \equiv \theta(t_m^+)$ and $\theta(t_{m+d-1}^+) \equiv \theta(t_m^-) \pmod{c}$, hence the assertion.

Suppose $\theta_m(t_m^-) < \theta_m(t_m^+)$ and thus $\eta_m(t_m^-) < \eta_m(t_m^+)$. By Theorem 3.5 and Lemma 4.3,

$$\theta(t_m^+) - \theta(t_m^-) = d^- - 1 = d - 1 = \frac{c}{2}$$

We also have

$$\eta_m(t_m^+) - \eta_m(t_m^-) = -c^- = \frac{d+1}{2}$$
, hence $(\eta_m(t_m^-) + d) - \eta_m(t_m^+) = \frac{d-1}{2}$

$$-7-$$

showing that T_m satisfies the Myhill's property (2.1) for $s = \lfloor c/d \rfloor = 1$. Thus T_m is a maximally even chord in $\mathcal{J}^m_{c,d}$.

It is well known that a diminished chord, like $BDFA^{\flat}$, consists of two different tritones, like BF and DA^{\flat} , and divides the chromatic scale Ch_{12} into four equal parts, $BD, DF, FA^{\flat}, A^{\flat}B$. These are true in our general situation.

Corollary 4.5 (diminished chord). Let $X = (t_0, t_1, t_2, t_3) \sqsubset Ch_c$ be a chord with $\theta(t_k) \equiv \frac{c}{4}k + n \pmod{c}$ for some integer $0 \le n < \frac{c}{4}$. Then (t_0, t_2) (resp. (t_1, t_3)) is a tritone compatible with $\mathcal{J}_{c,d}^m$ and $\mathcal{J}_{c,d}^{m+d-1}$ (resp. $\mathcal{J}_{c,d}^{m'}$ and $\mathcal{J}_{c,d}^{m'+d-1}$), where $m \equiv nd \pmod{c}$ and $m' \equiv \left(\frac{c}{4} + n\right)d \pmod{c}$.

Proof. As is seen in the proof of Lemma 4.3, we can put c = 4l and d = 2l + 1 for some $l \in \mathbb{Z}$, and then $\theta(t_2) - \theta(t_0) = 2l = d - 1 = d^- - 1$ By (3.1),(3.4) and Theorem 4.4, we see that (t_0, t_2) is a tritone compatible with $\mathcal{J}_{c,d}^m$ and $\mathcal{J}_{c,d}^{m+d-1}$, where $m \equiv \theta(t_0)d \pmod{c}$. The proof for (t_1, t_3) is the same.

4.3. Tritone substitution and perfect cadence: a combinatorial reason. In usual music theory, leading tones are supposed to bring progressions of chords. In *C*-major scale for instance, since *B* leads to *C* and *F* leads to *E*, so the perfect cadence such as $G7 = (GBDF) \rightarrow C = (CEG)$ gives a feeling of resolution. In terms of the functional harmony theory, this progression is described as V^7 to *I*, where the root *G* of the chord *G*7 moves to the root *C* of the chord *C*, which is the origin of what we call the descending 5th progression. However as is seen above, since the tritone *BF* is also compatible with F^{\sharp} -major scale, we can borrow the V^7 chord in F^{\sharp} -major, $C^{\sharp}7 = (C^{\sharp}FG^{\sharp}B)$ instead of *G*7. Thus we obtain another progression $C^{\sharp}7 \rightarrow C$, so called the *tritone substitution*, where the motion $C^{\sharp} \rightarrow C$ of their roots is more 'smooth' than the original $G \rightarrow C$.

FIGURE 2. The perfect cadence (left) and its tritone substitution (right).

From our combinatorial viewpoint, we may adopt such a smooth chromatic motion of roots as a principle of chord progressions in tonal music. As is seen in Theorem 4.4, any tritone itself becomes a maximally even chord in its compatible scales, so, we assume that we can take a maximally even chord containing the given tritone (and this is true for the usual case c = 12 and d = 7). Let $V_m = (v_0^m, \ldots, v_{e-1}^m)$ be a maximally even chord of $\mathcal{J}_{c,d}^m$ containing the tritone $T_m \sqsubset V_m$. Without loss of generality, we assume v_0^m is the 'root' of V_m . Theorem 4.4 also suggests that there exists the maximally even chord V_{m+d-1} containing T_m , which coincides with (d-1)-semitones translation of V_m : $\theta(v_k^{m+d-1}) \equiv \theta(v_k^m) + d - 1 \pmod{c}$. A chromatic progression $V_m \to V_{m-1}$ induces a semitone motion of roots: $\theta(v_0^m) - \theta(v_0^{m-1}) \equiv 1 \pmod{c}$. Then applying the tritone substitution to V_m , the resultant progression $V_{m+d-1} \to V_{m-1}$ induces descending d-semitones motion of roots:

$$\theta(v_0^{m+d-1}) - \theta(v_0^{m-1}) \equiv \theta(v_0^m) + d - 1 - \theta(v_0^{m-1}) \equiv d \pmod{c}.$$

Figure 3 illustrates our combinatorial approach to the descending 5th motion. We first take the dominant 7th (omit 5th) GBF in C-major scale. Then we progress the chord chromatic way, hence their root moves smoothly, like $G \to F^{\sharp} \to F \to E \to \cdots$. After that, we apply the tritone substitution to $F^{\sharp}7, E7, \ldots$, then the roots moves in 5th-descending way.

