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1 Introduction

The purpose of the article is to study magic squares. Magic squares are very interesting topic
in mathematics education.

A magic squares is an n× n array of numbers consisting of distinct positive integers from
1 to n2 arranged such that the sum of n rows, n columns and two diagonals are respectively
the same number. We call it the common sum and denote it by c. From the definition, we
have that

c = (1 + 2 + 3 + ...+ n2)÷ n = n(n2 + 1)/2.

For example, c = 15 when n = 3, c = 34 when n = 4, c = 65 when n = 5, and so on. The
following are the examples of magic squares.

8 1 6

3 5 7

4 9 2

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

Order 3 Order 4 Order 5

There is a famous way for constructing odd-order magic squares, called Siamese Method.
In Section 2, we give a proof that Siamese Method gives odd-order magic squares. In Section
3, we give new methods for constructing odd-order magic squares. We obtain the idea from
Siamese Method.

When n = 3, there is only one magic square if we do not count the differences of rotations
and reflections. We prove it in Section 4. When n = 4, there are many magic squares. So
we consider a special type of them, called pandiagonal magic squares. When n = 4, there are
3 pandiagonal magic squares if we do not count the differences of rotations, reflections and
shifts. We prove it in Section 6.

There is a similar topic to magic squares, called magic multiplication squares. A magic
multiplication square is an n × n array of positive integers arranged such that the product
of n rows, n columns and two diagonals are respectively the same number. We call it the
common product and denote it by c. When n = 3, there is only one magic multiplication
squares with the smallest common product 63. We prove it in Section 5. When n = 4, there
are 3 pandiagonal magic multiplication squares with the smallest common product c = 1202.
We prove it in Section 7.
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2 A Method for Constructing Odd-order Magic Squares

In this section we want to make Odd-order Magic Squares by using Siam Method. There
are many methods to make odd-order magic squares. The following method is the most
famous one. It was brought from Siam to Europe by French diplomat Simon de la Loubère
(1642–1729), so it is called Siamese method or Loubère method.

Siamese Method. Let n = 2r + 1 be an odd integer, where r � 1. Prepare an n× n brank
grid. Put integers k from 1 to n2 as follows:

(i) Put 1 on (1, r + 1).
(ii) When k is not a multiples of n and placed on (i, j), put k+ 1 on (i− 1, j + 1) if i � 2

and j � n− 1, on (n, j + 1) if i = 1, and on (i− 1, 1) if j = n.
(iii) When k is a multiple of n, k � n2 − 1 and placed on (ij), put k + 1 on (i+ 1, j).
(iv) When k = n2, finish the procedure.

When n = 3, 5, 7, Siamese method give the following magic squares.

8 1 6

3 5 7

4 9 2

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

30 39 48 1 10 19 28

38 47 7 9 18 27 29

46 6 8 17 26 35 37

5 14 16 25 34 36 45

13 15 24 33 42 44 4

21 23 32 41 43 3 12

22 31 40 49 2 11 20

n = 3 n = 5 n = 7

The purpose of the section is to prove the following theorem.

Theorem 2.1. The array of numbers constructed by Siamese Method becomes a magic
square.

3 New Methods for Constructing Odd-order Magic Squares

In the section, we want to make new methods for constructing odd-order magic squares
by modifying Siamese Method. To understand Siamese Method, we consider an infinitely
enlarged matrix (aij), and we regard the suffices in modulo n, that is, ai+n,j = aij , ai,j+n =
aij . For example, we enlarge Figure 3.1 to Figure 3.2. The suffices of Figure 3.2 are shown in
Figure 3.3.

8 1 6

3 5 7

4 9 2

2 4 9 2 4

6 8 1 6 8

7 3 5 7 3

2 4 9 2 4

6 8 1 6 8

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14
a20 a21 a22 a23 a24
a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

