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Abstract

　We consider the Cauchy problem to some linear partial differential equations with entire Cauchy data. We see 
that the summability condition for the formal solution is equivalent to the convergence in some case.

1  Introduction

We shall consider the following Cauchy problem for linear partial differential equations⎧⎨⎩∂
p
t u(t, x) = ∂qxu(t, x),

u(0, x) = ϕ(x) ∈ Ox, ∂itu(0, x) = 0 (1 ≤ i ≤ p− 1),
(CP)

where (t, x) ∈ C2, p and q are natural numbers with q > p, and Ox denotes the set of all holomorphic functions in a neighborhood 
of the origin x = 0. The Cauchy problem (CP) has a unique formal solution of the form

(1.1) û(t, x) =
∑
n≥0

ϕ(qn)(x)
tpn

(pn)!

put
=
∑
n≥0

un(x)t
n ∈ Ox[[t]]1/k(0)

(
k(0) =

p

q − p

)
,

which is divergent in general by the assumption that q > p.
　Here the notation Ox[[t]]1/k denotes the set of formal power series in t with the coefficients un(x) which are holomorphic in a 
common closed disc B(r) := {x ∈ C; |x| ≤ r} for some r > 0 and satisfy the following Gevrey type estimates

(1.2) max
|x|≤r

|un(x)| ≤ CKnΓ(1 + n/k)

with some positive constants C and K for any nonnegative integer n. In this case, we say that the Gevrey order of û is (at most) 
1/k.
　In order to explain our problem, we define a class Exp(γ; C) or Expx(γ; C) of entire functions for γ  > 0 by

Exp(γ;C) := {f(x) ∈ O(C); |f(x)| ≤ C exp(δ|x|γ) for some C, δ > 0} ,
where O(C) denotes the set of entire functions. By an easy calculation, we see that

f(x) ∈ Exp(γ;C) ⇐⇒ |f (n)(0)| ≤ ABn(n!)1−1/γ

for all n by some positive constants A and B. From this fact, a characterization of the convergence of the formal solution (1.1) is 
stated as follows.

Theorem 1 (Miyake [4]) The formal solution û(t, x) is convergent if and only if φ(x) ∈ Exp(q/(q － p); C) for the Cauchy data.
　We assume that the Cauchy data φ(x) belongs to a class of entire functions as follows

(1.3) ϕ(x) ∈ Exp (q/�;C) , 0 ≤ � ≤ q − p− 1 (� ∈ N).

When ℓ = 0, we understand that Exp(q/0; C) = Ox which does not make any contradiction in the results. In this case, we have 
for the Gevrey order of the formal solution

(1.4) û(t, x) ∈ Ox[[t]]1/k(�), k(�) = p/(q − p− �) ≥ k(0) = p/(q − p).
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Our problem is to give a characterization of k(ℓ)-summability of the formal solution (1.1) under the assumption (1.3) for the 
Cauchy data.
　The organization of the paper is as follows. In Section 2, we give a definition of k-summability and we review a result of  k(0)-
summability of û(t, x). In Section 3, we give the main Theorem (Theorem 3) and its corollary. For proving the main Theorem, 
we give a result of k(ℓ)-summability of û(t, x), which has already obtained in our papers [5, 6], and give a rough proof in Section 
4. In Section 5, we give a proof of the main Theorem.

2  Review of a result of k(0)-summability

We first give the definition of Gevrey asymptotic expansion and k-summability (cf. [1]).

　For d ∈ R, α > 0 and ρ (0 < ρ ≤ ∞), we define a sector S = S(d, α, ρ) by

S(d, α, ρ) := {t ∈ C; |d− argt| < α/2, 0 < |t| < ρ} ,
where d, α and ρ are called the direction, the opening angle and the radius of S, respectively. We write S(d, α, ∞) = S(d, α) for 
short.
　Let k > 0, v̂(t, x) = 

∑∞
n=0vn(x)tn∈ Ox[[t]]1/k and v(t, x) be an analytic function on S(d, α, ρ) × B(r). Then we say that v(t, x) 

has a Gevrey  asymptotic expansion v̂(t, x) of order k in S(d, α, ρ), which is denoted by

v(t, x) ∼=k v̂(t, x) in S(d, α, ρ),

if for any closed subsector S′ of S(d, α, ρ), there exist some positive constants C and K such that for any N , we have

(2.1) max
|x|≤r

∣∣∣∣∣v(t, x)−
N−1∑
n=0

vn(x)t
n

∣∣∣∣∣ ≤ CKN |t|NΓ(1 +N/k), t ∈ S ′.