Summing up, we at first consider the chromatic progression which brings a smooth motion of roots, and apply the tritone substitution to any chords in the progression as necessary, then we obtain the descending *d*-semitones progression. Therefore at least from our combinatorial viewpoint, there is no priority to the perfect cadence.

FIGURE 3. A combinatorial example for the descending 5th sequence (5th = 7-semitones). At first, we take a chromatic sequence of the dominant 7th chords (A). Then we apply tritone substitutions. As a result, we obtain the descending 5th sequence (B).

References

- [1] J. Clough and J. Douthett, Maximal Even Sets, Journal of Music Theory 35, pp. 93-173, 1991.
- [2] J. Douthett, Filtered Point-Symmetry and Dynamical Voice-Leading, in J. Douthett, M. Hyde and C. Smith(eds.), Music Theory and Mathematics: Chords, Collections, and Transformations, Chapter 4, University of Rochester Press, pp. 72-106, 2008.
- [3] Y. Hashimoto, Spatio-temporal symmetry on circle rotations and a notion on diatonic set theory, Bull. of Aichi Univ. of Education, Natural Science 63, pp. 1-9, 2014. http://hdl.handle.net/10424/5380.
- [4] Y. Hashimoto, A dynamical characterization of Myhill's property, Bull. of Aichi Univ. of Education, Natural Science 64, pp. 1-9, 2015. http://hdl.handle.net/10424/5978.
- [5] Y. Hashimoto, Maximally evenness ansatz and diatonic system, Bull. of Aichi Univ. of Education, Natural Science 66, pp. 7-16, 2017. http://hdl.handle.net/10424/7039.
- [6] Y. Hashimoto, Smoothness of Voice Leadings under the Maximal Evenness Ansatz, Bull. of Aichi Univ. of Education, Natural Science 67(1), pp. 1-10, 2018. http://hdl.handle.net/10424/00007532.
- [7] Y. Hashimoto, A characterization of tonality via the rigidity of chords, Bull. of Aichi Univ. of Education, Natural Science 68, pp. 5-14, 2019. http://hdl.handle.net/10424/00008292.
- [8] S. Koelsch, Brain and Music, John Wiley & Sons Ltd., 2013.
- [9] F. Lerdahl and R. Jackendoff, A Generative Theory of Tonal Music, MIT Press, 1983.
- [10] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of mathematics and its applications 90, Cambridge University Press, 2002.

(Received September 24, 2019)

m													
	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	1	1	1	1	1	1
1	1	2	2	2	2	2	2	2	3	3	3	3	3
2	3	3	4	4	4	4	4	4	4	5	5	5	5
k 3	5	5	5	6,	6	6	6	6	6	6	7	7	7
4	7	7	7	7^{\dagger}	8	8	8	8	8	8	8	9	9
5	9	9	9	9	9	10	10	10	10	10	10	10	11
6	11	11	11	11	11	11	12	12	12	12	12	12	12

TABLE 1. The case c = 13 and d = 7. Diatonic scales $\mathcal{J}_{13,7}^m$ and a tritone $T_3 = (6,7) \sqsubset \mathcal{J}_{13,7}^3$ are shown. As 2d - c = 1, the rigidity of T_3 is 1.

m													
		0	1	2	3	4	5	6	7	8	9	10	11
	С	0	0	0	0	0	0	0	1	1	1	1	1
	1	1	1	2	2	2	2	2	2	2	3	3	3
	2	3	3	3	3	4	4	4	4	4	4	4	5
k^{\pm}	3	5	5	5	5	5	5	6	6	6	6	6	6
4	4	6	7	7	7	7	7	7	7	8	8	8	8
!	5	8	8	8	9	9	9	9	9	9	9	10	10
(6	10	10	10	10	10	11	11	11	11	11	11	11

TABLE 2. The case c = 12 and d = 7. Diatonic scales $\mathcal{J}_{12,7}^m$ and a tritone $T_3 = (3,9) \sqsubset \mathcal{J}_{12,7}^3$ are shown. As 2d - c = 2, the rigidity of T_3 is 2. In terms of usual music theory, B^{\flat} -major scale has a tritone $E^{\flat}A$, and the tritone also contained in *E*-major scale $\mathcal{J}_{12,7}^9$. Note that $E^{\flat}A$ is also tritone in *E*-major scale.

						т					
	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	1	1	1	1
1	1	1	1	2	2	2	2	2	2	2	3
2	3	3	3	3	3	3	4	4	4	4	$_{T_{9}}4$
k 3	4	4	5	5	5	5	5	5	5	6	6
4	6	6	6	6	6	7	7	7_{T_8}	7	7	7
5	7	8	8	8	8	8	8	8	9	9	9
6	9	9	9	9	10	10	10	10	10	10	10

TABLE 3. The case c = 11 and d = 7. Diatonic scales $\mathcal{J}_{11,7}^m$ and a tritone $T_3 = (2,9) \sqsubset \mathcal{J}_{11,7}^3$ are shown. As 2d - c = 3, the rigidity of T_3 is 3. Indeed, $T_3 \sqsubset \mathcal{J}_{11,7}^8$ and $T_3 \sqsubset \mathcal{J}_{11,7}^9$, however, contrast to the case 2d - c = 2, T_3 is not a tritone in these scales. We see $T_8 = (5,9)$ and $T_9 = (2,6)$.