Figure 3.1 Figure 3.2 Figure 3.3
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Siamese Method use two vectors (−1, 1) and (0, 1) as shown in Figure 3.4. The vector
(−1, 1) indicates 1 �→ 2 �→ 3, 4 �→ 5 �→ 6, 7 �→ 8 �→ 9, and (0, 1) indicates 3 �→ 4, 6 �→ 7.
So if we take two suitable vectors, we can make new methods. There are four vectors which
indicates 1 �→ 2, that is, (−1, 1), (−1,−2), (2,−2), (2, 1) as shown in Figure 3.5, and four
vectors which indicates 3 �→ 4, that is, (1, 0), (−2, 0), (−2, 3), (1, 3) as shown in Figure 3.6.
There are 4 × 4 = 16 possibilities of choosing these vectors. So there are 16 methods for
constructing odd-order magic squares and one of which is Siamese Method. Therefore, we
have 15 new methods.
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Figure 3.4 Figure 3.5 Figure 3.6

In order to construct odd-order magic square, first, think about how to decide the square
to put 1 at the beginning (starting cell). Notice that the magic squares make by Siamese
Methods have the symmetricity. In Figure 3.4, the sum of every point-symmetric pairs with
respect to the center is equal to 10. For example, 1+9 = 10, 2+8 = 10, 4+6 = 10, and so on.
As special case, 5+ 5 = 10. In general, in the case order n, the sum of every point-symmetric
pairs with respect to the center is equal to n2+1, and the center number is equal to (n2+1)/2.

We want to make new methods. Take two vectors (a, b) and (c, d). First, we put 1 on the
cell (i0, j0). Then inductively, if k is not a multiples of n and placed at (i, j), then put k + 1
at (i+ a, j+ b), if k is a multiples of n and placed at (i, j), then put k+1 at (i+ c, j+ d). To
obtain the number (n2+1)/2, we repeat the procedure (n2+1)/2− 1 times. Notice that, out
of the integers from 1 to (n2 + 1)/2− 1, there are r many times integers which are multiples
of n, and there are rn many integers which are not multiples of n. After (n2 +1)/2− 1 times
of procedure, we put (n2 + 1)/2 at

(i0, j0) + rn(a, b) + r(c, d) ≡ (i0 + rc, j0 + rd) (mod n).

We want to put (n2 + 1)/2 at the center cell. So we require that

(i0 + rc, j0 + rd) ≡ (r + 1, r + 1) (mod n).

When (c, d) = (1, 0), (−2, 0), (−2, 3), (1, 3), we have that (i0, j0) = (1, r+1), (r, r+1), (r, 2),
(1, 2), respectively. So we have new methods as shown in the following tables.
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meth. 1st vec. 2nd vec. start. cell cond.
I-1 (−1, 1) (1, 0) (1, r + 1) None
I-2 (−1,−2) (1, 0) (1, r + 1) None
I-3 (2,−2) (1, 0) (1, r + 1) None
I-4 (2, 1) (1, 0) (1, r + 1) None
II-1 (−1, 1) (−2, 0) (r, r + 1) None
II-2 (−1,−2) (−2, 0) (r, r + 1) None
II-3 (2,−2) (−2, 0) (r, r + 1) None
II-4 (2, 1) (−2, 0) (r, r + 1) None

meth. 1st vec. 2nd vec. start. cell cond.
III-1 (−1, 1) (−2, 3) (r, 2) None
III-2 (−1,−2) (−2, 3) (r, 2) 5 � n, 7 � n
III-3 (2,−2) (−2, 3) (r, 2) 5 � n
III-4 (2, 1) (−2, 3) (r, 2) None
IV-1 (−1, 1) (1, 3) (1, 2) None
IV-2 (−1,−2) (1, 3) (1, 2) 5 � n
IV-3 (2,−2) (1, 3) (1, 2) 5 � n
IV-4 (2, 1) (1, 3) (1, 2) 5 � n

Proposition 3.1. When n is a multiples of 5, Methods III-2, III-3, IV-2, IV-3 can not make
magic squares.

Proposition 3.2. When n is a multiples of 7, Method III-2 can not make magic squares.
When n is a multiples of 5, Method IV-4 can not make magic squares.

4 Magic Square of Order 3

2 9 4

7 5 3

6 1 8

Figure 4.1

The purpose in the section is to prove the following theorem.

Theorem 4.1. There is only one magic square of order 3 if we do not
count the differences of rotations and reflections. It is given in Figure
4.1.

Corollary 4.2. There are 8 magic squares of order 3.