　For k > 0, d ∈ R and v̂(t, x) ∈ Ox[[t]]1/k, we say that v̂(t, x) is k-summable in d direction, which is denoted by v̂(t, x) ∈ 
Ox{t}k,d, if there exist a sector S = S(d, α, ρ) with α > π/k and an analytic function v(t, x) on S × B(r) such that v(t, x) ∼=k v̂(t, x) 
in S.
　We remark that the function v(t, x) above for a k-summable v̂(t, x) is unique if it exists. Therefore such a function v(t, x) is 
called the k-sum of v̂(t, x) in d direction.
　Now, we give a result of the k(0)-summability for the formal solution (1.1) of (CP).

Theorem 2 (Miyake [4]) Let φ(x) ∈ Ox  for the Cauchy data. For d ∈ R and ε > 0, we put

Then û(t, x) ∈ Ox{t}k(0),d if and only if the following conditions are satisfied.

(i) ϕ(x) ∈ O (Ωp
q(d, ε)
)
, (ii) |ϕ(x)| ≤ Ceδ|x|

q/(q−p)
(x ∈ Ωp

q(d, ε))

by some positive constants C and δ. Here O(Ω) denotes the set of holomorphic functions on a domain Ω.
The conditions (i) and (ii) can be expressed in a simplified form as follows. Let us define

Φ(x, ζ) :=

q−1∑
j=0

ϕ(x+ ωj
qζ) (ωq = e2πi/q).

Then the conditions (i) and (ii) are equivalent to that

(2.3) Φ(x, ζ) ∈ Expζ
(

q

q − p
;S(pd/q, ε1)

)
uniformly in x in a neighborhood of x = 0 by some positive constant ε1.

(2.2) Ωp
q(d, ε) :=

q−1⋃
j=0

S

(
pd+ 2πj

q
, ε

)
.
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3  Main Theorem

In the following, we assume that

(3.1) ϕ(x) ∈ Exp (q/�;C) , 0 ≤ � ≤ q − p− 1 (� ∈ N).

In this case, the Gevrey order of the formal solution is given by

(3.2) û(t, x) ∈ Ox[[t]]1/k(�), k(�) = p/(q − p− �) ≥ k(0) = p/(q − p).

Our problem is to obtain the corresponding result with � ≥ 1 to Theorem 2 with � = 0 under the assumption (3.1). Before giving 
our results, we give a definition of k-summability on an interval for formal series.
　Let I ⊂ R be an interval. For k > 0 and v̂(t, x) ∈ Ox[[t]]1/k, we say that v̂(t, x) is k-summable on I, which is denoted by v̂(t, 
x) ∈ Ox{t}k,I , if for any d̃∈ I, v̂(t, x) ∈ Ox{t}

k,d̃
.

　Now, our main theorem is stated as follows.

Theorem 3 We assume that φ(x) ∈ Exp (q/�; C).
　• When � = 1, for given d ∈ R and ε > 0, let Id(p, ε) be an interval (d － π/(2p) － ε, d + π/(2p) + ε). Then we have

û(t, x) ∈ Ox{t}k(1),Id(p,ε) ⇐⇒ ϕ(x) ∈ Exp(q/(q − p); Ωp
q(d, ε

′))

　   for a sufficiently small ε′ > 0, where Ωp
q(d, ε′) is given by (2.2).

　• When � ≥ 2, we have

û(t, x) ∈ Ot,x ⇐⇒ ϕ(x) ∈ Exp(q/(q − p); Ωp
q(d, ε)).

　From Theorems 1 and 3, we have the following corollary.

Corollary 4 We assume that φ(x) ∈ Exp(q/�; C) with � ≥ 2. Then we have

ϕ(x) ∈ Exp(q/(q − p); Ωp
q(d, ε)) ⇐⇒ ϕ(x) ∈ Exp(q/(q − p);C).

Corollary 4 can be also proved directly by using a theorem of Phragmén [7, p. 342]. We omit the detail.

Remark 5 The results for q-difference-differential equations corresponding to Theorem 3 and Corollary 4 for partial differential 
equations have been already obtained (cf. [2]).
　We give an important lemma of the summability theory for proving Theorem 7, which will be given in next section (cf. [1, 3, 
4]).

Lemma 6 Let k > 0, d ∈ R and f̂ (t, x) ∈ Ox[[t]]1/k. Then the following two statements are equivalent.

iterated formal Borel transforms of f̂ (t, x)

(3.3) g(s, x) := (B̂kJ ◦ · · · ◦ B̂k1 f̂)(s, x),

where the formal k-Borel transform B̂k is defined as follows: for f̂ (t, x) = 
∑

n≥0 fn(x)tn, we definefi

(B̂kf̂)(s, x) =
∑
n≥0

fn(x)
sn

Γ(1 + n/k)

Then g(s, x) ∈ Exps(k; S(d, ε) × B(r)) for some ε > 0 and r > 0.
　Moreover, under the condition (ii), the k-sum f (t, x) of f̂ (t, x) is given by the iterated Laplace transforms of g(s, x)

(3.4) f(t, x) = (Lk1,d ◦ · · · ◦ LkJ ,dg)(t, x),

where

(i) f̂(t, x) ∈ Ox{t}k,d.
(ii) Let {kj}Jj=1 (kj > 0, J ≥ 1) satisfy 1/k = 1/k1+ · · ·+1/kJ , and we define g(s, x) by

(Lk,dg)(t, x) :=
1

tk

∫ ∞(d)

0

exp

(
−
(s
t

)k)
g(s, x)d(sk)
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with the path taken from 0 to ∞ along arg s = d. We write Lk,dg = Lkg for short.
　At the end of this section, we give the definition of Borel transform ([1]). Let S = S(d, α, ρ) be a sector with α > π/k. If f (s) is 
analytic in S and is bounded at the origin, we define the k-Borel transform of f by

where γk(d) denotes the path from the origin along arg s = d + (ε + π)/(2k) to some point s1 with a positive ε, then along the circle 
|s| = |s1| to the ray arg s = d － (ε + π)/(2k), and back to the origin along this ray such that γk(d) ⊂ S.

4  A result of k(ℓ)-summability

Before giving a proof of Theorem 3, we give a result of k(ℓ)-summability for the formal solution û(t, x) of (CP) which was given 
in [5, 6] and we give a rough proof.

Theorem 7 Let φ(x) ∈ Exp(q/�; C) (1 ≤ � ≤ q － p － 1) and d ∈ R. Then û(t, x) ∈ Ox{t}k(�),d (k(�) = p/(q － p － �)) if

uniformly for small |x|.
Proof of Theorem 7 We recall k(�) = p/(q － p － �) and we assume that

ϕ(x) ∈ Exp (q/�;C) .
Let v(s, x) be (q － p － �) times iterated formal p-Borel transforms of û

which is convergent in a neighborhood of (s, x) = (0, 0). Then for the proof of k(�)- summability of û(t, x) in a direction d, it is 
enough to prove

(4.3) v(s, x) ∈ Exps(k(�);S(d, ε1)× B(r)) (k(�) = p/(q − p− �))

for some positive constants ε1 and r under the assumption Φq(x, ζ) ∈ Expζ (q/(q－p); S(pd/q, ε)) uniformly for x ∈ B(r). For that 
purpose, we further take � times iterated p-Borel transforms for v(s, x) and put

In this case, from the fact v(s, x) ∈ Os,x or φ(x) ∈ Exp(q/�; C), we see that w(τ, x) ∈ Expτ (p/ℓ; C2). Moreover, we can prove 
the following lemma.

Lemma 8

for a sufficiently small ε′1 > 0,
By admitting Lemma 8, we immediately get the desired property (4.3) for v(s, x). In fact, since v(s, x) is given by

we get the desired estimate for v(s, x) by repeating the following lemma (cf. [1]).

Lemma 9 We assume f (τ) ∈ Expτ (p/q; S(d, ε)), where p, q ∈ N. We put F (s) := (Lpf)(s). Then we have F (s) ∈ 
Exps (p/(q － 1); S(d, π/p + ε′)) with ε′ < ε.
Finally, we give a outline of a proof of Lemma 8. In the expression (4.4), after using the Cauchy integral formula for φ(x), we 

(Bkf)(τ) =
−k
2πi

∫
γk(d)

f(s)e(τ/s)
k

ds/s,

(4.1) Φq(x, ζ) =

q−1∑
j=0

ϕ(x+ ωj
qζ) ∈ Expζ(q/(q − p);S(pd/q, ε)) (ωq = e2πi/q)

(4.2) v(s, x) := (B̂q−p−�
p û)(s, x) =

∑
n≥0

ϕ(qn)(x)

(pn)!

spn

n!q−p−�
,

(4.4) w(τ, x) := (B�
pv)(τ, x) = (B̂q−p

p û)(τ, x) =
∑
n≥0

ϕ(qn)(x)

(pn)!

τ pn

n!q−p

(4.5) w(τ, x) ∈ Expτ (p/(q − p);S(d, ε′1)× B(r))

v(s, x) = (L�
pw)(s, x),
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represent the integral kernel function as a hypergeometric series. From the properties of an analytic continuation and the 
singularity of the kernel function, we can obtain the desired estimate for w (cf. [5, 6, 2]).