We can prove Corollary 4.2 as follows. Firstly, if there is one magic
square, we can make 4 magic squares (including the original one) by the
rotations around (2, 2) by angles 0◦, 90◦, 180◦, 270◦. They are given by Figure 4.2. Secondly,
if there is one magic square, we can make 2 magic squares (including the original one) by
the reflections with respect to the main diagonal. They are given by Figure 4.3. So the total
number of magic squares of order 3 is equal to 4 × 2 = 8.

2 9 4

7 5 3

6 1 8

4 3 8

9 5 1

2 7 6

8 1 6

3 5 7

4 9 2

6 7 2

1 5 9

8 3 4

Figure 4.2

2 7 6

9 5 1

4 3 8

4 9 2

3 5 7

8 1 6

8 3 4

1 5 9

6 7 2

6 1 8

7 5 3

2 9 4

Figure 4.3

5 Magic Multiplication Squares of Order 3

An interesting square was posed by a famous mathematics writer Martin Gardner (1914–
2010) in [1]. An n×n matrix is a magic multiplication square if each component is a different
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positive integers, the products of n rows, n columns, and 2 diagonals are equal. We call it the
common product. Martin Gardner gave an example of magic multiplication square indicated
in Figure 5.1.

12 1 18

9 6 4

2 36 3

Figure 5.1

The purpose in the section is to prove the following theorem.

Theorem 5.1. The smallest common product of magic multiplication
square of order 3 is equal to 63. There is only one magic multiplication
square of order 3 with the common product 63 if we do not count the
differences of rotations and reflections. It is given in Figure 5.1.

Corollary 5.2. There are 8 magic multiplication squares of order 3 with
the smallest common product 63.

6 Pandiagonal Magic Squares of Order 4

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

Figure 6.1

In Section 4, we show that there is only one magic square of
order 3 if we do not count the differences of rotations and re-
flections. Even if we count it, it was not as many 8. However,
from the results of computer experiments, it can be seen that
the number of magic squares of order 4 is 1296 if we do not
count the differences of rotations and reflections and 7040 if we
count. With this many, it is very difficult to count the number.
Therefore, we will add a condition to the magic square of order
4 and reduce the total number. We call a square matrix (aij) of degree 4 a pandiagonal magic
square if its 16 components are different integers from 1 to 16 and if the sums of 4 rows,
4 columns, 4 right-down pandiagonals, and 4 left-down pandiagonals are equal. The latter
conditions are formulated as follows:

(r i) ai1 + ai2 + ai3 + ai4 = 0, i = 1, 2, 3, 4,

(c j) a1j + a2j + a3j + a4j = 0, j = 1, 2, 3, 4,

(rd j) a1j + a2,j+1 + a3,j+2 + a4,j+3 = 0, j = 1, 2, 3, 4,

(ld j) a1,j+3 + a2,j+2 + a3,j+1 + a4j = 0, j = 1, 2, 3, 4.

(6.1)

Here we consider the suffices in modulo 4, that is,

ai+4,j = aij , ai,j+4 = aij .

We call c the common sum of (aij). The purpose in the section is to prove the following
theorem.

Theorem 6.1. There are 3 pandiagonal magic squares of order 4 if we do not count the
differences of shifts, rotations and reflections. They are given in Figures 6.2, 6.3 and 6.4.

13 12 6 3

8 1 15 10

11 14 4 5

2 7 9 16

13 8 10 3

12 1 15 6

7 14 4 9

2 11 5 16

11 8 10 5

14 1 15 4

7 12 6 9

2 13 3 16

Figure 6.2 Figure 6.3 Figure 6.4
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Corollary 6.2. There are 384 pandiagonal magic squares of order 4.

7 Pandiagonal Magic Multiplication Squares of Order 4

The purpose in the section is to prove the following theorem.

Theorem 7.1. For pandiagonal magic multiplication squares of order 4, the smallest common
product is 1202. There are 3 pandiagonal magic multiplication squares of order 4 with the
common product c = 1202 if we do not count the differences of shifts, rotations and reflections.
The squares are given as follows.

15 24 10 4

40 1 60 6

12 30 8 5

2 20 3 120

20 24 10 3

30 1 60 8

12 40 6 5

2 15 4 120

20 30 8 3

24 1 60 10

15 40 6 4

2 12 5 120

Figure 7.1 Figure 7.2 Figure 7.3

Corollary 7.2. There are 384 pandiagonal magic multiplication squares of order 4 with the
smallest common product c = 1202.
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