Remark 10 We remark that under the assumptions φ(x) ∈ Exp(q/�; C) and (4.1), we can prove û(t, x) ∈ Ox{t}k(�),d+2πi/p for 0 ≤ 
i ≤ p － 1.

5  Proof of Theorem 3

By Remark 10 in the previous section, we see that Lemma 8 is rewritten as follows.

where Sp(d, ε′1 ) = ∪p−1
i=0S(d + 2πi/p, ε′1 ). Moreover, by Lemma 9, we have

where ε2 < ε′1.

5.1  Proof of Theorem 3 when ℓℓ ≥ 2
When � ≥ 2, since Sp(d, ε2 +�π/p) ⊃ C, we see from (5.1) that v(s, x) ∈ Exps(k(�); C×B(r)), which means that û(t, x) ∈ Ot,x

. Inversely, if û(t, x) ∈ Ot,x, it is obvious that φ(x) ∈ Exp(q/(q － p); C) from Theorem 1.

5.2  Proof of the necessity of Theorem 3 when ℓ = 1
When � = 1, we have v(s, x) ∈ Exps(k(1); Sp(d, ε2 + π/p) × B(r)). Therefore by putting the interval Id(p, ε′) for a sufficiently 
small ε′ > 0 by

we see that for any d̃∈ Id(p, ε′), we have û(t, x) ∈ Ox{t}
k(1),d̃

.

5.3  Proof of the sufficiency of Theorem 3 when ℓ = 1
We prove that φ(x) ∈ Exp(q/(q－p); Ωp

q(d, ε′)) under the assumption û(t, x) ∈ Ox{t}
k(1),Id(p,ε)

 for some positive ε′ and ε, where 
k(1) = p/(q － p － 1) and

　We put d(i) = d + 2πi/p for i = 0, 1, . . . , p － 1. Then by Remark 10, we have û(t, x) ∈ Ox{t}k(1),Id(i)(p,ε) for i = 0, 1, . . . , p － 1.
　Let v(s, x) = (B̂q−p−1

p û)(s, x). Then v(s, x) satisfies the following Cauchy problem which is obtained by the iterated formal 
Borel transforms of (CP)

where δ̃s = (1/p)s∂s. In fact, it is deduced from the following commutative diagram.

w(τ, x) ∈ Expτ (p/(q − p);Sp(d, ε
′
1)× B(r)) ,

(5.1) v(s, x) = (L�
pw)(s, x) ∈ Exps(k(�);Sp(d, ε2 + �π/p)× B(r)),

Id(p, ε
′) = (d− π/(2p)− ε′, d+ π/(2p) + ε′) ,

Ωp
q(d, ε

′) =
q−1⋃
j=0

S

(
pd+ 2πj

q
, ε′
)
, Id(p, ε) =

(
d− π

2p
− ε, d+

π

2p
+ ε

)
.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ps δ̃s

q−p−1
v(s, x) = ∂qxv(s, x),

v(0, x) = ϕ(x) ∈ O(C),
∂isv(0, x) = 0 (1 ≤ i ≤ p− 1),

(5.2)

tpn
spn

n!q−p−1

(pn)!

(p(n− 1))!t
p(n−1) (pn)!

(p(n− 1))!
sp(n−1)

(n− 1)!q−p−1

�
B̂q−p−1
p

�

∂p
t

�
∂p
s
˜δs

q−p−1

�
B̂q−p−1
p
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Then we remark that v(s, x) ∈ Exps(k(1); Sp,R(d, ε1 + π/p) × C) for some positive R and ε1 since û(t, x) ∈ Ox{t}k(1),Id(i)(p,ε) for 
0 ≤ i ≤ p － 1, where

for α > 0.
　Now, we can regard v(s, x) as a unique solution in a neighborhood at (s, x) = (0, 0) of the following Cauchy problem with 
respect to x direction

for some functions ϕj(s). Here we remark that the equation (5.3) is of Kowalevski type for partial differential equations.
　In this case, we can assume that ϕj(s) ∈ Exp(k(1); Sp,R(d, ε1 + π/p)) for all j.
　We put

Then w(τ, x) satisfies the following Cauchy problem

For this w(τ, x), we can regard w(τ, x) as a unique solution in a neighborhood at (τ, x) = (0, 0) of the following Cauchy problem 
with respect to x direction

Here for 0 ≤ j ≤ q － 1, ψj(τ) are given by p-Borel transform of ϕj(s)

where d̃  ∈ R is arbitrary. In this case, since ϕj(s) ∈ Os, we see that ψj(τ) ∈ Exp(p; C) for all j. Moreover, since ϕj(s) ∈ 
Exp(k(1); Sp,R(d, ε1 + π/p)) (0 ≤ j ≤ q － 1), we have the following lemma, which is immediately obtained from the property of 
Borel transform (cf. [1]).

Lemma 11

for a sufficiently small ε′1.
Let us prove φ(x) = w(0, x) ∈ Exp(q/(q － p), Ωp

q(d, ε′)) under the assumptions (5.8).
　In the following, we write ψ0(τ) by ψ(τ) and we assume that ψj(τ) = 0 (1 ≤ j ≤ q － 1) without loss of generality.
　Since w(τ, x) satisfies the Cauchy problem (5.6), by putting w(τ, x) = 

∑
n≥0 wn(τ)xn/n!, we have

Therefore since (∂pτ δ̃τ
q−p

)nψ(0) = ψ(pn)(0)n!q－p after some calculations, we have

Sp,R(d, α) := B(R) ∪ Sp(d, α), Sp(d, α) =

p−1⋃
i=0

S

(
d+

2πi

p
, α

)

⎧⎨⎩∂ps δ̃s
q−p−1

v(s, x) = ∂qxv(s, x),

∂jxv(s, 0) = φj(s) ∈ Os (0 ≤ j ≤ q − 1),
(5.3)

(5.4) w(τ, x) := (Bpv)(τ, x) = (B̂q−p
p û)(τ, x) =

∑
n≥0

ϕ(qn)(x)

(pn)!

τ pn

n!q−p
.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂pτ δ̃τ

q−p−1 ◦ (δ̃τ )w(τ, x) = ∂qxw(τ, x),

w(0, x) = ϕ(x) ∈ O(C),
∂iτw(0, x) = 0 (1 ≤ i ≤ p− 1).

(5.5)

⎧⎨⎩∂pτ δ̃τ
q−p

w(τ, x) = ∂qxw(τ, x),

∂jxw(τ, 0) = ψj(τ) (0 ≤ j ≤ q − 1).
(5.6)

(5.7) ψj(τ) = (Bpφj)(τ) =
−p
2πi

∫
γp(d̃)

φj(s)e
( τs )

p ds

s
,

(5.8) ψj(τ) ∈ Exp(p/(q − p);Sp(d, ε
′
1)) (0 ≤ j ≤ q − 1),

w(τ, x) =
∑
n≥0
(∂pτ δ̃τ

q−p
)nψ(τ)

xqn

(qn)!
.
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for some positive ρ, where 1q－p = (1, . . . , 1) ∈ Nq−p. From the properties of an analytic continuation and the singularity of the 
hypergeometric function, we can obtain the desired estimate for φ(x) (cf. [5, 6, 2]).

References
[1] W. Balser, From Divergent Power Series to Analytic Functions. Springer Lecture Notes, No. 1582, (1994).
[2]  K. Ichinobe, A remark of k-summability of divergent solutions to some linear q-difference-differential equations with entire 

Cauchy data, Proceedings of FASnet20. in press.
[3]  D. A. Lutz, M. Miyake and R. Schäfke, On the Borel summability of divergent solutions of the heat equation, Nagoya math. 

J., 154, 1-29 (1999).
[4]  M. Miyake, Borel summability of divergent solutions of the Cauchy problem to non-Kowalevski equations, Partial 

differential equations and their applications (Wuhan, 1999), World Sci. Publishing, 225-239 (1999).
[5]  M. Miyake and K. Ichinobe, Hierarchy of partial differential equations and fundamental solutions associated with summable 

formal solutions of a partial differential equation of non Kowalevski type, Differential equations and asymptotic theory in 
mathematical physics, World Sci. Publ., Hackensack, NJ, Ser. Anal., 2, 330-342 (2004).

[6]  M. Miyake and K. Ichinobe, A Remark on k-summability of divergent solutions of a non-Kowalevski type equation with 
Cauchy data of entire functions, Global and asymptotic analysis of differential equations in the complex domain,  
Sūrikaisekikenkyūsho Kōkyūroku, No, 1367, 59-72 (2004).

[7]  G. Sansone and J. Gerretsen, Lectures on the Theory of Functions of a Complex Variable, P. Noordhoff, (1960).

 (Received September 2, 2021)

ϕ(x) = w(0, x) =
∑
n≥0

ψ(pn)(0)n!q−p

(qn)!
xνn

=
1

2πi

∮
|τ |=ρ

ψ(τ)

τ
qFq−1

(
1/p, 2/p, . . . , p/p,1q−p
1/q, 2/q, . . . , (q − 1)/q ;

pp

qq
xq

τ p

)
dτ
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